
CSE2520 Big Data Processing Labs
Oct 21, 2021

Unix (bash)
Intro

#!/usr/bin/env bash

This is a bash script file.
To run this file use ./intro.sh in your terminal while in the correct directory.

Echo prints lines to the output, if run using ./intro.sh then the output will be the terminal
echo "Running intro.sh"

The command cd (change directory) can be used to change the current direcory.
Update the cd command below to make sure that the rest of this script is executed in the data folder.
cd ../data || exit
The '||' on this line is like a or. If the left part gives an exit code of non-zero (error/false) the right part is evaluated.
We also have the '&&' sign. this only evaluates the right part if the left part has a zero exit code (no error/true).
They are "lazy"

echo "Moved from intro to the data folder"

The following line will execute the 'ls' command and save it in the variable lsOutput
lsOutput=$(ls)
Then we can use echo to print the result
echo "Result of ls"
echo "$lsOutput"

Implement a command that displays all files and their details in the current directory
Do this by typing it between the brackets below.
You can first test individual commands by pasting them in the terminal.
(Make sure that you are in the correct directory if you want to test it)
detailedLsOutput=$(ls -l -R) # or (find . -type f | xargs wc)
Prints the lsOutput
echo "Files in directory:"
echo "$detailedLsOutput"

Implement a command that gets all the lines that contain "#" from the 'exoplanets' file
lines=$(grep "#" planets/exoplanets)
Print result
echo "Lines from exoplanets with '#'"
echo "$lines"

Now that you have used the basics of finding files and getting text from files it's time to move on.
The real power of these commands are in the ability to combine them.
Using the output of the first command as data for the second is called piping and is denoted by the symbol |
A silly example is "ls | lolcat"
echo "The ls command but now with some more color"
ls | lolcat

Lets create an pipeline where we get the names of the last 5 exoplanets that where discovered in the year 2001.
The first part should take all the lines containing "2001" from the 'exoplanets' file.
The second part should only keeps the last 5 lines.
lastly we need to get the data that is before the first comma.
firstPipeline=$(grep ",*,*,*,*,2001,*" planets/exoplanets | tail -n5 | grep ^[^,]* -o)
echo "First pipeline results:"
echo "$firstPipeline"

#end on start path
This is needed for the automated testing
cd ../intro || exit

Pipelines

#!/usr/bin/env bash
---- MY AMAZING BOOK ----
cd ./../data/myBook/ || exit

-- Q1 --
echo "-- Q1 --"
Write a pipeline that for the current directory prints the 10 most common letters in all text files.
Your pipeline should be case insensitive and ignore punctuation and space characters.
Example output:
309 e
229 t
#tr ' ' '\n' | sed -e 's/[^ a-zA-Z\x27]//g' | sed 's/./&\n/g' |
mostCommonLetters=$(find -name '*.txt' | xargs cat | egrep [a-zA-Z] -i -o | tr '[:upper:]' '[:lower:]' | sort | uniq -c | sort -nr | head -n 10)
Prints the mostCommonLetters
echo "Most common letters in my book:"
echo "$mostCommonLetters"

-- Q2 --
Write a pipeline that finds the number of words in the book that have been repeated only once.
Your pipeline should be case insensitive
echo "-- Q2 --"
onlyOnce=$(find -name '*.txt' | xargs cat | tr ' ' '\n' | tr -d [:punct:] | sort -f | uniq -i -u | wc -l)
echo "Words repeated only once:"
echo "$onlyOnce"

cd ../../pipelines/ || exit

#!/usr/bin/env bash
echo "Running exoplanetProcessing.sh"

---- APACHE ----
cd ./../data/planets || exit

-- Q1 --
echo "-- Q1 --"
Write a pipline that for all planets that were discovered using Pulsar Timing displays the discovery year, name and facility separated by spaces.
Example: 2017 PSR B0329+54 b Multiple Facilities
pulsarTiming=$(grep ",*,*,*,Pulsar Timing,*,*" exoplanets | cut -f6,1,7 -d, | tr ',' ' ')
Print pulsarTiming
echo "Pulsar Timing:"
echo "$pulsarTiming"

-- Q2 --
echo "-- Q2 --"
Write a pipeline that finds the year in which most exoplanets were discovered. Also provide the number of planets discovered that year.
Example: 1505 2016
highestYear=$(cat exoplanets | cut -f6 -d, -s | sed -e '1d' | sort | uniq -c | sort -nr | head -n1)
echo "Highest year:"
echo "$highestYear"

-- Q3 --
echo "-- Q3 --"
Write a pipeline that counts the number of exoplanets discovered between 1997 and 2006
intervalPlanets=$(cat exoplanets | cut -f6 -d, -s | egrep "199[7-9]|200[0-6]" | wc -l)
echo "Planets in interval:"
echo "$intervalPlanets"

-- Q4 --
echo "-- Q4 --"
Write a pipeline that outputs the names of two exoplanets that have the highest number of starts in the planetary system.
highestStars=$(cat exoplanets | cut -f1,3 -d, -s | sort -nr -k2 -t ',' | head -n2 | cut -d, -f1)
echo "Highest stars:"
echo "$highestStars"

http://localhost:3000/2021/10/21/bd-labs.html#table-of-contents
http://localhost:3000/2021/10/21/bd-labs.html#table-of-contents
http://localhost:3000/2021/10/21/bd-labs.html#unix-bash
http://localhost:3000/2021/10/21/bd-labs.html#unix-bash
http://localhost:3000/2021/10/21/bd-labs.html#intro
http://localhost:3000/2021/10/21/bd-labs.html#intro
http://localhost:3000/2021/10/21/bd-labs.html#pipelines
http://localhost:3000/2021/10/21/bd-labs.html#pipelines
http://localhost:3000/2021/10/21/bd-labs.html#script-creation
http://localhost:3000/2021/10/21/bd-labs.html#script-creation
http://localhost:3000/2021/10/21/bd-labs.html#functional-programming-scala
http://localhost:3000/2021/10/21/bd-labs.html#functional-programming-scala
http://localhost:3000/2021/10/21/bd-labs.html#basics
http://localhost:3000/2021/10/21/bd-labs.html#basics
http://localhost:3000/2021/10/21/bd-labs.html#functions
http://localhost:3000/2021/10/21/bd-labs.html#functions
http://localhost:3000/2021/10/21/bd-labs.html#dataset
http://localhost:3000/2021/10/21/bd-labs.html#dataset
http://localhost:3000/2021/10/21/bd-labs.html#akka
http://localhost:3000/2021/10/21/bd-labs.html#akka
http://localhost:3000/2021/10/21/bd-labs.html#mapreduce
http://localhost:3000/2021/10/21/bd-labs.html#mapreduce
http://localhost:3000/2021/10/21/bd-labs.html#spark
http://localhost:3000/2021/10/21/bd-labs.html#spark
http://localhost:3000/2021/10/21/bd-labs.html#rdd
http://localhost:3000/2021/10/21/bd-labs.html#rdd
http://localhost:3000/2021/10/21/bd-labs.html#sql
http://localhost:3000/2021/10/21/bd-labs.html#sql
http://localhost:3000/2021/10/21/bd-labs.html#flink
http://localhost:3000/2021/10/21/bd-labs.html#flink
http://localhost:3000/
http://localhost:3000/
http://localhost:3000/downloads
http://localhost:3000/downloads
http://localhost:3000/index/
http://localhost:3000/index/

cd ../../pipelines/ || exit

Script creation

#!/usr/bin/env bash
This program should take an fileIn as first parameter
It takes the input text file and outputs the 5 most common word bigrams (https://en.wikipedia.org/wiki/Bigram) in the file.
Your solution should be case insensitive.
#
example: when `./bigrams.sh ../data/myBook/01-chapter1.txt' is ran the output should look like this:
3 the little
3 little blind
3 blind text
2 the word
2 the cop

words=$(tr [:punct:] ' ' < $1 | tr [:space:] ' ')

lines=$(
echo $words | wc --words

)

sequence=$(
seq 1 $(($lines - 1))

)

bigrams=$(
for i in $sequence ; do

j=$(($i + 1))
echo $words | cut -f$i,$j -d' '

done
)

cat <(echo "$bigrams") | tr [:upper:] [:lower:] | sort | uniq -ic | cut -f7,8,9 -d' ' | sort -nr -k1,2 -t' ' | awk -F ' ' '{print " "$1,$2"\t"$3}' | head -n 5

#!/usr/bin/env bash
The Unix assignment is almost over, time to create a submission.
You could create a zip folder by hand. Just place the '.sh' files in there, but where's the fun in that.
Let's create a script that does this for us.
This script should take an output name as first parameter
If called in a directory it should recursively find all the .sh files and add them to a zip
So the zip should only contain .sh files and no folders.
find -name '*.sh' | zip -r -j -@ $1

Functional Programming (Scala)
Basics

/**
 * PART 1 - BASICS - FUNCTIONS AND LAMBDAS
 *
 * This part teaches you about writing (anonymous) functions in Scala.
 * It is worth 10 points.
 */
object Part1 {

/**
 * An example to show what function definitions look like in Scala.
 *
 * @param i a number
 * @return i * 5 + 2
 */
def increaseGrade(i: Int): Int = {
val temp = i * 5
return temp + 2

}

def main(args: Array[String]) = {
println(leapYear(1990))
println(question2())

}

/**
 * Scala supports both val/var variables (There is actually one more type,
 * but that is outside of the scope of this course).
 * The difference is that once you assign a value to a `val` it cannot be
 * reassigned. If you would use `var` you can reassign its value though.
 * Functional Programming purists will consider var as blasphemy, but Scala
 * is a bit more pragmatic supporting both imperative programming with vars
 * and mutability as well as the functional style with vals and
 * immutability. Within this lab assignment you are *NOT* allowed to use
 * var to help speed up the functional programming learning process.
 *
 * The `return` keyword in Scala is optional:
 * the last value produced is returned automatically, in this case:
 * temp + 2
 *
 * Instead of the above method body between braces you could also write more
 * minimalistically:
 *
 * def increaseGrade(i: Int) = i*5 + 2
 *
 * The above expression can also be defined as an anonymous function and
 * assigned to a variable, i.e. the anonymous function (or lambda or lambda
 * expression as it is also called) can be written as follows:
 *
 * (i: Int) => i*5+2
 *
 * This can be assigned to variable called increasGrade by:
 *
 * val increaseGrade = (i: Int) => i*5 + 2
 *
 * So from this example you see that defining an anonymous function is done
 * by first supplying the input parameters between () separated by commas,
 * followed by a '=>', ending with the method body.
 *
 * You can apply such a function for example to a list by supplying it to
 * methods that take a function as input parameter. Be careful of the
 * correct function signature or else your compiler/interpreter/IDE
 * will complain.
 *
 * Example usage:
 * List(22,34,48).map(increaseGrade) // results in List(112, 172, 242)
 *
 * This example takes our lambda and applies it to each element of the list
 * It works because:
 * 1. List.map takes a function as input parameter
 * 2. final def map[B](f: (A) => B): List[B] is the function signature
 * of map. It takes a function (A) => B, a function which takes a
 * type A element, does something to it, and returns a type Be
 * Our anonymous function is of type Int => Int, so this works.
 */

