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Big Data Processing summary
Sep 1, 2021

This is a summary of CSE2520 Big Data Processing (DO NOT PRINT PAGE 54 (black background
image))

Big and Fast Data
What is big data?

Besides a buzzword is also used to describe:
Data too large to be efficiently processed on a single computer
Massive amounts of diverse, unstructured data produced by high-performance
applications

How big is “big”?
Typical numbers associated with big data:

2.5 Exabytes ( ) produced daily
IoT: 21.5 billion devices with internet access
Facebook, Amazon, Microsoft and Google store at least 1,200 petabytes of information
100k google seraches per second

each query involves more than 1k machines
each query search touches more than 200 services

Amazon processes more than 1k orders per second
1 billion of daily instagram users

Vs of Big data:
Main Vs:

Volume
Variety (different forms and sources)
Velocity (content changes quickly)

Other:

(Business) value
Veracity (accuracy)
Validity (interpretation)
Visibility
Volability
Virality

Volume

We call big data big because of the volume
90% of all data ever was created in the last 2 years
The global big data and business analytics market was valued at 138.9 billion in 2020 and
is expected to grow

2.5 ⋅ 106TBG ≫Δd

Δt

Δc

Δt
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Variety

Structured data: SQL tables, images, format is known
Semi-structured data: JSON, XML
Unstructured data: Text

Velocity

Big data is not just big (volume) (and varied), but it’s also generated and processed fast:
Data centers write a lot to log files
Social media posts
Stock market high-frequency trading (latency costs money)
Online advertising

Data needs to be processed with soft or hard real-time guarantees

Big data processing
ETL cycle

Extract: Convert raw or semi-structured data into structured data (i.e. JSON to database
tables)
Transform: Convert units, join data sources, clean data…
Load: load the data into another system for further processing

Big data engenieering
It’s about building “pipelines”

Big data analytics
It’s about discovering patterns

Batch processing
All data exists in some data store, a program processes the whole dataset at once (i.e. FRISS
csv historical fraud batches)

Stream processing
Processing of data as they arrive to the system (i.e. FRISS real time fraud score)

Data processing distribution
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Divide the data (i.e. csv of historical fraud) in chunks and apply the same task on all chunks
at the same time, i.e. via multiple machines/CPUs with each machine assigned with it’s
unique chunk (data-parallelism: one task, many data splits)
If possible, divide the task into independent sub-tasks that use the same data source (i.e.
replace(“,”,”.”) for all records in a column and at the same time replace blanks with “0.0”)

Desired properties of a big data processing system
Robustness and fault-tolerance
Low latency reads and updates
Scalability
Generalization
Extensibility
Ad hoc queries
Minimal maintenance
Debuggability

Large-scale computing
Emerged in the 70’s
Phisicists used super computers for simulations in the 80’s
Shared-memory designs are still in large scale use
What’s new is: Large scale processing on distributed, commodity computers (i.e. average
linux user home computer) enabled by advanced software using elastic resource allocation
It is software and not hardware what drives the Big Data industry

Big Data tech timeline
Progress is mostly industry-driven:

2003: Google publishes the Google Filesystem paper, a large-scale distributed file system
2004: Google publishes the Map/Reduce paper, a distributed data processing abstraction
2006: Yahoo creates and open sources Hadoop, inspired by the Google papers
2006: Amazon launches its Elastic Compute Cloud, offering cheap, elastic resources
2007: Amazon publishes the DynamoDB paper, sketches the blueprints of a cloud-native
database
2009 – onwards: The NoSQL movement. Schema-less, distributed databases defy the SQL
way of storing data
2010: Matei Zaharia et al. publish the Spark paper, brings FP to in-memory computations
2012: Both Spark Streaming and Apache Flink appear, able to handle really high volume
stream processing
2012: Alex Krizhevsky et al. publish their deep learning image classification paper re-igniting
interest in neural networks and solidifying the value of big data

Current Big Data tech landscape
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Problems solved with Big Data
Modelling: What factors influence particular outcomes/behaviour?
Inormation retrivals: Search engines, web scrappers
Collaborative filtering: Recommending items based on items other users with similar tests
ahve chosen
Outlier detection: Discovering outstanding transactions

Big Data Programming Languages: Scala & Python
The Big data and data science languages are

scala: for intensive systems
Strong point is the combination of functional programming and object oriented
programming
documentation

python: for data analytics tasks
Strong point is the combination of object oriented and imperative programming
documentation

Both support object oriented programming, functional programming and imperative
programming. But python is interpreted and scala is combined

Other languages include
Java: the language in which most big data infrastructure is written into
R: Statistics language with great selection of libraries for serious data analytics and
plotting tools

In CSE2520 we will be using only scala

Hello world
Scala is not only similar to java, but it can also actually run java code itself

Both Scala and Java are compiled to JVM bytecode
Scala can interoperate with JVM libraries
Scala is not sensitive to spaces/tabs. Blocks are denoted by {}

https://docs.scala-lang.org/
https://docs.python.org/2/
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object Hello extends App {

    println("Hello, world")

    for (i <- 1 to 10) {

      System.out.println("Hello")

    }

}


Hello world in Python
Python is interpreted
Python is indentation sensitive: blocks are denoted by a TAB or 2 spaces.

for i in range(1, 10):

  print("Hello, world")


Declarations
Scala:

Type inference used extensively (no need to explicitly declare the type of the variable like
in js, but you may do it)
Two types of variables: vals are constants, vars are variables
In CSE2520 we will only use val

object Declarations extends App {

  var a: Int = 5

  val b = 6



  println(a)



  //b = 6 // wont compile program because val is like js' "const"



  println(b)



  // Type of foo is inferred

  val foo = new Array[Int](5)



  // var a = "Foo" // wont compile because a is already defined with val

  var c = "Foo"

  // c = 42 // won't compile due to type mismatch

  c = "Bar"



  print(c)
}


python:
Optional typing, not enforced at runtime

import numpy as np



a: int = 5

a = "Foo"



a = np.array([a, 6, 7, 8])



print(a)


['Foo' '6' '7' '8']

Declaring functions
Scala:

Statically typed
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Evaluated expressions have types
The return type is the most generic type of all return expressions

object Functions extends App {

 println(max(3,1))



  def max(x: Int, y: Int): Int =

    if (x >= y) x else y

}


Python:
Dynamically typed
Mostly based on statements
Types are optional

Declaring classes
Scala

A default constructor is created automatically

class ClassExample(

                    val x: Int,

                    var y: Double = 0.0

                  )


  // Type of a is inferred

  val a = new ClassExample(1, 4.0)

  println(a.x) //x is read-only

  println(a.y) //y is read-write

  a.y = 10.0

  println(a.y) //y is read-write


1

4.0

10.0


Python

class Foo:

    def __init__(self, x, y):

        self.x = x

        self.y = y


import class_example as ce



a = ce.Foo(3, 2)

print(a.x)



a.x = "foo"


def maxi(x: int, y: int) -> int:

    if x >= y:

        return x

    else:

        return y





print(maxi(5, 3))  # you cant use functions before they're defined since python is execu
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print(a.x)




3

foo


Inheritance
Scala

Traits are equivalent to java interfaces (abstract classes (cant be initiliazed itself) whose
methods don’t have body) and includes attributes

object Inheritance extends App {

  var c = new Baz(5, 6f, 7)

  println(c.asString())

}





class Foo(val x: Int,

          var y: Double = 0.0)



class Bar(x: Int, y: Int, z: Int)

  extends Foo(x, y)



trait Printable {

  val s: String



  def asString(): String

}



class Baz(x: Int, y: Double, private val z: Int)

  extends Foo(x, y) with Printable {

  override val s: String = new String( //java code

    String.valueOf(x)

      + " "

      + String.valueOf(y)

      + " "

      + String.valueOf(z))



  override def asString(): String = s

}


5 6.0 7

Python

class TwoDimensionPoint:

    def __init__(self, x, y):

        self.x = x

        self.y = y





class ThreeDimensionPoint(TwoDimensionPoint):

    def __init__(self, x, y, z):

        TwoDimensionPoint.__init__(self, x, y)

        self.z = z





a = TwoDimensionPoint(1, 2)

b = ThreeDimensionPoint(10, 20, 30)



print(a.x, a.y)

print(b.x, b.y, b.z)
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1 2

10 20 30


In both scala and python children can override parents

Data classes
Data classes are blueprints for immutable objects.
We use them to represent data records.
Both languages implement equals (or eq) for them, so we can compare objects directly.

