Table of Contents

Imaginary number i

\[i^2=-1\] \[x^2=-1\] \[x=i \lor x=-i\]

Equation degree and number of solutions

  • Every n degree equation has n solutions
\[x^4=1\] \[(x^2-1)(x^2+1)=0\] \[x=1 \lor x=-1 \lor x=i \lor x=-i\]

Complex plane

  • Complex numbers are those that have a real (x-axis) and an imaginary (y-axis) part, usually called z
    • \(z=a+bi\)

Imaginary unit circle

Injective vs surjective

  • Numbers in the imaginary unit circle have a modulus, distance, r of 1
    • \(z=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i\)
    • \(r=\|z\|=\sqrt{\left(\frac{1}{\sqrt{2}}\right)^2+\left(\frac{1}{\sqrt{2}}\right)^2}=1\)

Addition

  • \((a+bi)+(c+di)=(a+c)+(b+d)i\)

Conjugates

  • \(\bar{z}=a-bi\) (mirror on the x-axis)
  • \(z+\bar{z}=a\)
  • \(z\cdot\bar{z}=\|z\|^2\)
  • \(\overline{z+w}=\bar{z}+\bar{w}\)
  • \(\overline{zw}=\bar{z}\bar{w}\)
  • \(\overline{z^n}=\bar{z}^n\)

Angle

  • Also called \(\theta\), argument of z or arg(z)
  • It can be calculated from a and b (x and y coordinates), between \(-\pi\) and \(\pi\) : argument
  • \(\tan{\theta}=\frac{y}{x}\)
  • \(arg(\frac{1}{z}) = -r\)
  • \(arg(-z) = arg(z) + \pi\)
  • \(arg(\bar{z})=-arg(z)\)

Multiplication, Polar form, Euler identity

  • for z * w we are adding the angles (arguments) of the complex numbers
  • The length of the new number is the product of their respectives moduluses Injective vs surjective
  • \(\|z\cdot w\|=\|z\|\|w\|\)
  • \(\arg(z+w)=\arg(z)+arg(w)\)
  • This can be directly expressed in polar form

Polar form

  • \(z=r(\cos{\theta}+i\sin{\theta})\)

Eulers identity

  • \(z=r(\cos{\theta}+i\sin{\theta})=re^{i\theta}\)

Multiplication and division in polar and euler form

  • \(zw=\|z\|\|w\|(\cos{(s+t)}+i\sin{(s+t)})=\|z\|\|w\|e^{i(s+t)}\)
  • \(z\cdot\bar{z}=\|z\|^2\)
    • Because we have \(\theta + -\theta\), therefore a real, positive number
    • z and its conjugate have the same length, therefore the length squared
  • \(\frac{z}{w}=\frac{\|z\|}{\|w\|}(\cos{(s-t)}+i\sin{(s-t)})=\frac{\|z\|}{\|w\|}e^{i(s-t)}\) (for s \(s\neq 0\))
  • \(z^n=\|z\|^n(\cos{(n\theta)}+i\sin{(n\theta)})=\|z\|^ne^{in\theta}\)

Multiplication in regular form

  • Re(zw) = Re(z)Re(w) – Im(z)Im(w)
  • Im(zw) = Re(z)Im(w) + Im(z)Re(w)