/** Q1 (3p)
 *
 * Write the method body for determining whether a year is a leap year
 */
def leapYear(i: Int): Boolean = {
if (i % 400 == 0)
return true

if (i % 100 == 0)
return false

i % 4 == 0
} // TODO: change this method

/** Q2 (4p)
 * You've seen an example of anonymous functions in Scala.
 * Given the following two higher order functions (HOFs), i.e.
 * functions that take functions as input parameter, replace the ??? of the
 * anonymous functions with methods bodies and provide the correct
 * function signature for myFirstHof/mySecondHof in the method body of
 * question2 such that running `question2()` results in the Lists given in
 * Note1
 */

// TODO: uncomment the following 3 vals, replace the ??? with lambda expressions (anonymous functions)
val isEven = (i: Int) => i % 2 == 0 // tells whether given Int is even or not
val isOdd = (i: Int) => i % 2 == 1 // same but this time if it's odd
val timesTwo = (i: Int) => i * 2 // takes an Int and doubles it
//
def question2(): List[List[Int]] = //List(List(1), List(2), List(3))
// TODO change this method below:

{
// TODO:
// - Look up the List functions used in the Scala API
// - change the parameter type of f in both HOFS below
// from to the correct type
// - then uncomment this block and remove the `???`
def myFirstHOF(xs: List[Int], f: Int => Boolean) : List[Int] =
xs.filter(f)

def mySecondHOF(xs: List[Int], f: Int => Int) : List[Int] =
xs.map(f)

val first = myFirstHOF(List(1,2,3,4), isEven)
val second = myFirstHOF(List(1,2,3,4), isOdd)
val third = mySecondHOF(List(10,11,12,13,14,15), timesTwo)

val finalResult = List(first, second, third)
finalResult
// Scala returns the final expression, but if you just assigned it to
// a variable the return type is Unit

}

/* Note 1
 * running println(question2()) results in
 * List(List(2,4), List(1,3), List(20,22,24,26,28,30))
 *
 * It is also good for you to see that you can define methods within methods
 * (if you ever need helper methods but do not want the outer world to see,
 * use this technique, i.e. it does more or less the same as defining a
 * private helper function and calling that from with the method body)
 */

/* Note 2:
 * As you can see from inspecting the function signature of question2
 * it takes no input parameters and returns a List of List[Int]
 *
 * You don't need to specify the return type, except for recursive
 * functions; Scala will infer most return types for you. It is however good
 * practice to specify the return type when defining the function signature.
 * If you read another person's code without reading the whole method body,
 * having the complete function signature including return type is a hint to
 * its inner workings. Also, when debugging, it can really help you to view
 * the function as a blackbox with input/output types, so supplying the
 * return type has good benefits.
 */

/** Q3 (3p)
 * given two Ints, generate a list of integers (List[Int]) containing the numbers in between and with both numbers inclusive
 *
 * Examples:
 * intList(2,7) // List(2,3,4,5,6,7)
 * intList(3,0) // List()
 *
 * Hint: take a peek at part 2 since this question bridges part 1 and part 2
 */
// TODO: implement the function body
def intList(a: Int, b: Int): List[Int] = // TODO change this method
{
if (a > b)
return Nil

val list = a :: intList(a + 1, b)
list

}
// END OF PART 1

}

package basics

/**
 * PART 2 - LISTS AND PATTERN MATCHING
 *
 * It is worth 18 points.
 */
object Part2 {

// Run this main function to see the result of the `println` calls.
def main(args: Array[String]): Unit = {
// In Scala, lists are defined recursively. A list consisting only of
// the item 1 looks like this:
val one = 1 :: Nil // can also be created by calling List(1)

/**
 * The `::` operator concatenates an item and a list.
 * The `::` prepends an item to a list in O(1); There is also an
 * append, but we highly discourage its use since it's O(n)
 *
 * As the right side always needs to be a list, the terminating value
 * `Nil` is added. `Nil` is the same as an empty List: List()
 *
 * You could read the following list as `1 :: (2 :: (3 :: (Nil)))`,
 * every part in brackets is a list and the method `::` is called on
 * that list, i.e. `::` is called on its right operand.
 */

val three = 1 :: 2 :: 3 :: Nil
// Nil can be replaced by List(), but using `::` Nil seems tradition

/**
 * For 1 chain in the list `x :: y`, `x` is usually referred to as the
 * head of the list, `y` is called the tail. They can be accessed
 * as follows:
 */

val h = three.head
val t = three.tail
println(s"Head of $three is $h")
println(s"Tail of $three is $t")

/* Note 1
 * the two println statements above use something called String
 * interpolation in Scala: You start with s"..." and between the quotes
 * whenever you need to supply a value, use $variable_name to get it
 */

/**
 * Since the lists are defined recursively, accessing a certain index
 * is not O(1) but O(n). Traversing the full list however is still O(n)
 * and this is what is used most often in functional programming.
 *
 * Scala's lists are immutable. Any operation that should change a
 * value will return a new list. For example, increasing the value of

 * every item with 1 looks like this:
 */

val plusOne = three.map(x => x + 1)
println(three) // The original list is not changed
println(plusOne) // This is a new list

/**
 * Lists can also be created with the `List` function. This is a
 * shorthand for the recursive way given earlier. When printing lists
 * to the console, they are displayed like this as well.
 */

val four = List(1, 2, 3, 4)

// calling `println(sum(four))` displays the result of the function sum
// which is defined using pattern matching below
println(sum(four)) // 10

val drivers = List(
("green", 14),
("green", 3),
("orange", 2),
("orange", 6),
("red", 1),
("bananas", 1100123))

/*
 * the output of calling the traffic light function on drivers
 * N.B. the type signature of the function and how the input is mapped
 */

println(drivers.map(arg => trafficLightPenalty(arg._1, arg._2)))

}

/**
 * Recursively sums all values in the list.
 *
 * @param xs the list to process.
 * @return the sum of all values in xs.
 *
 */
def sum(xs: List[Int]): Int = xs match {
case Nil => 0
case i :: tail => i + sum(tail)

}

/* Note 1
 * Using `xs match` we "match" the value of the list. This is called pattern
 * matching. For matching the whole list without any special conditions
 * there are only two cases: Nil (or List()) and head :: tail, where head
 * is one element, tail is a list
 *
 * For the above `sum` it holds that the base case is the empty list,
 * which should return 0. If the list has a number, add the value of the
 * head to the sum of the tail
 *
 * N.B. Pay special attention to the following:
 * case matching can have a large number of cases; the FIRST one that
 * matches the argument mentioned before `match` is the one that will
 * `fire`. So if you have condition checks (guards, as they are called
 * in Scala) or a long list of cases to match against. beware of the order.
 *
 * Again:
 * !!!!! THE ORDER MATTERS IN CASE MATCHING !!!!!
 */

/*
 * The following method shows a bit more challenging example. It is supposed
 * to represent the method to determine whether a driver will receive a fine
 * when crossing a traffic light. When the light is green, or when it is
 * orange and the time passed since crossing is less than or equal to three
 * seconds passed the driver will not receive a fine. When it is red or
 * more than three seconds after the light changed to orange, the driver
 * will receive a fine.
 *
 * The return type will indicate whether the driver gets a fine, and what
 * the reason is, as a String. This tuple, i.e. (true or false, reasoning)
 * will also indicate if the traffic light is malfunctioning. Take a look
 * below for the complete example.
 */
def trafficLightPenalty(status: String, time: Int): (Boolean, String) =
(status, time) match {
case ("green", _) => (false, "ok: nothing wrong here")
case ("orange", x) if x <= 3 => (false, "ok: we allow it")
case ("orange", y) if y > 3 => (true, "ok: too late")
case ("red", _) => (true, "ok: waaay too late")
case other => (false, "ERROR: " + other)

}

/**
 * Scala also has immutable classes, called case classes. You can use
 * pattern matching on them as well. Note that `OptionalNum` itself cannot
 * be instantiated (as it is abstract). It's either `Nothing()`, indicating
 * no value, or `Num(i)`, indicating a value.
 * the keyword `sealed` indicates that ONLY the two case classes below can
 * be an OptionalNum. This can be used as a safety mechanism when checking
 * pattern matching. With `sealed` forgetting a case in the pattern match
 * will result in the compiler producing a non-exhaustive matching warning
 * without the keyword, this will not happen.
 *
 * Scala has similar built-in classes:
 * `Option`, extended by `None()` and `Some(v)`.
 * This is a very useful one, since in stead of `null` in Java (and the
 * Exceptions that come with it, when something is not found for example
 * you can just return None without throwing an exception.
 */
sealed abstract class OptionalNum()

case class Nothing() extends OptionalNum

case class Num(i: Int) extends OptionalNum

/**
 * Returns the sum of all defined numbers in a list of optional values.
 *
 * @param xs list of optional numeric values.
 * @return the sum of all defined numbers in `xs`.
 */
def optionalSum(xs: List[OptionalNum]): Int = xs match {
case Nil => 0 // the base case, List()
case Num(x) :: t => x + optionalSum(t) // h :: t case 1
case Nothing() :: t => optionalSum(t) // h :: t case 2

}

/* Note that the `xs match` can be placed right after the function
 * definition. Case classes allow for pattern atching. Instead of an if
 * statement to check. Remember the sum method? Lists have normally only
 * two cases, `Nil` or `head :: tail`, but in this case we have three!
 */

// PART 2: EXERCISES - LISTS AND PATTERN MATCHING

/* We hope you've seen enough examples to repeat the technique on your own
 * The point to take away is that pattern matching is really if else on
 * steroids
 * For the exercises in this part you are _not_ allowed to use library