Scala:

Name lives at Street 2

Python:

from dataclasses import dataclass





@dataclass

class Address:
    street: str

    number: int





@dataclass

class Person:

    name: str

    address: Address





p = Person("G", Address("a", 2))

p.name = "Sergio"  # does compile

print(p)


Person(name='Sergio', address=Address(street='a', number=2))

Pattern matching in Scala
It’s the equivalent of switch in java

Java:

public String getInstruction() {

        switch (instruction) {

            case LDA:

                return "0001";


object DataClass extends App {

  val p = Person("Name", Address("Street", 2))

  // p.name = "sergio" //wont compile



  println(new String(p.name + " lives at " + p.address.street + " " + p.address.number))

}



case class Address(street: String,

                   number: Int)



case class Person(name: String,

                  address: Address)
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            case ADD:

                return "0010";

            case SUB:

                return "0011";

            case STA:

                return "0100";

            case LDI:

                return "0101";

            case JMP:

                return "0110";

            case JPC:

                return "0111";

            case JPZ:

                return "1000";

            case OUT:

                return "1110";

            case HLT:

                return "1111";

            default:

                return "0000";

        }

    }


Scala:

object PatternMatching extends App {

  val instruction = "LDA"



  def getInstruction(opcode: String): String =

    instruction match {

      case "LDA" => "0001"

      case "ADD" => "0010"

      case "SUB" => "0011"

      case "STA" => "0100"

      case "LDI" => "0101"

      case "JMP" => "0110"

      case "JPC" => "0111"

      case "JPZ" => "1000"

      case "OUT" => "1110"

      case "HLT" => "1111"

      case _ => "0000"

    }



  println(getInstruction(instruction))

  

}


0001

Basic data types
Types of data

Unstructured: Data whose format is not known
Raw text documents
HTML pages

Semi-structured: Data with a known format
Pre-parsed data to standard formats: JSON, CSV, XML

Structured: Data with known formats, linked together in graphs or tables
SQL or graph databases
Images

Sequences/Lists
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Basic properties:
Size is bounded by memory
Items can be accessed by an index ( list1[i]  or l[j] )
Items can only be inserted at the end (append)
Can be sorted

Python

list1 = [1, 2, 3, 4]


Although numpy arrays are actually more handy

import numpy as np



list1 = [1,2,3,4]

array1 = np.array(list1)


Scala

val l = List(1, 2, 3, 4)


Sets

Stores unique value without any particular order
Size is bounded by memory
Can be queried for containment
Set operations: union, intersection, difference, subset

Scala:

val s = Set(1, 2, 3, 4, 4)

s: scala.collection.immutable.Set[Int] = Set(1, 2, 3, 4)


Maps or Dictionaries

Maps or Dictionaries or Associative arrays are a collection of (k,v)  pairs in such a way that
each k  appears only once.

Accessomg a value given a key is very fast ( )
Python

values = {



     "key1" : 1.0,



     "key2" : 2,



     "key3" : [1,2,3]



 }


Scala

val m = Map(("a", 1), ("b",2))

val m: scala.collection.immutable.Map[String,Int] = Map(a -> 1, b -> 2)


Graphs

A graph data structure consists of a finite set of vertices or nodes
if these nodes/vertices are stored in ordered pairs, the graph is “directed”
If the nodes/vertices are stored in unordered pairs, then it’s an undirected graph

O(1)V ≫Δc

Δt

Δd

Δt
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Nodes can contain attributes
Edges can contain weights and directions
Graphs are usually represented as Map[Node, List[Edge]]  where in Scala:

case class Node(id: Int, attributes: Map[A, B])

case class Edge(a: Node, b: Node, directed: Option[Boolean],

                  weight: Option[Double] )


Nested data types: Trees

They are ordered graphs without loops
Which is basically a set of nested maps

a = {"id": "5542101946", "type": "PushEvent",

    "actor": {

      "id": 801183,

      "login": "tvansteenburgh"

    },

    "repo": {

      "id": 42362423,

      "name": "juju-solutions/review-queue"

   }

}


If we parse the above JSON in almost any language, we get a series of nested maps. In Scala:

Map("id" -> 5542101946L,

    "type" -> "PushEvent",

    "actor" -> Map("id" -> 801183.0, "login" -> "tvansteenburgh"),

    "repo" -> Map("id" -> 4.2362423E7, "name" -> "juju-solutions/review-queue"))

)


Tuples

An n-tuple is a sequence of n elements, whose types are known.
Scala

val record = Tuple4[Int, String, String, Int] (1, "Matt", "Damon", 1970)

// alternatively

val record = (1, "Matt", "Damon", 1970)

You can also have nested tuples (recall that scala automatically infers the types of the tup0le
contents, including another tuple)

val a = (1, ("Foo", 2)) // type: Tuple2[Int, Tuple2[String, Int]]

// alternatively: (Int, (String, Int))



println(a._1) // prints 1

println(a._2._1) // prints Foo


Relations

A relation is a Set of n-tuples (d1,d2,…,dn) of the same type; one of the tuple elements
denotes a key. Keys cannot be repeated.
Relations are very important for data processing, as they form the theoretical framework
(Relational Algebra) for relational (SQL) databases.
Typical operations on relations are insert, remove and join. Join allows us to compute new
relations by joining existing ones on common fields.

Scala
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val movie1 = (1, "Martian", "PG-13", 2015, 2)

val movie2 = (2, "Prometheus", "R", 2012, 2)

val movie3 = (3, "2001: Space Odyssey", "G", 1968, 1)



val movies = Set(movie1, movie2, movie3)



val stanley = (1, "Stanley Kubrick", 1928)

val ridley = (2, "Ridley Scott", 1937)



val directors = Set(stanley, ridley)


Key/Value pairs

A key/value pair (or K/V) is a more general type of a relation, where each key can appear
more than once.

Scala

// We assume that the first Tuple element represents the key

val a = (1, ("Martian", 2015))

val b = (1, ("Prometheus", 2012))



val kv = List(a, b)

// type: List[(Int, (String, Int))]


Another way to represent K/V pairs is with a Map

val xs = Map(1 -> List(("Martian", 2015), ("Prometheus", 2012)))

// type: Map[Int, List[(String, Int)]]


K and V are flexible: that’s why the Key/Value abstraction is key to NoSQL databases,
including MongoDB, DynamoDB, Redis etc.