 * functions. Do not use iteration, write recursive functions instead.
 */

/** Q4 (2p)
 * Twice takes a list and duplicates each element
 *
 * @param xs list to map
 *
 * Example: twice(List.range(0,4)) // List(0, 0, 1, 1, 2, 2, 3, 3)
 */
//TODO: supply the method body of twice, using pattern matching
def twice[A](xs: List[A]): List[A] = xs match {
case Nil => Nil // the base case, List()
case None :: t => twice(t) // not necessary ??
case h :: t => h :: h :: twice(t) // h :: t case 2

}

/** Q5 (2p)
 * You had a few drinks too much after a party and recorded a message for
 * someone, but due to pushing a few buttons on your app now not only the
 * list of words that you speak is reversed, but the words itself are as
 * well
 *
 * Example:
 * drunkWords(List("Hey","you,","how","are","you","doing?"))
 * turns into
 * List("?gniod","ouy","era","woh",",ouy","yeH")
 */
// TODO: supply the method body of drunkWords using pattern matching
def drunkWords(xs: List[String]): List[String] = xs match {
case Nil => Nil
case h :: t => drunkWords(t) ::: List(h.reverse)

}

/** Q6 (3p)
 * MyForAll takes a list of elements, and applies a function to it, to
 * check if some condition holds. An empty list evaluates to true.
 *
 * Examples:
 * val startsWithS = (s: String) => s.startsWith("s") // lambda expression
 *
 * myForAll(List("abc", "def"), startsWithS) // false
 * myForAll(List("start", "strong", "system"), startsWithS) // true
 */
// TODO: supply the method body of myForAll using pattern matching.
def myForAll[A](xs: List[A], f: A => Boolean): Boolean = xs match {
case Nil => true
case h :: t => f(h) && myForAll(t,f)
case None :: t => false

}

/** Q7 (3p)
 * This is the first question where you encounter the Option[T] type
 * Use this type in the method body of lastElem, which returns an Option[A]
 * of the last element of the given List[A]
 *
 * @param xs the list to map over
 * @return None if the list is empty or Some(.. : A), the last element of
 * the list
 *
 * Examples:
 * lastElem(List()) // None
 * lastElem(List.range(0,3)) // Some(2) (range has exclusive ceiling)
 */
// TODO implement using pattern matching
def lastElem[A](xs: List[A]): Option[A] = xs match {
case x :: Nil => Option(x)
case Nil => None
case h :: t => lastElem(t)

}

/** Q8 (3p)
 * Take two lists and concatenate them, returning the result
 *
 * @param xs , ys, the list to concatenate
 * @return the result of first all elements from xs with all elements
 * from ys appended
 *
 * Examples:
 * append(List(), List()) // List()
 * append(List(1,3,5), List(2,4)) // List(1,3,5,2,4)
 */
// TODO implement using pattern matching
def append[A](xs: List[A], ys: List[A]): List[A] = (xs,ys) match {

// case (Nil, Nil) => Nil
// case (xs, Nil) => xs
// case (Nil, ys) => ys

case (xs, ys) => xs ::: ys
}

/**
 * Q9 (5p)
 * This question is a variant on a filter function. Given a List[A] and a
 * function f: A => Boolean, `myFilter` should retain all elements from
 * the list which satisfy 'f' and throw out all other elements, but...
 * ... it has a twist: It should also throw out each even indexed list
 * element which satisfy 'f'
 *
 * Take a look at the examples to see more directly what it needs to do
 * if you find this description vague.
 *
 * You are required to solved this using pattern matching on lists.
 * HINT: define a 'helper' method within myFilter which uses case matching.
 *
 * Examples:
 * val nrs = List.range(0,11) // List(0,1,2,3,...,10)
 * myFilter(nrs, (i: Int) => i % 2 == 0) // List(0,4,8)
 *
 * so although 2, 6 and 10 satisfy the function, they are thrown out.
 */
// TODO implement method using pattern matching
// a helper method which you've written yourself
def myFilter[A](xs: List[A], f: A => Boolean): List[A] = {
def helperFunction[A](xs: List[A], f: A => Boolean, i: Int): List[A] = xs match {
case Nil => Nil
case h :: t if f(h) && i % 2 == 0 => h :: helperFunction(t, f, i + 1)
case h :: t if f(h) && i% 2 == 1 => helperFunction(t, f, i + 1)
case h :: t if !f(h) => helperFunction(t, f, i)

}
val list = helperFunction(xs, f, 0)
list

}

// END OF PART 2
}

package basics

/*
 * PART 3 - RINSE AND REPEAT - THE POWER OF THE API
 *
 * Ok, good, you've finished part two and now it's on to the next thing,
 * but no good practice without seeing there are many ways to slice a cake
 *
 * You just finished implementing myFilter in part 2. Below are two ways you
 * could do the same using methods from the standard library (i.e. API methods)
 * There are developers who strive for oneliners, i.e.
 *

 * val specialEvenNumbers1 = List.range(0,11).filter(isEven(_)).zipWithIndex.filter(x => x._2 %2 == 0).map(tuple => tuple._1)
 * or...
 * val specialEvenNumbers2 = (List.range(0,11).groupBy(x => x % 2 == 0) get true).get.zipWithIndex.filter(_._2 % 2 == 0).map(_._1)
 *
 * WAIT ... WHUT?
 * While correct for beginning Scala developers this is torture...
 *
 * After some time you'll get used to this, but there will be many times you
 * will want to pull your hair out debugging the incomprehensible messages
 * from the Scala compiler.
 *
 * How do you combat this/undertake questions to end up with a one line result?
 *
 * Well, that's easy: it takes a bit of practice, but remember the
 * Unix pipelines? We're going to do the same.
 *
 * If you use IntelliJ you'll have the advantage that types will be placed in
 * comments popups at the right side of your code, but if that's not working for
 * some reason, we're going to add it in comments by hand. I'll go over the 2
 * examples from above and show what I mean.
 *
 * val specialEvenNumbers1 = List // put the next method call on the next line with a .
 * .range(0, 11) // range(0,11) returns List(1,2,3,4,...,10) List.range 2nd arg is exclusive
 * .filter(isEven(_)) // provide a lambda expression to retain all list elements which are even, i.e. List(0,2,4,6,8,10)
 * .zipWithIndex // creates Tuple2[Int, Int] of each list element with its index starting at 0, i.e. List((0,0),(2,1), (4,2), (6,3), (8,4), (10,5))
 * .filter(tup => tup._2 %2 == 0) // filter the tuples: retain all elements for which the 2nd element of the tuple, the index, is even: List((0,0), (4,2), (8,4))
 * .map(tuple => tuple._1) // map over the tuple and just retain the first element of each tuple List(0,4,8)
 *
 *
 * val specialEvenNumbers2 = List
 * .range(0,11) // again get List(0,1,2,...,10)
 * .groupBy(x => x % 2 == 0) get true)
 * // groupBy(lambda) transforms into
 * HashMap(
 * false -> List(1, 3, 5, 7, 9),
 * true -> List(0, 2, 4, 6, 8, 10)
 *)
 * // then calling `get true` on that HashMap gets you an Option of the key
 * // so if the map has results for key 'true' you get Some(List(0,2,4,6,8,10)
 * .get // unwraps the Option. If you had a None and called .get you get an exception!!
 * // read more on Option in the Scala Option API
 * .zipWithIndex // like above
 * .filter(_._2 % 2 == 0) // shorthand lambda which functions just like above
 * .map(_._1) // shorthand lambda/tuple notation
 *
 * so the idea is to put every method call after the `.` on a next line
 * and type in comments the result type or sometimes even just the result on the
 * right in comments, i.e.
 *
 * someVal.someMethod // List[(a:Int, b:String)]
 * .map(lambda) // List[Int]
 * .sum // Int
 *
 * By writing your code like this, you can go over it step by step, and check
 * each transformation, just like a Unix pipeline. This will be beneficial
 * if you reach the Spark/Flink assignments
 *
 * Now enough of this... Time to get your hands dirty.
 *
 * You are asked to repeat the exact same functions from part 2
 * (except myFilter), and you are also asked for intlist from part 1,
 * but this time ONLY using standard scala API methods (mostly from List)
 * And NO... still no `vars` allowed!!! :)
 *
 * This part is worth 12 points
 */
object Part3 {
/** Q10 (2p)

 * TODO: implement `twice` only using API calls
 */
def twiceAPI[A](xs: List[A]): List[A] = {
val list = xs.flatMap(x => List.fill(2)(x))
list

}

/** Q11 (2p)
 * TODO: implement `drunkWords` only using API calls
 */
def drunkWordsAPI(xs: List[String]): List[String] = {
val list = xs.reverse.map(s => s.reverse)
list

}

/** Q12 (2p)
 * TODO: implement `myForAll` only using API calls
 */
def myForAllAPI[A](xs: List[A], f: A => Boolean): Boolean = {
val result =xs.forall(f)
result

}

/** Q13 (2p)
 * implement `lastElem` only using API calls
 */
def lastElemAPI[A](xs: List[A]): Option[A] = {
val result = xs.lastOption
result

}

/** Q14 (2p)
 * implement `append` only using API calls
 */
def appendAPI[A](xs: List[A], ys: List[A]): List[A] = {
val list = xs ::: ys
list

}

/** Q15 (2p)
 * implement `intList` (from part 1) only using API calls
 */
def intListAPI(a: Int, b: Int): List[Int] = {
val list = List.range(a, b + 1)
list

}
// END OF PART 3

}

Functions

package functions

/* PART 4 - MORE FUNCTIONS
 *
 * This part is worth 35 points
 *
 * In summary, what you've seen so far is:
 * - basic function and lambda definitions
 * - pattern matching on Lists and case classes
 * - the use of API methods
 * - daisy chaining method calls just like Unix pipelines
 *
 * Next up is a few more examples I'd like to show you before you start
 * answering the more advanced questions
 *
 * 1. SUM
 *
 * Remember the pattern matching on sum?
 *

 * def sum(xs: List[Int]) : Int = xs match {
 * case List() => 0
 * case h :: t => h + sum(t)
 * }
 *
 * Here are a few other ways of writing it:
 *
 * def sum2(xs: List[Int]) : Int = if (xs.isEmpty) 0 else xs.head + sum2(xs.tail)
 * def sumAPI1(xs: List[Int]) = xs.foldLeft(0)(_ + _)
 * def sumAPI2(xs: List[Int]) = xs.foldRight(0)(_ + _)
 * def sumAPI3(xs: List[Int]) = xs.sum
 *
 * def sumIterative(xs: List[Int]) : Int = {
 * var sum = 0;
 * for (x <- xs) {
 * sum = sum + x
 * }
 * sum
 * }
 * STOP!!! STOP!!! STOP!!! Remember no var?, the for expression is fine, it's
 * just that this method mutates the `sum` var and we don't allow that.
 *
 * 2. Folds
 *
 * the foldLeft/foldRight are an interesting bunch. They can be very powerful
 * what the foldLeft does in this example is take from left two right, two
 * elements from the list and feed it as parameters into the function.
 * In this case `_ + _` is the shorthand for ((x: Int, y:Int) => x + y)
 * Some people call these reduce, but that is not correct. While similar
 * please see the following outputs (I've left out the `println`):
 *
 * // foldLeft
 * List.range(0,5).foldLeft(0)(_ + _) // 10 with a shorthand lambda
 * List.range(0,5).foldLeft(0)((x:Int, y:Int) => x+y) // 10
 * List(1).foldLeft(0)((x:Int, y:Int) => x+y) // 1
 * List().foldLeft(0)((x:Int, y:Int) => x+y) // 0
 *
 * // compiler will warn about overloaded method and compiler doesn't know
 * // what to pick, so use the fully written lambda to prevent such warnings
 * List().foldLeft(0)(_ + _))
 *
 * // reduceLeft
 * // type is needed or else warning, but with type still an exception
 * List[Int]().reduceLeft(_+_)
 *
 * List(7).reduceLeft(_+_) // 7
 * List(1,4,5).reduceLeft(_+_) // 10
 *
 * As you can see there are some minor, but tricky differences
 * Another one to note is if your function isn't associative, then
 * foldLeft (going from left to right), will give you another result than
 * foldRight (going from right to left). You're highly recommended to look up
 * some more examples.
 *
 * 3. Flattening/Options
 *
 * Next I'd like to show you a few things that can happen when working with
 * Options, some of which aren't quite straightforward at first.
 *
 * Say you have a variable called results of type List[Option[Int]] and want
 * an easy way to filter out the Nones:
 *
 * val results = List(Some(6), Some(8), None, None, Some(9))
 *
 * results.flatten // List(6,8,9) the Options are 'unwrapped', i.e. Some peeled off and None thrown out
 * results.flatMap(x => x) // does the same (first calls map, then flattens the result)
 * results.flatMap(identity) // syntactic sugar for `x => x`
 *
 * while this is very cool to see Option unwrapped, below are a few more examples
 * which show that working with Option sometimes can be a bit challenging.
 *
 * Let's say you have a competition and with some different rounds.
 * The administration kept track of contestants name age and hobby as a
 * Tuple3(String, Int, String). The finale is aired on tv and the host
 * only cares about the name and age of the contestants. He has a list of
 * the persons who qualify for the final. If a contestant did not make it through
 * the last round, `None` is registered. The final contestants look like this:
 *
 * val contestants = List(
 * Some(("Richard", 26, "windsurfing")),
 * None,
 * Some(("Amy", 22, "bmx"))
 *)
 *
 * If the tv show host only wants their name and age:
 *
 * contestants.flatMap(x => if (x.isDefined) Some(x.get._1, x.get._2) else None)// List((Richard,26), (Amy,22))
 *
 * other things the host could do:
 *
 * val richard = contestants(0).get // (Richard, 26, windsurfing)
 * //val oops = contestants(1).get // exception, because of None.get
 * val contestant = if (contestants(1).isDefined) contestants(1).get else None // None
 *
 * BEWARE OF TRANSFORMATIONS!!
 *
 * // if contestants failed the earlier rounds, they get transformed from `None`
 * // to "failedContestant"
 *
 * println(contestants.flatMap(y => y match {
 * case None => "failedContestant"
 * case Some((name, age, hobby)) => Some(name, age)
 * }))
 * // results in List((Richard,26), f, a, i, l, e, d, C, o, n, t, e, s, t, a, n, t, (Amy,22))
 *
 * Forgetting Some in case Some results in a compiler warning; Scala can't
 * flatMap the (name, age), but the trickier issue is the String in the current
 * implementation. Strings can be flatmapped resulting in the characters
 * printed out separately. Beware of this and try to build your solution
 * step by step!
 *
 * 4. Case Classes
 *
 * There is one last thing I'd like to show you before getting to the questions
 * Simple definition of a case class and one instance:
 *
 * case class Book(isbn13 : String, translations: List[String], title: String)
 * val lotr = Book("9780395647394", List("EN", "NL", "FR"), "Lord of the Rings, Part 2: The Two Towers")
 *
 * if you want the list of languages into which it was translated call:
 * val translatedTo = lotr.translations
 *
 * i.e. you can use the .fieldName of the case class to get that specific field!
 *
 * You can read more about case classes here:
 * - https://docs.scala-lang.org/tour/case-classes.html
 * - https://docs.scala-lang.org/overviews/scala-book/case-classes.html
 *
 * 5. Tuples and indexing
 *
 * Last thing for me to tell you is an example with tuples. Scala supports up
 * to Tuple22 and you can index each element of a tuple with ._indexnr
 *
 * val ingredient = ("Sugar", 25)
 * println(ingredient._2) // outputs 25
 *
 * You can also nest these, for example:
 *
 * val recipe = (("tangerine", 2.0),("celery", 0.25),("cucumber", 1.0))

 *
 * println(recipe._1) // (tangerine,2.0)
 * println(recipe._2._2) // 0.25
 *
 * so far so good, but... are you ready? ... the type of recipe is...
 *
 * Tuple3[Tuple2[String, Double], Tuple2[String, Double],Tuple2[String, Double]]
 *
 * yes, that is mindboggling for something so simple...
 * So if you ever need to work with tuples, sometimes it's good to just take
 * one element, write it out or sort it out and see how to get to the element
 * you are interested in. Scastie (online Scala interpreter) is a good scratchpad
 * to try your scribbling out on...
 *
 * That's about the end of me ranting and trying to show you some nice Scala
 * tips and tricks. Good luck with part 4 and part 5!
 */
object Part4 {
// PART 4 - MORE FUNCTIONS - EXERCISES

/** Q16 (2p)
 * Reverse a list using the List method foldLeft
 *
 * Example:
 * reverseUsingFold(List.range(-3,2)) // List(1, 0, -1, -2, -3)
 */
def reverseUsingFold[A](nrs: List[A]): List[A] = nrs.foldLeft[List[A]](Nil)((x, y) => y :: x)

/** Q17 (5p)
 * find the second largest element in the list of Ints, if it exists
 *
 * @param xs : the List[Int] to search
 * @return an Option[Int], i.e. Some(x: Int) that is the next largest element in the list
 * or None if it does not exist
 *
 * Examples:
 * secondLargest(List(1,2,3,4,5,6)) // Some(5)
 * secondLargest(List(1,1,1,1)) // None
 */
// TODO: implement method using Pattern Matching, API calls to standard API or a combination (Hint Hint..)
// no imports are necessary
def secondLargest(xs: List[Int]): Option[Int] = xs match {
case Nil => None
case _ => xs
.distinct
.sorted
.reverse
.lift(1) //"get" (apply) for option type

}

/** Q18 (5p)
 * Count the number of occurrences of each distinct number
 * Example:
 * countNumbers(List(1,2,1,2,1,2,3,4,4,4,4,4,4,4,4)) // Map(1 -> 3, 2 -> 3, 3 -> 1, 4 -> 8)
 */
def countNumbers(xs: List[Int]): Map[Int, Int] = xs.groupBy(x => x).mapValues(_.size)

/** Q19 (2p)
 * Ai... 13 is always a bad number... A hacker infiltrated the Scala Deployment server and hacked the API
 * The hacker removed the function `distinct` from the API. You have been asked to create a workaround
 * using the standard API... and only for two points... cheapskates...
 *
 * @param xs the list to process
 * @return a list with all the duplicates filtered out
 *
 * Example:
 * distinctAPI(List(1,2,1,2,1,2,3,4,4,4,4,4,4,4,4)) // List(1,2,3,4)
 */
// TODO: implement `distinct` without using .distinct on the list
def distinctAPI[A](xs: List[A]): List[A] = xs.foldLeft[List[A]](Nil)((x, y) => if (!x.contains(y)) x ::: List(y) else x)

/** Q20 (3p)
 * Special partition takes all numbers, adds one to the negative numbers and checks
 * if all those together have the same absolute value as all the positive numbers
 *
 * Example:
 * specialPartition(List(List(-4,1,2), List(-4,-4,-6,1,2,4,4), List(-4,-4, -6, 1,2,8))) // true
 */
// TODO: implement using API methods
def specialPartition(xs: List[List[Int]]): Boolean = xs.foldLeft(0)((x, y) => x + y.foldLeft(0)(
(x, y) => if (y < 0) x + y + 1 else x + y)) == 0

val tudScrabblePlayers: List[(String, List[(String, Int)])] = List(
("Ola", List(("tree", 4), ("plant", 12), ("water", 10), ("earth", 9), ("heaven", 1))),
("Liudas", List(("hop", 3), ("editor", 7), ("mileage", 8), ("load", 4), ("quintuple", 16))),
("Roald", List(("language", 8), ("three", 5), ("hip", 3))),
("Burçu", List(("beverage", 11), ("institution", 14), ("player", 8), ("feedback", 7), ("positive", 9), ("login", 5))),
("Georgios", List(("functional", 9), ("program", 7), ("facebook", 6)))

)

/** Q21 (5p)
 * It's finally Friday and you and your friends are going to play a game of Scrabble
 * from the given `scrabblePlayers` determine the good players.
 * A good player has put down only words of length larger than 3.
 *
 * in `tudScrabblePlayers` Ola, Burçu, and Georgios are good players.
 */
// TODO: implement this method
def determineGoodPlayers(scrabblePlayers: List[(String, List[(String, Int)])]): List[String] = scrabblePlayers.foldLeft[List[String]](Nil)(
(x, y) => if(!y._2.isEmpty && y._2.forall(w => w._1.length > 3)) x ::: List(y._1) else x)

/** Q22 (3p)
 * determine from good Scrabble players who has an average value per word of over 7
 * return their name and the average value of words put down
 * for the above example we expect:
 * List((Ola,7.2), (Burçu,9.0), (Georgios,7.333333333333333))
 */
def avgOver7(scrabblePlayers: List[(String, List[(String, Int)])]): List[(String, Double)] = scrabblePlayers
.filter(x => determineGoodPlayers(scrabblePlayers).indexOf(x._1) != -1)
.filter(x => x._2.map(ab => ab._2).sum.toDouble / x._2.length.toDouble > 7)
.map(x => (x._1, 0d + x._2.map(ab => ab._2).sum.toDouble / x._2.length.toDouble))