Functional programming
The basics of functional programming apply to data processing with tools like Hadoop,
Spark and Flink.
Functional programming is a programming paradigm where programs are constructed by
applying and composing functions.
Functional programming characteristics:

Absence of side-effects: A function, given an argument, always returns the same results
irrespective of and without modifying its environment.
Immutable data structures: Side-effect free functions operate on immutable data.
Higher-order functions: Functions can take functions as arguments to parametrize their
behavior
Laziness: The art of waiting to compute till you can wait no more

Functional programming comes from lambda calculus, a formal mathematical logic system
for expressing computation based on functions that operate on immutable data

Function signatures
Function foo takes as arguments an array/list of type A and an argument of type B and
returns an argument of type C

foo = function name
x and y = names of function arguments
[A] and B = types of function arguments

 = denotes return type
C = type of the returned result
[A] = denotes that type A can be traversed (i.e. an array)

→n × nWhere
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Side effects
A function has a side effect if it modifies some state outside its scope or has an observable
interaction with its calling functions or the outside world besides returning a value.

var max = -1



def greaterOrEqual(a: Int, b: Int): Boolean = {

  if(a >= b) {

      max = a // side effect!

      true

    } else {

      max = b // side effect!

      false

    }

}


As a general rule, any function that returns nothing ( void  or Unit ) does a side effect!
Example of side effects

Modifying a variable
Modifying a data structure in place: In FP, data structures are always persistent.
Setting a field on an object: OO is not FP!
Throwing an exception or halting with an error: In FP, we use types that encapsulate and
propagate erroneous behavior
Printing to the console or reading user input, reading writing to files or the screen: In FP,
we encapsulate external resources into Monads.

Pure functions
A pure function depends only on its declared inputs and its internal algorithm to produce its
output.

It does not read any other values
It does not have any side effects

def greaterOrEqual(a: Int, b: Int, max: Int): (Boolean, Int) = {

  if(a >= b) (true, a)

  else (false, b)

}


Pure functions offer referential transparency.
An expression is said to be referentially transparent if it can be replaced by its value and
not change the program’s behavior.
Referential transparency enables simpler reasoning about programs.

Immutable data structures
Functional data structures are operated on pure functions and they are immutable
Scala has immutable lists, tuples, maps and sets

val oneTwoThree = List(1, 2, 3)

val oneTwoThree_2 = 1 :: 2 :: 3 :: Nil

val one = oneTwoThree.head

val twoThree = oneTwoThree.tail


Scala has both mutable and immutable versions of many common data structures. If in
doubt, use immutable.

Pattern matching on data structures
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In the context of functional programming pattern matching is just the java equivalent of
switch

Syntax sugar for if else
In scala, on top of checking if the contents of the object equals the content of the “switch”
case, scala’s “switch” feature also allows you to check for type matching and to match for
certain values in a list:

object PatternMatching extends App {



  val x = List(1, 2, 3, 4, 5) match {

    case x :: 2 :: 4 :: xs => x

    case Nil => 42

    case x :: z :: 3 :: 4 :: xs => x + z

    case h :: t => h

    case _ => 404

  }

  println(x)

}


3

Note that for a list in scala in the pattern matching using a variable nambe for one of the
element is like using a wildcard, which we can use to extract the value from the list at the
position the wildcard was used

Higher-order functions
A higher-order function is a function that can take a function as an argument or return a
function

// Apply f to all elements of list

def filter(xs: List[A], f: A => Boolean) : List[A]


Apply to all

Using applyToAll to define other functions:

def incrementAll2(ints: List[Int]): List[Int] = applyToAll(ints, (x:Int) => x + 1)

def doubleAll2(ints: List[Int]): List[Int] = applyToAll(ints, (x:Int) => x * 2)


See how applyToAll(ints, (x:Int) => x + 1)  is like a foreach loop
For each int x  in ints  return x + 1

But besides functional programming being a set of syntactic sugar to define functions in one
line, it’s also a philosophy of coding (i.e. “no side effects”, “functions are first class citizens”,
“immutable data structures” (no states), “laziness”)

Scala collections has built-in map  function to abstract the syntactic sugar even more:

def incrementAll3(ints: List[Int]): List[Int] = ints.map((x:Int) => x + 1)

def doubleAll3(ints: List[Int]): List[Int] = ints.map((x:Int) => x * 2)


Important higher-order functions

map(xs: List[A], f: A => B) : List[B]
Applies f  to all elements and returns a new list.

flatMap(xs: List[A], f: A => List[B]) : List[B]
Like map, but flattens the result to a single list.

foldL(xs: List[A], f: (B, A) => B, init: B) : B
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Takes f  of 2 arguments and an init value and combines the elements by applying f  on
the result of each previous application. AKA reduce .

Aux higher-order functions

groupBy(xs: List[A], f: A => K): Map[K, List[A]]
Partitions xs  into a map of traversable collections according to a discriminator function.

filter(xs: List[A], f: A => Boolean) : List[A]
Takes a predicate and returns all elements that satisfy it

scanL(xs: List[A], f: (B, A) => B, init: B) : List[B]
Like foldL , but returns a list of all intermediate results

zip(xs: List[A], ys: List[B]): List[(A,B)]
Returns an iterable collection formed by iterating over the corresponding items of xs and
ys.

Laziness
Laziness is an evaluation strategy which delays the evaluation of an expression until its value
is needed

Separating a pipeline construction from its evaluation
Not requiring to read datasets in memory: we can process them in lazy-loaded batches
Generating infinite collections
Optimizing execution plans

// Scala LazyList

val fibs: LazyList[Int] = {

  0 #:: 1 #:: fibs.zip(fibs.tail).map{ n =>

    println("Adding " + n._1 + " and " + n._2)

    n._1 + n._2

  }

}

fibs.take(5).foreach(println)


## 0

## 1

## Adding 0 and 1

## 1

## Adding 1 and 1

## 2

## Adding 1 and 2

## 3


Monads
Monads are the tool FP uses to deal with (side-)effects

a design pattern that defines how functions can be used together to build generic types.
s a value-wrapping type that:

Has an identity function
Has a flatMap function, that allows data to be transferred between monad types

Example monads:
Null points: Option[T]
Exceptions: Try[T]

Success[T] , where T represents the type of the result
Failure[E] , where E represents the type of error, usually an exception

Latency in asynchronous actions: Future[T]
In functional programming exceptions are preferably not used as they break referential
transparency. The solution is to return a predefined bogus value

Allows errors to silently propagate
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Not applicable to polymorphic code
Difficult to use the result – requires special policy

Enumerating datasets
Before starting to process datasets, we need to be able to go over their contents in a
systematic way. The process of visiting all items in a dataset is called traversal.
In a big data system:

Client code processes data
A data source is a container of data (e.g. array, database, web service)

There are two fundamental techniques for the client to process all available data in the data
source

Iteration: The client asks the data source whether there are items left and then pulls the
next item.
Observation: The data source pushes the next available item to a client end point.

Iteration

iteration allows us to process finite-sized data sets without loading them in memory at once.

trait Iterator[A] {

  def hasNext: Boolean

  def next(): A

}


Typical usage

val it = Array(1,2,3,4).iterator

while(it.hasNext) {

  val i = it.next + 1

  println(i)

}


The Iterator pattern is supported in all programming languages.

val data = scala.io.Source.fromFile("/big/data").getLines

while (data.hasNext) {

  println(data.next)

}

// Equivalently...

for (line <- data) {

  println(line)

}


Observation

Observation allows us to process (almost) unbounded size data sets, where the data source
controls the processing rate

// Consumer

trait Observer[A] {

  def onNext(a: A): Unit

  def onError(t: Throwable): Unit

  def onComplete(): Unit

}



// Producer

trait Observable[A] {

  def subscribe(obs: Observer[A]): Unit

}
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Typical usage

Observable.from(1,2,3,4,5).

  map(x => x + 1).

  subscribe(x => println(x))


Traversal

We apply a strategy to visit all individual items in a collection.

Python example

for i in [1,2,3]:

  print i



for k,v in {"x": 1, "y": 2}:

  print k


In case of nested data types (e.g. trees/graphs), we need to decide how to traverse. Common
strategies include:

Breadth-first traversal: From any node A, visit its neighbors first, then its children.
Depth-first traversal: From any node A, visit its children first, then its neighbors.

In most programming environments, traversal is implemented by iterators.