/** Q23 (5p)
 * Given an anonymised list of students who sport and another list of
 * all student results where the anonymised names relate, i.e. student "a"
 * on the sport list is the same student as student "a" in the list with
 * results from all students....
 *
 * find the students who sport, who showed up to ALL their exams AND passed
 * all of them (grade >= 6)
 * val asr = List(// list of student tuples with (name, course, Option[result])
 * ("a", "bdp", Some(8)), ("a", "ci", Some(9)), ("a", "dm", None),
 * ("b", "bdp", Some(7)), ("b", "ci", Some(7)), ("b", "dm", Some(7)),
 * ("c", "bdp", Some(6)), ("c", "ci", Some(3)), ("c", "dm", Some(9)),
 * ("d", "bdp", Some(4)), ("d", "ci", Some(9)), ("d", "dm", Some(3)),
 * ("e", "bdp", Some(7)), ("e", "ci", Some(8)), ("e", "dm", Some(8)),
 * ("f", "bdp", Some(6)), ("f", "ci", Some(6)), ("f", "dm", Some(8)),
 * ("g", "bdp", Some(6)), ("g", "ci", Some(6)), ("g", "dm", Some(9))
 *)
 *
 * val ss = List("a", "d", "f","g") // only "f"/"g" would be considered 'good'
 */
def goodSportStudents(studentResults: List[(String, String, Option[Int])], sportStudents: List[String]): List[String] = sportStudents.foldLeft[List[String]](Nil)(
(x, y) => if (studentResults.filter(s => s._1.eq(y)).foldLeft(true)((z, w) => z && w._3.isDefined && w._3.get >= 6)) List(y) ::: x else x)

/** Q24 (5p)
 *
 * The institution of the sporting students from the previous questions
 * would like to know what the average grade of each of the good sporting

 * students is.
 *
 * The expected output for this question with the previous students (from Q22)
 * would be: List((f,6.666666666666667), (g,7.0))
 */
def avgGradeGoodSportStudents(studentResults: List[(String, String, Option[Int])], sportStudents: List[String]): List[(String, Double)] =
sportStudents.foldLeft[List[(String, Double)]](Nil)(
(x, y) => if (studentResults.filter(s => s._1.eq(y)).foldLeft(true)((z, w) => z && w._3.isDefined && w._3.get >= 6))
List((y, studentResults.filter(s => s._1.eq(y)).foldLeft(0d)((z, w) => z + w._3.get) / studentResults.count(s => s._1.eq(y)))) ::: x else x)

// END OF PART 4
}

Dataset

package dataset

/**
 * PART 5A - DATASET1 / REAL LIFE APPLICATION
 *
 * In the following questions you will solve realistic problems with the
 * techniques you learned in this assignment. You will be working with data of
 * San Francisco Library patrons.
 *
 * Below you can find what each field means.
 * Id: Id of patron
 * Patron Type Definition: Description of patron (adult, teen, child, senior,
 * etc.).
 * Total Checkouts: Total number of items the patron has checked out from the
 * library since the record was created.
 * Total Renewals: Total number of times the patron has renewed checked-out
 * items.
 * Age Range: Age ranges: 0 to 9 years, 10 to 19 years, 20 to 24 years,
 * 25 to 34 years, 35 to 44 years, 45 to 54 years, 55 to 59 years,
 * 60 to 64 years 65 to 74 years, 75 years and over. Some blank.
 * Home Library Definition: Description of the branch library where the
 * patron was originally registered.
 * Circulation Active Month: Month the patron last checked out library
 * materials, or last logged into the library’s subscription databases
 * from a computer outside the library.
 * Circulation Active Year: Year the patron last checked out library materials,
 * or last logged into the library’s subscription databases from a computer
 * outside the library.
 * Notice Preference Definition: Description of the patron’s preferred method of
 * receiving library notices.
 * Provided Email Address: Indicates whether the patron provided an email
 * address.
 * Year Patron Registered: Year patron registered with library system.
 * No dates prior to 2003 due to system migration.
 * Outside of County: If a patron's home address is not in San Francisco, then
 * flagged as true, otherwise false.
 * Supervisor District: Based on patron address: San Francisco Supervisor
 * District. Note: This is an automated field, please note that if
 * "Outside of County" is true, then there will be no supervisor district.
 * Also, if the input address was not well-formed, the supervisor district
 * will be blank.
 *
 * Solve the following questions using functional programming.
 * The code for reading the file is already given.
 *
 * This part is worth 9 points
 */
object Part5A {

def main(args: Array[String]): Unit = {
val patrons = scala.io.Source.fromResource("library-first6000.csv").getLines().toList.drop(1).map(line => line.split(","))

// use this if you want nice output to fiddle around a bit
println(patrons.head.toList)
println(exampleOutput(patrons))

}

/** gets you the ids of the patrons and their age */
def exampleOutput(xs: List[Array[String]]): List[Array[String]] = xs.filter(x => x(8).eq("email") && !x(9).toBoolean)

/** Q25 (3p)
 * Count the number of patrons who didn't provide an age to the library at all
 *
 * @param xs the list of patrons
 * @return the number of people who didn't supply their age
 */
def noAge(xs: List[Array[String]]): Int = xs.map((x: Array[String]) => x(4)).count(x => x.isEmpty)

/** Q26 (3p)
 * Output the id, age range and notice preference as a tuple of the patron with the highest number of checkouts
 */
def highestCheckouts(xs: List[Array[String]]): Tuple3[Int, String, String] = xs.sortBy(x => x(2).toInt).reverse.map(x => (x(0).toInt, x(4), x(8))).apply(0)

/** Q27 (3p)
 * Output the patron type and number of patrons as a map and make sure the patrons satisfy the following condition:
 * - Patrons who indicated to be contacted by email but have not provided that email
 */
def missing_email(xs: List[Array[String]]): Map[String, Int] =
xs
.map((x: Array[String]) => (x(1), x(8), x(9)))
.filter(abc => abc._2 == "email" && abc._3 == "false")
.map(x => (x._1))
.groupBy(identity)
.map(x => (x._1, x._2.length))

// END OF PART 5A
}

package dataset

import dataset.util.XMLDatafile.Badge
import scala.io.Source

/**
 * PART 5A - DATASET2 / StackOverFlow Badges
 *
 * In this assignment you will be asked to finish reading in a not quite xml file
 * The file is one big list of lines such asked
 *
 * <row Id="1" UserId="3" Name="Autobiographer" Date="2012-03-06T18:53:16.300" Class="3" TagBased="False" />
 *
 * For this assignment you first have to prep your data a bit, and then it's
 * on to answering questions. This part is worth 9 points
 */
object Part5B {

/** Q28 (3p)
 * Included is a first example of reading in a file:
 * `sourceAsListString` generates a `List[String]`
 *
 * We would like you to finish `source` converting this into a List of
 * case class Badge, i.e. make sure the return type for source is
 * `List[Badge], you can find Badge in the util folder
 */
val sourceAsListString = Source.fromResource("First6200Badges.xml").getLines.toList.drop(2).dropRight(1)

// TODO remove the 'val source = ???', uncomment the lines below and
// finish the method to read in the file and return List[Badge]

 val source = Source.fromResource("First6200Badges.xml").getLines().toList.drop(2).dropRight(1)
 .map(line => {

val words = line.split("\"")
val badge = Badge(words.apply(1).toInt, words(3).toInt, words(5), words(7), words(9).toInt, words(11).toBoolean)

badge
})

/**
 * Again you can use this to get some output
 */
def main(args: Array[String]): Unit = {
//println(showResults(sourceAsListString))
println(source)

}

def showResults(input: List[String]): Unit = input.foreach(println)

/** Q29 (3p)
 *
 * What is the easiest attainable badge? Output a tuple of its name and nr
 */
def easiestAttainableBadge(input: List[Badge]): (String, Int) = input.map(x => x.name).groupBy(identity).map(x => (x._1, x._2.length)).toList.sortBy(x => x._2).reverse.apply(0)

/** Q30 (3p)
 *
 * Return a tuple of tuples of the least productive and most productive
 * year, together with the nr of badges earned
 */
def yearOverview(input: List[Badge]): ((Int, Int), (Int, Int)) = Tuple2(input.map(x => x.badgeDate.split("-").apply(0)).groupBy(identity).map(x => (x._1.toInt, x._2.length)).minBy(x => x._2),
input.map(x => x.badgeDate.split("-").apply(0)).groupBy(identity).map(x => (x._1.toInt, x._2.length)).maxBy(x => x._2))

// END OF PART 5B

}

package dataset

import java.text.SimpleDateFormat
import java.util.SimpleTimeZone
import dataset.util.Commit.Commit
import org.json4s.native.Serialization
import org.json4s.{Formats, NoTypeHints}

import scala.io.Source
import scala.math.Ordering.Implicits._

/**
 * PART 5C - Mining Software Repositories
 *
 * Use your knowledge of functional programming to complete the following function.
 * You are recommended to use library functions when possible.
 *
 * The data is provided as a list of `Commit`s. This case class can be found in util/Commit.scala.
 * When asked for dates, use the `commit.commit.committer.date` field.
 *
 * This part is worth 7 points.
 */
object Part5C {
implicit val formats: AnyRef with Formats = Serialization.formats(NoTypeHints)
val source: List[Commit] = Source.fromResource("1000_commits.json").getLines().map(Serialization.read[Commit]).toList

/** Q31 (7p)
 *
 * A day has different parts:
 * Morning 5 am to 12 pm (noon)
 * Afternoon 12 pm to 5 pm.
 * Evening 5 pm to 9 pm.
 * Night 9 pm to 4 am.
 *
 * Which part of the day was the most productive in terms of commits ?
 * Return a tuple with the part of the day and the number of commits
 *
 * Hint: for the time, use `SimpleDateFormat` and `SimpleTimeZone`.
 */
def mostProductivePart(input: List[Commit]): (String, Int) = input.map(x => x.commit.committer.date.toString.split(" ")(3).split(":")(0).toInt)
.map(x =>
if (x >= 5 && x <= 12) "morning" else
if (x >= 12 && x <= 17) "afternoon" else
if (x >= 17 && x <= 21) "evening" else
if (x >= 21 || x <= 5) "night" else
""

).groupBy(identity).map(x => (x._1, x._2.length)).maxBy(x => x._2)

// END OF PART 5C & END OF THE LAB ^_^
// Hope you enjoyed it and good luck with the next assignment!

}

Akka
MapReduce

package cse2520.mapreduce

import akka.actor.typed.scaladsl.{AbstractBehavior, ActorContext, Behaviors}
import akka.actor.typed.{ActorRef, Behavior, PostStop, Signal}
import cse2520.mapreduce.MapperNode.{InputSetState, MapperCommand, MapperEvent}

import scala.util.{Failure, Success}

object MapperNode {

sealed trait MapperCommand
case class StartMapper(taskId: Int, inFile: String, supervisor: ActorRef[MapperEvent]) extends MapperCommand
case object ProcessNextBatch extends MapperCommand

sealed trait MapperEvent
case class MapperStarted(id: Int, taskId: Int) extends MapperEvent
case class MapperFinished(id: Int, taskId: Int, intSets: Map[Int, String]) extends MapperEvent

final case class InputSetState(name: String, lines: Iterator[String], index: Int)

def apply(id: Int, mapperClass: Class[Mapper],
partitions: Partitioner, fileSystem: FileSystem): Behavior[MapperCommand] =

Behaviors.setup(context => {
val mapper = mapperClass.getConstructor().newInstance()
context.log.info(s"Mapper ${id} is available.", id)

new MapperIdle(context, new MapperNode(id, fileSystem, mapper, partitions))
})

}

class MapperNode(val id: Int, val fileSystem: FileSystem, val mapper: Mapper, val partitions: Partitioner)

class MapperIdle(context: ActorContext[MapperCommand], node: MapperNode)
extends AbstractBehavior[MapperCommand](context) {

import MapperNode._

// TODO
override def onMessage(msg: MapperCommand): Behavior[MapperCommand] = msg match {
case StartMapper(taskId, inputSet, supervisor) =>
val iterator = node.fileSystem.readInputSet(inputSet).iterator
supervisor.tell(MapperStarted.apply(node.id, taskId))
context.self ! ProcessNextBatch
new MapperInProgress(context, node, taskId, InputSetState(inputSet, iterator, 0), new PartitioningBufferedEmitter(node.partitions), supervisor)

case _ => Behaviors.unhandled
}

override def onSignal: PartialFunction[Signal, Behavior[MapperCommand]] = {
case PostStop =>
context.log.info(s"Mapper ${node.id} stopped [from idle]", node.id)
Behaviors.stopped

}
}

class MapperInProgress(context: ActorContext[MapperCommand], node: MapperNode, taskId: Int, inputSet: InputSetState,
emitter: PartitioningBufferedEmitter, supervisor: ActorRef[MapperEvent])

extends AbstractBehavior[MapperCommand](context) {

import MapperNode._

context.log.info(s"Mapper ${node.id} is starting task ${taskId} ...", node.id, taskId)

// TODO
override def onMessage(msg: MapperCommand): Behavior[MapperCommand] = msg match {
case ProcessNextBatch if inputSet.lines.hasNext =>
context.log.info(s"Mapper ${node.id} is processing task ${taskId} [line=${inputSet.index}] ...", node.id, taskId, inputSet.index)
// do the task! - (emitter, key, value)

val mapResult = node.mapper.map(emitter, inputSet.name, inputSet.lines.next())
mapResult match {
case Success(_) =>
context.self ! ProcessNextBatch
new MapperInProgress(context, node, taskId, inputSet.copy(index = inputSet.index + 1), emitter, supervisor)

case Failure(e) =>
context.log.info(s"Mapper ${node.id} error processing ${e}.", node.id, inputSet, e)
//Behaviors.stopped
throw e

}
// TODO
case ProcessNextBatch =>
context.log.info(s"Mapper ${node.id} has completed processing task ${taskId}.", node.id, taskId)

// maps partition indices to file names
val intermediates = (0 until node.partitions.count)
// take buffered data
.map(i => (i, emitter.getData(i)))
.filter(_._2.nonEmpty)
.map(p => p._1 -> s"partition-${p._1}/task-$taskId.txt")
.toMap

intermediates.foreach {
// for each partition index, write data to corresponding file
case (i, outFileName) => node.fileSystem.writeLocalSet(outFileName, emitter.getData(i))

}
supervisor.tell(MapperFinished(node.id, taskId, intermediates))
new MapperIdle(context, node)

case _ => Behaviors.unhandled
}

}

Spark
RDD

package RDDAssignment

import java.math.BigInteger
import java.security.MessageDigest
import java.sql.Timestamp
import java.util.UUID

import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
import utils.{Commit, File, Stats}

/**
 * Hint regarding the exercises: it is sometimes specified that the assignment asks about the committer or the
 * commit author. Those are two different entities, as per the Commit.scala file. Inspect it thoroughly and make
 * sure to always refer to the proper entity!
 */
object RDDAssignment {

/**
 * Reductions are often used in data processing in order to gather more useful data out of raw data. In this case
 * we want to know how many commits a given RDD contains.
 *
 * * You should be able to complete this assignment with using only one function. If in doubt, read the Spark RDD
 * documentation in detail: https://spark.apache.org/docs/2.4.3/api/scala/index.html#org.apache.spark.rdd.RDD
 *
 * @param commits RDD containing commit data.
 * @return Long indicating the number of commits in the given RDD.
 */
def assignment_1(commits: RDD[Commit]): Long = commits.count()

/**
 * We want to know what is the most popular email domain. We require a RDD containing tuples
 * of the used email domain, combined with the number of occurrences.
 *
 * Hint: Use email of author
 *
 * @param commits RDD containing commit data.
 * @return RDD containing tuples indicating the email domain (extension) and number of occurrences.
 */
def assignment_2(commits: RDD[Commit]): RDD[(String, Long)] = commits
.map(c => c.commit.author.email)
.distinct()
.map(e => e.split("@"))
.map(e => (e(e.length - 1), 1))
.groupByKey()
.map(row => (row._1, row._2.sum))

/**
 * Return a Tuple with filename and the number of changes of the most frequently changed file.
 * If there is no filename, use 'unknown'.
 *
 * Files in a directory must have unique names but can have the same name in different directories.
 * Files can be refactored to different directories. To simplify things, you may assume that when a file
 * is refactored you *DO NOT* need to add or subtract commits from filepath(s). To further simplify this.
 * use absolute filepath as filename.
 *
 * @param commits RDD containing commit data.
 * @return RDD containing tuples indicating the filename and number of changes.
 */
def assignment_3(commits: RDD[Commit]): (String, Long) = commits
.flatMap(c => c.files)
.map(f => if(f.filename.isDefined) (f.filename.get, f.additions + f.deletions) else ("unknown", f.additions + f.deletions))
.groupByKey()
.map(row => (row._1, 1L * row._2.sum))
.sortBy(x => x._2, false)
.take(1)(0)

/**
 * Some users on Github might be interested in their ranking in number of comments. Return a
 * RDD containing tuples of the rank (zero indexed) of a commit author, a commit author's name and the sum of comment
 * counts made by the commit author. As in general with performance rankings, a higher performance means a better
 * ranking (0 = best). In case of a tie, the lexicographical ordering of the usernames should be used to break the
 * tie.
 *
 * @param commits RDD containing commit data.
 * @return RDD containing the rank number, commit author names and number of comments an author in order.
 */
def assignment_4(commits: RDD[Commit]): RDD[(Long, String, Long)] = commits
.map(c => (c.commit.author.name, c.commit.comment_count))

.groupByKey()

.map(row => (row._1, row._2.sum))

.sortBy(x => x._1.toLowerCase)

.sortBy(x => x._2, false)

.zipWithIndex()

.map(x => (x._2, x._1._1, x._1._2))

/**
 * We want to know how stable and how widely used some programming languages are. There are many ways to achieve that,
 * but for the purpose of this exercise, the measure we choose is how many additions, deletions and changes
 * occur in each file extension. We will provide a list of file extensions.
 *
 * We want an RDD of tuples containing the file extension name, the number of such files
 * and the Stats object. As the Stats object is only used for commits and single files only have additions,
 * deletions and changes value, we want you to compose the Stats object for each file with those values.
 *
 * Hint: the value of "changes" is the sum of additions and deletions, so it is an equivalent of the
 * "total" value in stats.
 *
 * @param commits RDD containing commit data.
 * @param fileExtensions List of String containing file extensions
 * @return RDD containing file extension and an aggregation of the committers Stats.
 */
def assignment_5(commits: RDD[Commit], fileExtensions: List[String]): RDD[(String, Stats)] = commits
.flatMap(c => c.files)
.filter(c => c.filename.isDefined && c.filename.get.split('.').length > 0 && fileExtensions.contains(c.filename.get.split('.')(c.filename.get.split('.').length - 1)))
.map(f => (f.filename.get.split('.')(f.filename.get.split('.').length - 1), Stats(f.changes, f.additions, f.deletions)))
.groupByKey()
.map(t => (t._1, t._2.fold(Stats(0,0,0))((f, s) => Stats(f.total + s.total, f.additions + s.additions, f.deletions + s.deletions))))

/**
 * There are different types of people, those who own repositories, and those who make commits. There are also
 * people who do both. We require as output an RDD containing the names of commit authors and repository owners
 * that have both committed to repositories and own repositories in the given RDD.
 * Note that the repository owner is contained within Github urls.
 *
 * @param commits RDD containing commit data.
 * @return RDD of Strings representing the author names that have both committed to and own repositories.
 */
def assignment_6(commits: RDD[Commit]): RDD[String] = commits
.map(c => c.url.split("/")(4))
.intersection(commits
.map(c => c.commit.author.name))

/**
 * Description
 * Sometimes developers make mistakes, sometimes they make many. One way of observing mistakes in commits is by
 * looking at so-called revert commits. We define a 'revert streak' as the number of times `Revert` occurs
 * in a commit.
 *
 * Note that for a commit to be eligible for a 'commit streak', its message must start with `Revert`.
 * As an example: `Revert "Revert ...` would be a revert streak of 2, whilst `Oops, Revert Revert little mistake`
 * is not a 'revert streak'.
 *
 * Return a RDD containing tuples of
 * - repository name (can be derived from the url)
 * - average streak length computed over all commits.
 *
 * @param commits RDD containing commit data.
 * @return RDD of Tuple type containing a repository name and a double representing the average streak length.
 */
def assignment_7(commits: RDD[Commit]): RDD[(String, Double)] = commits
.map(c => (c.url.split("/")(5), 1))
.reduceByKey(_ + _)
.map(t => (t._1, 1D * t._2))
.leftOuterJoin(commits
.map(c => (c.url.split("/")(5), c.commit.message.split("[,?!:.\"\n]+")))
.filter(t => t._2.length > 0 && t._2(0) == "Revert")
.map(t => (t._1, t._2.count(s => s == "Revert")))
.reduceByKey(_ + _))