Operations
Operations are transformations, aggregations or cross-referenceing of data stored in data
types. All of container data types can be iterated.
We generally have two types of operations:

Element-wise ops apply a function to each individual message. This is the equivalent of
map or flatMap in batch systems.
Aggregations group multiple events together and apply a reduction (e.g. fold or max) on
them.

Element-wise operations

Conversion: Convert values of type A to type B
This is generalized to the map function:

Celcius to Kelvin
€ to $

Filtering: Only present data items that match a condition
All adults from a list of people
Remove duplicates

Projection: Only present parts of each data item
From a list of cars, only display their brand

Aggregations

Aggregations apply a combining operator on a traversable sequence to aggregate the
individual items into a single result.
Aggregation is implemented using reduction (or folding). Two variants exist

With left reduction, we traverse items from the first to last
With right reduction, we traverse items from the last to first
The end result of reduceR abd reduceL is the same iff the operation is commutative:

An operation o  is commutative if x o  y = y o  x
Example of aggregation function: calculate the total sum of a list of integers

Grouping



17-10-2021 13:10 Big Data Processing summary | Sergio’s Blog

localhost:3000/datascience/2021/09/01/bd.html 18/66

Grouping splits a sequence of items to groups given a classification function: 

def group_by(classifier, xs):

  result = dict()

  for x in xs:

    k = classifier(x)

    if k in result.keys():

        result[k].append(x)

    else:

        result[k] = [x]

  return result


def number_classifier(x):

  if x % 2 == 0:

    return "even"

  else:

    return "odd"



a = [1,2,3,4,5,6,7]

print(group_by(number_classifier, a))


## {'odd': [1, 3, 5, 7], 'even': [2, 4, 6]}

Key value pairs
The most common data structure in big data processing is key-value pairs.

A key is something that identifies a data record.
A value is the data record. Can be a complex data structure.
The KV pairs are usually represented as sequences

KV stores is the most common format for distributed databases
What KV systems enable us to do effectively is processing data locally (e.g. by key)
before re-distributing them for further processing. Keys are naturally used to aggregate
data before distribution. They also enable (distributed) data joins.
Typical examples of distributed KV stores are Dynamo, MongoDB and Cassandra

Python

[ # Python

  ['EWI': ["Mekelweg", 4]],

  ['TPM': ["Jafaalaan", 5]],

  ['AE': ["Kluyverweg", 1]]

]


List( // Scala
  List("EWI", Tuple2("Mekelweg", 4)),

  List("TPM", Tuple2("Jafaalaan", 5)),

  List("AE",  Tuple2("Kluyverweg", 1))

)


Common operations

Recall that in these scenarios the keys do no not need to be unique:

mapValues : Transform the values part:


groupByKey : Group the values for each key into a single sequence.


reduceByKey : Combine all elements mapped by the same key into one


groupBy(xs : [A], f : A → K) : Map[K, [A]]MWhen

mapV al(kv : [(K,V )], f : V → U) : [(K,U)]n = |V |How

groupByKey(kv : [(K,V )]) : [(K, [V ])]Mijt

reduceByKey(kv : [(K,V )], f : (V ,V ) → V ) : [(K,V )]Vit − s
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join : Return a sequence containing all pairs of elements with matching keys


In functional programming we desire to apply transformations to a separate new instances
and keep the original data untouched

KV pair to relation and viceversa

A KV pair is an alternative form of a relation, indexed by a key. We can always convert
between the two

Relation to KV pair

val kvpair : Set[Tuple2[Int, Tuple2[Int, String]]] =

  relation.map(x => (x._1, (x._2, x._3)))


KV pair to relation

val relation2: Set[Tuple3[Int, Int, String]] =

  kvpair.map(x=> (x._1, x._2._1, x._2._2))


Big data Immutability
One of the key characteristics of data processing is that data is never modified in place.
Instead, we apply operations that create new versions of the data, without modifying the
original version.
Immutability is a general concept that expands in much of the data processing stack.

Copy-on-write (COW)

join(kv1 : [(K,V )], kv2 : [(K,W)]) : [(K, (V ,W))]Vjs
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Copy-On-Write is a general technique that allows us to share memory for read-only access
accross processes and deal with writes only if/when they are performed by copying the
modified resource in a private version.
COW is the basis for many operating system mechanisms, such as process creation (forking),
while many new filesystems (e.g. BTRFS, ZFS) use it as their storage format.
COW enables systems with multiple readers and few writers to efficiently share resources.

Immutable/persistent datastructures
Immutable or persistent data structures always preserve the previous version of themselves
when they are modified
With immutable data structures, we can:

Avoid locking while processing them, so we can process items in parallel
Maintain and share old versions of data
Seamlessly persist the data on disk
Reason about changes in the data

They come at a cost of increased memory usage (data is never deleted).

Data structures in Scala

ADT collection.mutable collection.immutable

Array ArrayBuffer Vector

List LinkedList List

Map HashMap HashMap

Set HashSet HashSet

Queue SynchronizedQueue Queue

Tree — TreeSet

Why use Scala?
It seems that FP is something that can be achieved with Java anyway right?

Java is the “assembly” of scala
FP is just a set of constraints on how to write code, which could be done within Java

The reason to use Scala (and other FP languages) is that the syntactic sugar is optimized
specifically for this type of programming philosophy/applications

You’ll see that in big data applications 1 piece of data has to go over many
transformations

Fetch
Clean
Transform 1
Transform 2
…
Transform N
Export
…

Implementing a lot of (simple) transformations (in sperate methods) in Java would result in
huge amounts of boilerplate code
In scala you can apply lots of function compositions in a few lines (and just 1 file instead of
having many files for the abstract classes):
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type WebRequest = HttpRequest => HttpResponse

val = deSerialisePerson: HttpRequest => Person = ???

val createCustomer: Person => Customer = ???

val saveCustomer: Customer => Customer = ???

val serialiseCustomer: Customer => HttpResponse = ???



val registerCustomer: WebREquest =

  deserialise Person andThen

    createCustomer andThen

    saveCustomer andThen

    serialiseCustomer


This syntax works very well for http requests, data pipelines, etc.
Because each function is completely independent
You can test them without mocking dependencies

Distributed Systems
A distributed system is a software system in which components located on networked
computers communicate and coordinate their actions by passing messages.

Parallel systems use shared memory
Distributed systems use no shared components

Distriubted systems offer:
Scalability

Moore’s law: The number of transistors on a single chip doubles about every two
year.
The advancement has slowed since around 2010.
Distribution provides massive performance.

Distribution of tasks and collaboration
Reduced latency
Fault tolerance
Mobility

Characteristics
Computational entities each with own memory

Need to synchronize distributed state
Entities communicate with message passing
Each entity maintains parts of the complete picture
Need to tolerate failure
They fail often (and failure is difficult to spot!)

Split-brain scenarios
Maintaining order/consistency is hard
Coordination is hard
Partial operation must be possible
Testing is hard
Profiling is hard: “it’s slow” might be due to 1000s of factors

Fallacies
The network is reliable
Latency is zero
Bandwidth is infinite
The network is secure
Topology does not change
Transport cost is zero
The network is homogeneous



17-10-2021 13:10 Big Data Processing summary | Sergio’s Blog

localhost:3000/datascience/2021/09/01/bd.html 22/66

Problems
Partial failures: Some parts of the system may fail nondeterministically, while other parts
work fine.
Unreliable networks: Distributed systems communicate over unreliable networks.
Unreliable time: Time is a universal coordination principle. However, we cannot use time
determine order.
No single source of truth, different opinions: Distributed systems need to co-ordinate and
agree upon a (version of) truth.

Asynchronous vs syncrhonous systems
Synchronous system: Process execution speeds or message delivery times are bounded. In a
synchronous system, we can have:

Timed failure detection
Time based coordination
Worst-case performance

Asynchronous system: No assumptions about process execution speeds or message delivery
times are made.