.map(t => (t._1, (1D * t._2._2.getOrElse(0)) / t._2._1))

/**
 * We want to know the number of commits that are made by unique committers (represented by the field committer
 * in CommitData) in the given RDD. Besides the number of commits, we also want to know how many different
 * repositories the committers committed to. The repository name can be found in url.
 *
 * @param commits RDD containing commit data.
 * @return RDD of tuple containing committer name, list of repositories and
 * total number of commits committed to that repository.
 */
def assignment_8(commits: RDD[Commit]): RDD[(String, Iterable[String], Long)] = commits
.map(x => (x.commit.committer.name, ("(?=(([\\w-]+).commits))[\\w-]+".r.findAllIn(x.url).mkString, 1)))
.reduceByKey((acc, next) => (acc._1 + " " + next._1, acc._2 + next._2))
.map(ab => (ab._1, ab._2._1.split(" ").toList.distinct, ab._2._2))

/**
 * Description
 * Return RDD of tuples containing
 * - repository names
 * - list of all commit authors of that repository (commit.author.name), with date of first commit.
 * Hint
 * Use commit.author.date
 *
 * @param commits RDD containing commit data.
 * @return RDD containing the repository names, list of tuples of Timestamps and commit author names
 */
def assignment_9(commits: RDD[Commit]): RDD[(String, Iterable[(Timestamp, String)])] = {
val m = commits
.map(c => ((c.url.split("/")(5),c.commit.author.name), c.commit.author.date))
.reduceByKey((acc, next) => if (acc.after(next)) next else acc)
.collect()

commits
.map(c => ((c.url.split("/")(5),c.commit.author.name), c.commit.author.date))
.reduceByKey((acc, next) => if (acc.after(next)) next else acc)
.map(ab => (ab._1._1, "!" + ab._2 + ";" + ab._1._2 + "!"))
.reduceByKey((acc, next) => acc + "%" + next)
.map(ab => (ab._1, ab._2.split("%")
.toIterable
.map(x => (Timestamp.valueOf("[^!,].+(?=;)".r.findAllMatchIn(x).mkString
.replace(".0", "")),
"(?<=;)[^!]+".r.findAllMatchIn(x).mkString))))

}

/**
 * Description
 * We want to know the committers that worked on a certain file to make an overview of every file in a repository.
 *
 * Create a tuple containing
 * - file name
 * - set of tuples with name of committers
 * - Stat object representing the changes made to the file by each committer.
 *
 * @param commits RDD containing commit data.
 * @param repository String name of repository
 * @return RDD containing tuples representing a file name and a list of tuples of committer names and Stats object.
 */
def assignment_10(commits: RDD[Commit], repository: String): RDD[(String, List[(String, Stats)])] = ???

/**
 * BONUS ASSIGNMENT STARTS HERE
 *
 * Hashing function that computes the md5 hash from a String, which in terms returns a Long to act as a hashing
 * function for repository name and username.
 *

 * @param s String to be hashed, consecutively mapped to a Long.
 * @return Long representing the MSB from the inputted String.
 */
def md5HashString(s: String): Long = {
val md = MessageDigest.getInstance("MD5")
val digest = md.digest(s.getBytes)
val bigInt = new BigInteger(1, digest)
val hashedString = bigInt.toString(16)
UUID.nameUUIDFromBytes(hashedString.getBytes()).getMostSignificantBits

}

/**
 * OPTIONAL EXERCISE - do not expect help from TA
 *
 * Create a bi-directional graph from committer to repositories. Use md5HashString function above to create unique
 * identifiers for creating a graph.
 *
 * As the real usage Sparks GraphX library is out of the scope of this course, we will not go further into this, but
 * this can be used for algorithms like PageRank, Hubs and Authorities, clique finding, etc.
 *
 * We expect a node for each repository and each committer (based on committer name), an edge from each
 * committer to repositories the committer has committed to.
 *
 * Look at documentation of Graph and Edge before starting this complementary exercise.
 * Your vertices should contain information about the type of node, a 'developer' or a 'repository' node.
 * Edges should only exist between repositories and committers.
 *
 * @param commits RDD containing commit data.
 * @return Graph representation of the commits as described above.
 */
def bonus_assignment(commits: RDD[Commit]): Graph[(String, String), String] = ???

}

SQL

package DataFrameAssignment

import java.sql.Timestamp

import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
import utils.File

/**
 * Note read the comments carefully, as they describe the expected result and may contain hints in how
 * to tackle the exercises. Note that the data that is given in the examples in the comments does
 * reflect the format of the data, but not the result the graders expect (unless stated otherwise).
 */
object DFAssignment {

/**
 * To get a better overview of the data, we want to see only a few columns out of the data. We want to know
 * the committer name, the timestamp of the commit and the length of the message in that commit
 *
 * | committer | timestamp | message_length |
 * |----------------|----------------------|----------------|
 * | Harbar-Inbound | 2019-03-10T15:24:16Z | 1 |
 * | ... | ... | ... |
 *
 * Hint: try to work out the individual stages of the exercises, which makes it easier to track bugs, and figure out
 * how Spark Dataframes and their operations work. You can also use the `printSchema()` function and `show()`
 * function to take a look at the structure and contents of the Dataframes.
 *
 * Hint: for mapping values of a single column, look into user defined functions (udf)
 *
 * @param commits Commit Dataframe, created from the data_raw.json file.
 *@return DataFrame of commits from the requested committers, including the commit timestamp and the length of the
 * message in that commit.
 */
def assignment_1(commits: DataFrame): DataFrame = {
val getLength = udf { s : String => s.length }
commits
.select("commit.committer.name", "commit.committer.date", "commit.message")
.withColumn("committer", col("name"))
.withColumn("timestamp", col("date"))
.withColumn("message_length", getLength(col("message")))
.drop("name")
.drop("date")
.drop("message")

}

/**
 * In this exercise we want to know all the commit SHA's from a list of commit committers. We want to order them
 * by the committer names alphabetically:
 *
 * | committer | sha |
 * |----------------|--|
 * | Harbar-Inbound | 1d8e15a834a2157fe7af04421c42a893e8a1f23a |
 * | ... | ... |
 *
 * @param commits Commit Dataframe, created from the data_raw.json file.
 * @param committers Sequence of String representing the committers from which we want to know their respective commit
 * SHA's.
 * @return DataFrame of commits from the requested commiters, including the commit SHA.
 */
def assignment_2(commits: DataFrame, committers: Seq[String]): DataFrame = commits

.select("commit.committer.name", "sha")

.withColumnRenamed("name", "committer")

.filter(row => committers.contains(row.get(0)))

.orderBy("committer")

/**
 * We want to generate yearly dashboards for all users, per each project they contribute to.
 * In order to achieve that, we need the data to be partitioned by years.
 * The returned DataFrame that is expected is in the following format:
 *
 * | repository | committer | year | count |
 * |------------|------------------|------|---------|
 * | Maven | magnifer | 2019 | 21 |
 * | | .. | | .. |
 *
 * @param commits Commit Dataframe, created from the data_raw.json file.
 * @return Dataframe containing 4 columns, Repository name, committer name, year and the number of commits for that
 * week.
 */
def assignment_3(commits: DataFrame): DataFrame = {
val getRepoName = udf { s : String => s.split("/")(5) }
val getYear = udf { s: String => s.split("-")(0).toInt }
commits
.withColumn("repository", getRepoName(col("url")))
.withColumn("year", getYear(col("commit.committer.date")))
.select("repository", "commit.committer.name", "year", "_id")
.withColumnRenamed("name", "committer")
.groupBy(col("repository"), col("committer"), col("year"))
.count()

}

/**
 * A developer is interested in what day of the week some commits are pushed, although this is something that
 * can always be calculated during runtime, this would require us to pass a Timestamp along with the computation.
 * Therefore we require you to append the inputted DataFrame with the day of the week by names: Mon, Tue, Wed, Thu,
 * Fri, Sat, Sun.
 *
 * Hint: Look into SQL functions in for Spark SQL.
 *
 * Expected Dataframe (column) example that is expected:
 *

 * | day |
 * |--------|
 * | Mon |
 * | Fri |
 * | ... |
 *
 * @param commits Commit Dataframe, created from the data_raw.json file.
 * @return the inputted DataFrame appended with a day column.
 */
def assignment_4(commits: DataFrame): DataFrame = commits

.withColumn("date", col("commit.committer.date"))

.withColumn("timestamp", to_timestamp(col("date")))

.drop("date")

.withColumn("day", date_format(col("timestamp"), "E"))

.drop("timestamp")

/**
 * To perform analysis on commit behavior of some committers, you want to compare the dates of their commits.
 * We require that the DataFrame that is put in is appended with two additional columns: tha dates of the
 * previous and the following commits of the user, independent of the branch or repository. You should
 * order the commits from oldest to newest.
 *
 * Hint: Look into Spark sql's Window to have more expressive power in custom aggregations
 *
 * Expected Dataframe example:
 *
 * | $oid | prev_date | date | next_date |
 * |-------------------------- |--------------------------|--------------------------|--------------------------|
 * | 5ce6929e6480fd0d91d3106a | 2019-01-03T09:11:26.000Z | 2019-01-27T07:09:13.000Z | 2019-03-04T15:21:52.000Z |
 * | 5ce693156480fd0d5edbd708 | 2019-01-27T07:09:13.000Z | 2019-03-04T15:21:52.000Z | 2019-03-06T13:55:25.000Z |
 * | 5ce691b06480fd0fe0972350 | 2019-03-04T15:21:52.000Z | 2019-03-06T13:55:25.000Z | 2019-04-14T14:17:23.000Z |
 * | ... | ... | ... | ... |
 *
 * @param commits Commit DataFrame, see commit.json and data_raw.json for the structure of the file, or run
 * `println(commits.schema)`.
 * @param committerName Name of the author for which the result must be generated.
 * @return DataFrame with a columns `$oid` and `prev_date`, `date`, `next_date`
 */
def assignment_5(commits: DataFrame, committerName: String): DataFrame = {
val windowSpec = Window.orderBy("date")
commits
.select("_id.$oid", "commit.committer.date", "commit.committer.name")
.filter(row => row.get(2) == committerName)
.drop("name")
.orderBy("date")
.withColumn("prev_date", lag("date", 1).over(windowSpec))
.withColumn("test_date", col("date"))
.drop("date")
.withColumnRenamed("test_date", "date")
.withColumn("next_date", lead("date", 1).over(windowSpec))