Upon waiting for a response to a requests in an asynchronous system, it is not possible
to distinguish whether:

the request was lost
the remote node is down
the response was lost

Timeouts is a fundamental design choice in asynchronous networks: Ethernet, TCP and
most application protocols work with timeouts.

Purely synchronous systems only exist in theory.
Most distributed systems use some form of asynchronous networking to communicate.

Time is essential
In a distributed system, time is the only global constant nodes can rely on to make
distributed decisions on ordering problems.
When do we need to order?

Sequencing items in memory
Mutual exclusion of access to a shared resource
Encoding history (“happens before” relationships)
Transactions in a database
Consistency of distributed data
Debugging (finding the root cause of a bug)

Time in computers is kept in two ways:
“Real” time clocks (RTCs): Capture our intuition about time and are kept in sync with the
NTP protocol with centralized servers. (e.g. System.getCurrentTimeMillis).

(Synced time from online server)
Monotonic clocks: Those clocks only move forward. (e.g. System.nanoTime)

(Harward time mantained by the OS)
They are (usually!) good for determining order within a node, but each node only has
its own notion of time.

Logical time

Idea: Instead of using the precise clock time, capture the events relationship between a pair
of events
Based on causality: If some event possibly causes another event, then the first event
happened-before the other
Order: A way of arranging items in a set so that the following properties are maintained.

Strict partial order:
Irreflexivity: ∀a.¬a<a (items not comparable with self)
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Transitivity: if a≤b and b≤c then a≤c
Antisymmetry: if a≤b and b≤a a=b

Strict total order:
An additional property: ∀a,b,a≤b∨b≤a∨a=b

Lamport introduced happens-before relation to capture dependencies between events
It is a strict partial order: it is irreflexive, antisymmetric and transitive.

Two events not related to happened-before are concurrent.

Distributed decision making
Nodes in distributed systems cannot know anything for sure

Individual nodes cannot rely on their own information
Clocks can be unsynchronized
Other nodes may be unresponsive when updating state

“Split-brain” scenarios: Parts of the system know a different version of the truth than the
other part(s)

Consensus for distributed decision making:
Resource allocation
Committing a transaction
Synchronizing state machines
Leader election
Atomic broadcasts

Approximate solution to 2 generals problem:
Pre-agree on timeouts
Send n labeled messages
Receiver calculates received messages within time window, then decides how many
messages to send for ack.

Consequences: we can only make distributed decisions using either reliable communication
or more than 2 parties.
Byzantine generals solution: Fault tolerant consensus

PBFT [6]  - Byzantine fault tolerant consensus with at least 3f+1 nodes with f traitors
Paxos [7] , Raft [8]  - Crash fault tolerant consensus with at least 2f+1 nodes with f

faulty nodes
Conesus protocol properties

Safety: Never returning an incorrect result, in the presence of non- Byzantine conditions.
Availability: Able to provide an answer if n/2+1 servers are operational.
No clocks: They do not depend on RTCs to work
Immune to stranglers: If n/2+1 servers vote, then the result is considered safe.

Distributed databases
A distributed database is a distributed system designed to provide read/write access to data,
using the relational or other format
Important topics

Replication: Keep a copy of the same data on several different nodes.
Partitioning: Split the database into smaller subsets and distributed the partitions to
different nodes.
Transactions: Units of work that group several reads and writes to be performed together
in the database

Replication
With replication, we keep identical copies of the data on different nodes.
Why do we need to replicate data?

Data scalability: To increase read throughput, by allowing more machines to serve read-
only requests
Geo-scalability: To have the data (geographically) close to the clients
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Fault tolerance: To allow the system to work, even if parts of it are down

Replication Architecture

In a replicated system, we have two node roles:
Leaders or Masters: Nodes that accept write queries from clients
Followers, Slaves or replicas: Nodes that provide read-only access to data

Depending on how replication is configured, we can see the following architectures
Single leader or master-slave: A single leader accepts writes, which are distributed to
followers
Multi-leader or master-master: Multiple leaders accept writes, keep themselves in sync,
then update followers
Leaderless replication All nodes are peers in the replication network

Postgres and Oracle use WAL-based (write-ahead log) replication.
WAL-based replication writes all changes to the leader WAL and also to the followers.
The followers apply the WAL entries to get consistent data.

MongoDB and MySQL use a stream of logical updates for each update to the WAL. Logical
updates can be:

For new records, the values that were inserted
For deleted records, their unique id
For updated records, their id and the updated values

Process for creating a replica:
Take a consistent snapshot from the leader
Ship it to the replica
Get an id to the state of the leader’s replication log at the time the snapshot was created
Initialize the replication function to the latest leader id
The replica must retrieve and apply the replication log until it catches up with the leader

How to avoid or resolve write conflicts?
One leader per session: If session writes do not interfere (e.g., data are only stored per
user), this will avoid issues altogether.
Converge to consistent state: Apply conflict resolution policies:

last-write-wins policy to order writes by timestamp (may lose data)
report conflict to the application and let it resolve it (same as git or Google docs)
use conflict-free data types with specific conflict resolution logics

Brewer’s CAP theorem

(Strong) Consistency: – All nodes in the network have the same (most recent) value
Availability: – Every request to a non-failing replica receives a response
Partition tolerance: The system continues to operate in the existence of component or
network faults

Partitioning
Partitioning breaks whole the dataset into fractions and distributes them to different hosts,
also known as sharding.
Why do it? The main reason is scalability:

Queries can be run in parallel, on parts of the dataset
Reads and writes are spread on multiple machines

Partitioning is always combined with replication. The reason is that with partitioning, a node
failure will result in irreversible data corruption.
How to partition:

Range partitioning Takes into account the natural order of keys to split the dataset in the
required number of partitions. Requires keys to be naturally ordered and keys to be
equally distributed across the value range.
Hash partitioning Calculates a hash over the each item key and then produces the
modulo of this hash to determine the new partition.
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Custom partitioning Exploits locality or uniqueness properties of the data to calculate the
appropriate partition to store the data to. An example would be pre-hashed data (e.g. git
commits) or location specific data (e.g. all records from Europe).

Transactions
Blocks of operations (reads and writes), that either succeed or fail, as a whole.
started with the first SQL database, System R, ACID scheme:

Atomicity: The transaction either succeeds or fails; in case of failure, outstanding writes
are ignored (all or nothing).
Consistency: Any transaction will bring the database from one valid state to another.
Isolation: Concurrent execution of transactions do not interfere and effect each other.
Durability: Once a transaction has been committed, it will remain so.

In a distributed database, a transaction spanning multiple nodes must either succeed on all
nodes or fail (to maintain atomicity).
 Transactions may also span multiple systems; for
example, we may try to remove a record from a database and add it to a queue service in an
atomic way.
In contrast to the distributed systems consensus problem, all nodes must agree
on whether a transaction has been successfully committed.
The most common mechanism
used to dead with distributed atomic commits is the two-phase commit (2PC) protocol.

Distributed filesystems
File systems determine how data is stored and retrieved. A file system keeps track of the
following data items:

Files, where the data we want to store are.
Directories, which group files together
Metadata, such as file length, permissions and file types

The primary job of the filesystem is to make sure that the data is always accessible and in
tact. To maintain consistency, most modern filesystems use a log (remember databases!).
Common filesystems are EXT4, NTFS, APFS and ZFS
A distributed filesystem is a file system which is shared by being simultaneously mounted on
multiple servers. Data in a distributed file system is partitioned and replicated across the
network. Reads and writes can occur on any node.
The Google Filesystem paper kicked-off the Big Data revolution. Why did they need it
though?

Hardware failures are common (commodity hardware)
Files are large (GB/TB) and their number is limited (millions, not billions)
Two main types of reads: large streaming reads and small random reads
Workloads with sequential writes that append data to files
Once written, the files are seldom modified, they are read often sequentially
High sustained bandwidth trumps low latency

Large-scale distributed file systems:
Google File System (GFS)
Hadoop Distributed File System (HDFS)
CloudStore
Amazon Simple Storage Service (Amazon S3)

GFS storage model
A single file can contain many objects (e.g. Web documents)
Files are divided into fixed size chunks (64MB) with unique identifiers, generated at insertion
time.

Disk seek time small compared to transfer time
A single file can be larger than a node’s disk space
Fixed size makes allocation computations easy

Files are replicated (≥3) across chunk servers.
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The master maintains all file system metadata (e.g. mapping between file names and chunk
locations)
Chunkservers store chunks on local disk as Linux files

Reading & writing of data specified by the tuple (chunk_handle, byte_range)
Neither the client nor the chunkserver cache file data

GFS operation

The master does not keep a persistent record of chunk locations, but instead queries the
chunk servers at startup and then is updated by periodic polling.
GFS is a journaled filesystem: all operations are added to a log first, then applied.
Periodically, log compaction creates checkpoints. The log is replicated across nodes.
If a node fails:

If it is a master, external instrumentation is required to start it somewhere else, by
rerunning the operation log
If it is a chunkserver, it just restarts

Chunkservers use checksums to detect data corruption
The master maintains a chunk version number to distinguish between up-to-date and stale
replicas (which missed some mutations while its chunkserver was down

Before an operation on a chunk, master ensures that version number is advanced

HDFS - Haddop FileSystem
HDFS started at Yahoo as an open source replica of the GFS paper, but since v2.0 it is
different system.
The main difference with GFS is that HDFS is a user-space filesystem written in Java.
HDFS looks like a UNIX filesystem, but does not offer the full set of operations.

# List directory

$ hadoop fs ls /

Found 7 items

drwxr-xr-x   - gousiosg sg          0 2017-10-04 08:23 /audioscrobbler

-rw-r--r--   3 gousiosg sg 1215803135 2017-10-04 08:25 /ghtorrent-logs.txt

-rw-r--r--   3 gousiosg sg   66773425 2017-10-04 08:23 /imdb.csv

-rw-r--r--   3 gousiosg sg     198376 2017-10-23 12:39 /important-repos.csv

-rw-r--r--   3 gousiosg sg     611300 2017-10-04 08:24 /odyssey.mb.txt

-rw-r--r--   3 gousiosg sg  388422973 2017-10-03 15:40 /pullreqs.csv



# Create a new file

$ dd if=/dev/zero of=foobar bs=1M count=100



# Upload file

$ hadoop fs -put foobar /

-rw-r--r--   3 gousiosg sg  104857600 2017-11-27 15:42 /foobar


Akka actor programming
Documentation
Akka is a open-source library for Scala and Java

To create reactive, distributed, parallel and resilient concurrent applications in Scala or
Java

Nowadays most databases are distributed

Actor Concurrency
Actor is an independent computation units that keep a copy of the state (like a github repo
user)
But it’s non-blocking, you send a message and dgaf what’s going on elsewhere. There are no
conflicts by design.

https://doc.akka.io/docs/akka/current/typed/guide/index.html
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Messages are sent asynchronously
Each actor has a mailbox (queue)
Each actor is like a thread pulling on its mailbox running them one after each other

Example program
object HelloWorld { 

  final case class Greet(whom: String, replyTo: ActorRef[Greeted]) 

  final case class Greeted(whom: String, from: ActorRef[Greet]) 



  def apply(): Behavior[Greet] = Behaviors.receive { (context, message) =>    

    context.log.info("Hello {}!", message.whom) 

    message.replyTo ! Greeted(message.whom, context.self) 

    Behaviors.same 

  } 

}


! denotes asyncrhonous message (send and forget)

object HelloWorldBot { 

  def apply(max: Int): Behavior[HelloWorld.Greeted] = { bot(0, max) } 



  private def bot(greetingCounter: Int, max: Int): Behavior[HelloWorld.Greeted] = 

    Behaviors.receive { (context, message) => 

      val n = greetingCounter + 1 

      context.log.info2("Greeting {} for {}", n, message.whom) 

      if (n == max) { 

        Behaviors.stopped 

      } else { 

        message.from ! HelloWorld.Greet(message.whom, context.self) 

        bot(n, max) 

      } 

}}


object HelloWorldMain { 

  final case class SayHello(name: String) 



  def apply(): Behavior[SayHello] = Behaviors.setup { context => 

    val greeter = context.spawn(HelloWorld(), "greeter") 

    Behaviors.receiveMessage { message => 

      val replyTo = context.spawn(HelloWorldBot(max = 3), message.name) 

      greeter ! HelloWorld.Greet(message.name, replyTo) 

      Behaviors.same } 

} }


Running the actor system
val system: ActorSystem[HelloWorldMain.SayHello] = ActorSystem(HelloWorldMain(), "hello"
system ! HelloWorldMain.SayHello("World") 

system ! HelloWorldMain.SayHello("Akka")


14:26:33.904 [hello-akka.actor.default-dispatcher-6] INFO HelloWorld$ - Hello World!

14:26:33.905 [hello-akka.actor.default-dispatcher-6] INFO HelloWorld$ - Hello Akka!

14:26:33.906 [hello-akka.actor.default-dispatcher-5] INFO HelloWorldBot$ - Greeting 1 fo
14:26:33.906 [hello-akka.actor.default-dispatcher-3] INFO HelloWorldBot$ - Greeting 1 fo
14:26:33.906 [hello-akka.actor.default-dispatcher-6] INFO HelloWorld$ - Hello World!

14:26:33.906 [hello-akka.actor.default-dispatcher-5] INFO HelloWorldBot$ - Greeting 2 fo
14:26:33.906 [hello-akka.actor.default-dispatcher-6] INFO HelloWorld$ - Hello Akka!

14:26:33.906 [hello-akka.actor.default-dispatcher-5] INFO HelloWorldBot$ - Greeting 2 fo
14:26:33.906 [hello-akka.actor.default-dispatcher-6] INFO HelloWorld$ - Hello World!
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Fault tolerance
Fault-tolerance is provided via hierarchical supervision

Actors can create child actors which they monitor for failure
They can restart actors if necessary

Types
Classic Akka API is untyped

Actors are untyped and can recive and send any type of messages

class HelloWorld extends Actor { 

  def receive: Receive = { 

    case Greet (whom, replyTo) =>    

      context.log.info("Hello {}!", message.whom) 

      replyTo ! Greeted(message.whom, context.self) 

}} 


Akka Typed is the new Akka Actor API
Protocol-first approach (programmer defines the protocol in terms of exchanged
messages)

object HelloWorld { 

  def apply(): Behavior[Greet] = Behaviors.receive { (context, message) =>    

    . . .

}} 


MapReduce
Takes a set of input key/value pairs, and produces a set of output key/value pairs.

The computation is expressed using two functions: Map and Reduce.
Map takes an input pair and produces a set of intermediate key/value pairs

Reduce takes an intermediate key, and a set of values for that key. It merges together these
values

14:26:33.906 [hello-akka.actor.default-dispatcher-5] INFO HelloWorldBot$ - Greeting 3 fo
14:26:33.906 [hello-akka.actor.default-dispatcher-6] INFO HelloWorld$ - Hello Akka!

14:26:33.906 [hello-akka.actor.default-dispatcher-6] INFO HelloWorldBot$ - Greeting 3 fo

val behavior = Behaviors.supervise(behavior).onFailure[IllegalStateException](SupervisorS
val ref = context.spawn(behavior, "my-actor")

context.watchWith(ref, ActorTerminated)
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Full example program
//#full-example

package com.example





import akka.actor.typed.ActorRef

import akka.actor.typed.ActorSystem

import akka.actor.typed.Behavior

import akka.actor.typed.scaladsl.Behaviors

import com.example.GreeterMain.SayHello



//#greeter-actor

object Greeter {



  /*

  Each actor defines a type T for the messages it can receive.