}

/**
 *
 * Description
 *
 * After looking at the results of assignment 5, you realise that the timestamps are somewhat hard to read
 * and analyze easily. Therefore, you now want to change the format of the list.
 * Instead of the timestamps of previous, current and next commit, output:
 * - Timestamp of the current commit (date)
 * - Difference in days between current commit and the previous commit (days_diff)
 * - Difference in minutes between the current commit (minutes_diff)
 * - Previous commit (Oid)
 *
 * For both fields, i.e. the difference in days and difference in minutes, if the value is null
 * replace it with 0. When there is no previous commit, the value should be 0.
 * Output
 *
 *
 * | $oid | date | days_diff | minutes_diff |
 * |-------------------------- |-------------------------- |----------- |--------------|
 * | 5ce6929e6480fd0d91d3106a | 2019-01-27T07:09:13.000Z | 0 | 3 |
 * | 5ce693156480fd0d5edbd708 | 2019-03-04T15:21:52.000Z | 36 | 158 |
 * | 5ce691b06480fd0fe0972350 | 2019-03-06T13:55:25.000Z | 2 | 22 |
 * | ... | ... | ... | ... |
 *
 * Hints
 *
 * Look into Spark sql functions. Days difference is easier to calculate than minutes difference.
 *
 * @param commits Commit DataFrame, see commit.json and data_raw.json for the structure of the file, or run
 * `println(commits.schema)`.
 * @param committerName Name of the author for which the result must be generated.
 * @return DataFrame with columns as described above.
 */
def assignment_6(commits: DataFrame, committerName: String): DataFrame = {
val windowSpec = Window.orderBy("date")
val removeNulls = udf { s : String => if (s == null) "0" else s }
val stringToInt = udf { s : String => if (!s.contains('.')) s.toInt else s.split('.')(0).toInt}
commits
.select("_id.$oid", "commit.committer.date", "commit.committer.name")
.filter(row => row.get(2) == committerName)
.drop("name")
.orderBy("date")
.withColumn("test_days_diff", datediff(col("date"), lag("date", 1).over(windowSpec)))
.withColumn("days_diff", stringToInt(removeNulls(col("test_days_diff"))))
.drop("test_days_diff")
.withColumn("minutes_diff", stringToInt(floor(removeNulls(unix_timestamp(to_timestamp(col("date"))) -
unix_timestamp(to_timestamp(lag(col("date"), 1).over(windowSpec)))) / 60)))

}

/**
 * Description
 *
 * To get a bit of insight in the spark SQL, and its aggregation functions, you will have to
 * implement a function that returns a DataFrame containing columns:
 * - repository
 * - month
 * - commits_per_month(how many commits were done to the given repository in the given month)
 *
 * Output
 * | repository | month | commits_per_month |
 * |--------------|-------|-------------------|
 * | OffloadBuddy | 1 | 32 |
 * | ... | ... | ... |
 *
 * @param commits Commit DataFrame, see commit.json and data_raw.json for the structure of the file, or run
 * `println(commits.schema)`.
 * @return DataFrame containing a `repository` column, a `month` column and a `commits_per_month`
 * representing a count of the total number of commits that that were ever made during that month.
 */
def assignment_7(commits: DataFrame): DataFrame = {
val getRepoName = udf { s : String => s.split("/")(5) }
val getMonth = udf { s : String => s.split("-")(1).toInt }
commits
.select("url", "commit.committer.date", "_id.$oid")
.withColumn("repository", getRepoName(col("url")))
.drop("url")
.withColumn("month", getMonth(col("date")))
.drop("date")
.groupBy(col("repository"), col("month"))
.count()
.withColumnRenamed("count", "commits_per_month")

}

/**
 * Description
 *

 * In a repository, the general order of commits can be deduced from timestamps. However, that does not say
 * anything about branches, as work can be done in multiple branches simultaneously. To trace the actual order
 * of commits, using commits SHAs and Parent SHAs is necessary. We are interested in commits were a parent commit
 * has a different committer than the child commit.
 *
 * Output a list of committer names, and the number of times this happened.
 *
 * Output
 *
 *
 * | parent_name | times_parent |
 * |-------------|--------------|
 * | Emeric | 2 |
 * | ... | ... |
 *
 * @param commits Commit DataFrame, see commit.json and data_raw.json for the structure of the file, or run
 * `println(commits.schema)`.
 * @return DataFrame containing the parent name and the count for the parent.
 */
def assignment_8(commits: DataFrame): DataFrame = {
val contains = udf { (a : Seq[String], s : String) => a.contains(s) }
val filterParents = udf { s : Seq[String] => s.distinct }
val temp1 = commits
.select(col("commit.committer.name").as("parent_name"), col("sha").as("parent_sha"))

val temp2 = commits
.select(col("commit.committer.name").as("child_name"), col("sha").as("current_sha"), col("parents").as("parents"))
.withColumn("parents_shas", filterParents(col("parents.sha")))
.drop("parents")

temp1
.join(temp2, contains(col("parents_shas"), col("parent_sha")))
.filter(row => row.get(0).toString != row.get(2).toString)
.drop("parents_shas")
.drop("child_sha")
.groupBy("parent_name")
.count()
.withColumnRenamed("count", "times_parent")

}
}

Flink
import java.text.SimpleDateFormat
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.api.scala._
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time
import util.Protocol.{Commit, CommitGeo, CommitSummary}
import util.{CommitGeoParser, CommitParser}

/** Do NOT rename this class, otherwise autograding will fail. **/
object FlinkAssignment {

val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

def main(args: Array[String]): Unit = {

/**
 * Setups the streaming environment including loading and parsing of the datasets.
 *
 * DO NOT TOUCH!
 */

env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
env.setParallelism(1)

// Read and parses commit stream.
val commitStream =
env
.readTextFile("data/flink_commits.json")
.map(new CommitParser)

// Read and parses commit geo stream.
val commitGeoStream =
env
.readTextFile("data/flink_commits_geo.json")
.map(new CommitGeoParser)

/** Use the space below to print and test your questions. */
question_six(commitStream).print()

/** Start the streaming environment. **/
env.execute()

}

/** Dummy question which maps each commits to its SHA. */
def dummy_question(input: DataStream[Commit]): DataStream[String] = {
input.map(_.sha)

}

/**
 * Write a Flink application which outputs the sha of commits with at least 20 additions.
 * Output format: sha
 */
def question_one(input: DataStream[Commit]): DataStream[String] = input
.filter(c => c.stats.isDefined && c.stats.get.additions >= 20)
.map(c => c.sha)

/**
 * Write a Flink application which outputs the names of the files with more than 30 deletions.
 * Output format: fileName
 */
def question_two(input: DataStream[Commit]): DataStream[String] = input
.flatMap(c => c.files)
.filter(f => f.deletions > 30 && f.filename.isDefined)
.map(f => f.filename.get)

/**
 * Count the occurrences of Java and Scala files. I.e. files ending with either .scala or .java.
 * Output format: (fileExtension, #occurrences)
 */
def question_three(input: DataStream[Commit]): DataStream[(String, Int)] = input
.flatMap(c => c.files)
.filter(f => f.filename.isDefined)
.map(f => {
val fn = f.filename.get.split('.')
fn(fn.length - 1)

})
.filter(fn => fn == "java" || fn == "scala")
.map(fn => (fn, 1))
.keyBy(t => t._1)
.reduce((a, b) => (a._1, a._2 + b._2))

/**
 * Count the total amount of changes for each file status (e.g. modified, removed or added) for the following extensions: .js and .py.
 * Output format: (extension, status, count)
 */
def question_four(input: DataStream[Commit]): DataStream[(String, String, Int)] = input
.flatMap(c => c.files)
.filter(f => f.filename.isDefined && f.status.isDefined)
.map(f => ({
val fn = f.filename.get.split('.')
fn(fn.length - 1)

}, f.status.get, f.changes))
.filter(t => t._1 == "js" || t._1 == "py")
.keyBy(t => (t._1, t._2))
.reduce((a, b) => (a._1,a._2, a._3 + b._3))

/**
 * For every day output the amount of commits. Include the timestamp in the following format dd-MM-yyyy; e.g. (26-06-2019, 4) meaning on the 26th of June 2019 there were 4 commits.
 * Make use of a non-keyed window.
 * Output format: (date, count)
 */
def question_five(input: DataStream[Commit]): DataStream[(String, Int)] = input

.map(c => (c.commit.committer.date, 1))

.assignAscendingTimestamps(t => t._1.getTime)

.windowAll(TumblingEventTimeWindows.of(Time.days(1)))

.reduce((a,b) => (a._1, a._2 + b._2))

.map(t => ({"" + t._1.toString.substring(8,10) + "-" + (t._1.toString.substring(4, 7) match {
case "Jan" => "01"
case "Feb" => "02"
case "Mar" => "03"
case "Apr" => "04"
case "May" => "05"
case "Jun" => "06"
case "Jul" => "07"
case "Aug" => "08"
case "Sep" => "09"
case "Oct" => "10"
case "Nov" => "11"
case "Dec" => "12"
case _ => 1

}) + "-" + t._1.toString.substring(t._1.toString.length-4)},t._2))

/**
 * Consider two types of commits; small commits and large commits whereas small: 0 <= x <= 20 and large: x > 20 where x = total amount of changes.
 * Compute every 12 hours the amount of small and large commits in the last 48 hours.
 * Output format: (type, count)
 */

def question_six(input: DataStream[Commit]): DataStream[(String, Int)] = input
.filter(c => c.stats.isDefined)
.map(c => ({if (c.stats.get.total >= 0 && c.stats.get.total <= 20) "small" else "large"}, c.commit.committer.date, 1))
.assignAscendingTimestamps(t => t._2.getTime)
.keyBy(t => t._1)
.window(SlidingEventTimeWindows.of(Time.hours(48), Time.hours(12)))
.reduce((a,b) => (a._1, b._2, a._3 + b._3))
.map(t => (t._1, t._3))

http://localhost:3000/
http://localhost:3000/
http://localhost:3000/
http://localhost:3000/
https://github.com/skirienkopanea
https://github.com/skirienkopanea
https://github.com/skirienkopanea
https://github.com/skirienkopanea
https://github.com/skirienkopanea
https://github.com/skirienkopanea
https://github.com/skirienkopanea
http://localhost:3000/feed.xml
http://localhost:3000/feed.xml
http://localhost:3000/feed.xml
http://localhost:3000/feed.xml
http://localhost:3000/feed.xml
http://localhost:3000/feed.xml
http://localhost:3000/feed.xml
http://localhost:3000/feed.xml
http://localhost:3000/feed.xml
http://localhost:3000/feed.xml