    - Here Greeter defines Behaviour[Greet]

  messages are the Actor’s public API

  Messages should be immutable, since they are shared between different threads.

  This example is a simple request–reply protocol but Actors can model arbitrarily compl
   */



  // Case classes and case objects make excellent messages since they are immutable and h
  // It is a good practice to put an actor’s associated messages in its object.

  // This makes it easier to understand what type of messages the actor expects and hand
  final case class Greet(whom: String, replyTo: ActorRef[Greeted])

  final case class Greeted(whom: String, from: ActorRef[Greet])



  //Behaviour for Greet command: Upon receiving the Greet command responds with a Greeted
  def apply(): Behavior[Greet] = Behaviors.receive { (context, message) =>

    context.log.info("Hello {}!", message.whom)

    //#greeter-send-messages:

    message.replyTo ! Greeted(message.whom, context.self) // reply from the Greeter actor
    /* the ! operator (pronounced “bang” or “tell”). It is an asynchronous operation tha
    Since the replyTo address is declared to be of type ActorRef[Greeted], the compiler w
     */







    /*

    we don’t need to update any state, so we return Behaviors.same,

    which means the next behavior is “the same as the current one”.

     */

    Behaviors.same
  }
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Output:

}



//#greeter-bot

object GreeterBot {

  // Greeted (reply) behaviour: sends a number of additional greeting messages

  // and collect the replies until a given max number of messages have been reached.

  def apply(max: Int): Behavior[Greeter.Greeted] = {

    bot(0, max)

  }



  private def bot(greetingCounter: Int, max: Int): Behavior[Greeter.Greeted] =

    Behaviors.receive { (context, message) =>

      val n = greetingCounter + 1

      context.log.info("Greeting {} for {}", n, message.whom) //logs (collect) reply

      if (n == max) { //until max number of messages is reached

        Behaviors.stopped

      } else {

        message.from ! Greeter.Greet(message.whom, context.self)

        bot(n, max) //recursion as loop

      }

    }

}



//#greeter-main: The guardian actor that bootstraps everything.



object GreeterMain {



  final case class SayHello(name: String)

//command to the GreeterMain to start the greeting process

  def apply(): Behavior[SayHello] = {



    //bootstrap the application

    Behaviors.setup { context =>

      //#create-actors
      val greeter = context.spawn(Greeter(), "greeter")
      /*

      In Akka you can’t create an instance of an Actor using the new keyword. Instead, yo
       */



      Behaviors.receiveMessage { message =>

        //#create-actors

        val replyTo = context.spawn(GreeterBot(max = 3), message.name)

        //#create-actors

        greeter ! Greeter.Greet(message.name, replyTo) //Greet command

        Behaviors.same

      }

    }

  }

}



//#main-class

object AkkaQuickstart extends App {

  //#actor-system

  ////An ActorSystem is the intial entry point into Akka. Usually only one ActorSystem i
  //An ActorSystem has a name and a guardian actor. The bootstrap of your application is 
  val greeterMain: ActorSystem[GreeterMain.SayHello] = ActorSystem(GreeterMain(), "AkkaQ
  //#actor-system



  //#main-send-messages

  greeterMain ! SayHello("Charles") //Only behaviour that we have defined in main

  //#main-send-messages

}
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Spark
Parallelism

Parallelism is about speeding up computations by using multiple processors
Task parallelism: Different computations performed on the same data (Do different tasks
on parallel, same data)
Data parallelism: Apply the same computation on dataset partitions (Do the same task
on parallel data)

When processing big data, data parallelism is used to move computations close to
the data, instead of moving data in the network.
Issues with data parallelism:

Latency: Operations are 1.000x (disk) or 1.000.000x (network) slower than
accessing data in memory
(Partial) failures: Computations on 100s of machines may fail at any time

Map/Reduce
General computation framework based on functional programming
It assumes that data exists in a key -> value data structure
Reduce tasks work on each key separately and combine all the values associated with a
specific key.

Hadoop
Hadoop was the first framework to enable computations to run on 1000s of commodity
computers

FlumeJava
Google’s FlumeJava attempted to provide a few simple abstractions for programming data-
parallel computations.
These abstractions are higher-level than those provided by MapReduce, and provide better
support for pipelines.

Spark and RDDs
Spark is an open source cluster computing framework

Automates distribution of data and computations on a cluster of computers
Provides a fault-tolerant abstraction to distributed datasets
Based on functional programming primitives
Provides two abstractions to data

List-like (Resilient distributed datasets)
Table-like (Datasets)

/home/sergio/.jdks/openjdk-16.0.2/bin/java -javaagent:/home/sergio/ij/lib/idea_rt.jar=390
SLF4J: A number (1) of logging calls during the initialization phase have been intercept
SLF4J: now being replayed. These are subject to the filtering rules of the underlying lo
SLF4J: See also http://www.slf4j.org/codes.html#replay

[2021-10-04 11:14:44,001] [INFO] [akka.event.slf4j.Slf4jLogger] [AkkaQuickStart-akka.acto
[2021-10-04 11:14:44,052] [INFO] [com.example.Greeter$] [AkkaQuickStart-akka.actor.defau
[2021-10-04 11:14:44,054] [INFO] [com.example.GreeterBot$] [AkkaQuickStart-akka.actor.def
[2021-10-04 11:14:44,054] [INFO] [com.example.Greeter$] [AkkaQuickStart-akka.actor.defau
[2021-10-04 11:14:44,055] [INFO] [com.example.GreeterBot$] [AkkaQuickStart-akka.actor.def
[2021-10-04 11:14:44,055] [INFO] [com.example.Greeter$] [AkkaQuickStart-akka.actor.defau
[2021-10-04 11:14:44,055] [INFO] [com.example.GreeterBot$] [AkkaQuickStart-akka.actor.def
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Spark itself is implemented in Scala, internally using the Akka actor framework to handle
distributed state and Netty to handle networking.

Resilient distributed Datasets (RDDs)
RDDs are the core abstraction that Spark uses.
RDDs make datasets distributed over a cluster of machines look like a Scala collection. RDDs:

are immutable
reside (mostly) in memory
are transparently distributed
feature all FP programming primitives

In practice, RDD[A]  works like Scala’s List[A]
RDDs are lazy

There are two types of operations we can do on an RDD:
Transformation: Applying a function that returns a new RDD. They are lazy.
Action: Request the computation of a result. They are eager.

Internally, each RDD is characterized by five main properties:
A list of partitions
A function for computing each split
A list of dependencies on other RDDs
Optionally, a Partitioner for key-value RDDs
Optionally, a list of preferred locations to compute each split on

Even though RDDs might give the impression of continuous memory blocks spread across a
cluster, data in RDDs is split into partitions.

Partitions define a unit of computation and persistence: any Spark computation transforms a
partition to a new partition.

If during computation a machine fails, Spark will redistribute its partitions to other machines and
restart the computation one those partitions only.

The partitioning scheme of an application is configurable; better configurations lead to better
performance.

Counting words with Spark
// http://classics.mit.edu/Homer/odyssey.mb.txt

val rdd = sc.textFile("./datasets/odyssey.mb.txt")

rdd

  .flatMap(l => l.split(" "))          // Split file in words

  .map(x => (x, 1))                    // Create key,1 pairs

  .reduceByKey((acc, x) => acc + x)    // Count occurrences of same pairs

  .sortBy(x => x._2, false)            // Sort by number of occurrences

  .take(50)                            // Take the first 50 results

  .foreach(println)


How to create an RDD?
RDDs can only be created in the following 3 ways

Reading data from external sources

val rdd1 = sc.textFile("hdfs://...")

val rdd2 = sc.textFile("file://odyssey.txt")

val rdd3 = sc.textFile("s3://...")


Convert a local memory dataset to a distributed one
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val xs: Range = Range(1, 10000)

val rdd: RDD[Int] = sc.parallelize(xs)


Transform an existing RDD

rdd.map(x => x.toString) //returns an RDD[String]


Pair RDDs
RDDs can represent any complex data type, if it can be iterated. Spark treats RDDs of the
type RDD[(K,V)] as special, named PairRDDs, as they can be both iterated and indexed.
Operations such as join are only defined on Pair RDDs, meaning that we can only combine
RDDs if their contents can be indexed.

Other operations include reduceByKey , aggregateByKey  and I assume anythingByKey
We can create Pair RDDs by applying an indexing function, using keyBy function, or by
grouping records:

val rdd = sc.parallelize(List("foo", "bar", "baz")) // RDD[String]



val pairRDD = rdd.map(x => (x.charAt(0), x))  // RDD[(Char, String)]

pairRDD.collect // Array((f,foo), (b,bar), (b,baz))



val pairRDD2 = rdd.keyBy(x => x.toLowerCase.head) // RDD[(Char, String)]

pairRDD2.collect // Array((f,foo), (b,bar), (b,baz))



val pairRDD3 = rdd.groupBy(x => x.charAt(0))  // RDD[(Char, Iterable(String))]

pairRDD3.collect // Array((b,CompactBuffer(bar, baz)), (f,CompactBuffer(foo)))


Pair RDD examples: groupByKey and reduceByKey

val odyssey = sc.textFile("sample.txt").flatMap(_.split(" "))

val words = odyssey.flatMap(_.split(" ")).map(c => (c, 1))



//Word count using groupByKey:



val counts = words.groupByKey() // RDD[(String, Iterable[Int])]

  .map(row => (row._1, row._2.sum)) // RDD[(String, Int)]

  .collect() // Array[(String, Int)]



//Word count using reduceByKey:



val counts2 = words.reduceByKey(_ + _) // RDD[(String, Int)]

  .collect()  // Array[(String, Int)]


Pair RDD example: aggregateByKey
//Word count using aggregateByKey:



  val counts3 = words.aggregateByKey(0)(_ + _, _ + _) // RDD[(String, Int)]



//How can we count the number of occurrences of part of speech elements?



object PartOfSpeech {

  sealed trait Word

  case object Verb extends Word

  case object Noun extends Word

  case object Article extends Word

  case object Other extends Word

}



def partOfSpeech(w: String): Word = ???
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odyssey.groupBy(partOfSpeech)

      .aggregateByKey(0)((acc, x) => acc + 1,

                          (x, y) => x + y)


Pair RDD example: join

case class Person(id: Int, name: String)

case class Addr(id: Int, person_id: Int,

                address: String, number: Int)



val pers = sc.textFile("pers.csv") // id, name

val addr = sc.textFile("addr.csv") // id, person_id, street, num



val ps = pers.map(_.split(",")).map(x => Person(x(0).toInt, x(1)))

val as = addr.map(_.split(",")).map(x => Addr(x(0).toInt, x(1).toInt,

                                             x(2), x(3).toInt))



//Q: What are the types of ps and as? How can we join them?



val pairPs = ps.keyBy(_.id) // RDD[(Int, Person)]

val pairAs = as.keyBy(_.person_id) // RDD[(Int, Addr)]



val addrForPers = pairAs.join(pairPs) // RDD[(Int, (Addr, Person))]


Join types
Given a “left” RDD[(K,A)] and a “right” RDD[(K,B)]

Inner Join (join): The result contains only records that have the keys in both RDDs.
Outer joins (left/rightOuterJoin): The result contains records that have keys in either the
“left” or the “right” RDD in addition to the inner join results.left.loj(right):RDD[(K,
(A,Option[B]))] left.roj(right):RDD[(K,(Option[A],B))]
Full outer join: The result contains records that have keys in any of the “left” or the
“right” RDD in addition to the inner join results.

left.foj(right):RDD[(K,(Option[A],Option[B]))]

Partitioning
Spark supports 3 types of partitioning schemes:

Extended partitioning is only configurable on Pair RDDs.

key.hashCode() % numPartitions

Shuffling
The process of re-arranging data so that similar records end up in the same partitions is
called shuffling.

Shuffling is needed when operations need to calculate results using a common
characteristic (e.g. a common key), as this data needs to reside on the same physical
node.

Default partitioning: Splits in equally sized partitions, without knowing the underlying 

Range partitioning: Takes into account the natural order of keys to split the dataset in 


Hash partitioning: Calculates a hash over each item key and then produces the modulo of t
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Shuffling is very expensive as it involves moving data across the network and possibly
spilling them to disk (e.g. if too much data is computed to be hosted on a single node).
Avoid it at all costs!

Debugging RDD lineage
RDDs contain information on how to compute themselves, including dependencies to other
RDDs.
Lineage information allow an RDD to be traced to its ancestors.

val rdd1 = sc.parallelize(0 to 10)

val rdd2 = sc.parallelize(10 to 100)

val rdd3 = rdd1.cartesian(rdd2)

val rdd4 = rdd3.map(x => (x._1 + 1, x._2 + 1))


scala> rdd4.toDebugString

res3: String =

(16) MapPartitionsRDD[3] at map at <console>:30 []

 |   CartesianRDD[2] at cartesian at <console>:28 []

 |   ParallelCollectionRDD[0] at parallelize at <console>:24 []

 |   ParallelCollectionRDD[1] at parallelize at <console>:24 []


Persistence
Data in RDDs is stored in three ways:

As Java objects: Each item in an RDD is an allocated object
As serialized data: Special (usually emory-efficient) formats. Serialization is more CPU
intensive, but faster to send across the network or write to disk.
On the filesystem: In case the RDD is too big, it can be mapped on a file system, usually
HDFS.

Persistence in Spark is configurable and can be used to store frequently used computations
in memory, e.g.:

val rdd = sc.textFile("hdfs://host/foo.txt")

val persisted = rdd.map(x => x + 1).persist(StorageLevel.MEMORY_ONLY_SER)


persisted is now cached. Further accesses will avoid reloading it and applying the map
function.

Persistence storage levels

Storage level Meaning

MEMORY_ONLY

Store RDD as deserialized Java objects in the JVM. If the RDD
does not fit in memory, some partitions will not be cached
and will be recomputed on the fly each time they’re needed.
This is the default level.

MEMORY_AND_DISK
Store RDD as deserialized Java objects in the JVM. If the RDD
does not fit in memory, store the partitions that don’t fit on
disk, and read them from there when they’re needed.

MEMORY_ONLY_SER  \ (Java
and Scala)

Store RDD as serialized Java objects (one byte array per
partition). More space-efficient than deserialized objects but
more CPU-intensive to read.
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Storage level Meaning

MEMORY_AND_DISK_SER
(Java and Scala)

Similar to MEMORY_ONLY_SER , but spill partitions that don’t fit
in memory to disk instead of recomputing them on the fly
each time they’re needed.

DISK_ONLY Store the RDD partitions only on disk.

Spark applications
begins by specifying the required cluster resources, which the cluster manager seeks to fulfil.
If resources are available, executors are started on worker nodes.
creates a Spark context, which acts as the driver.
issues a number of jobs, which load data partitions on the executor heap and run in threads
on the executor’s CPUs

Jobs are created when an action is requested. Spark walks the RDD dependency graph
backwards and builds a graph of stages.

Stages are jobs with wide dependencies. When such an operation is requested (e.g.
groupByKey or sort) the Spark scheduler will need to reshuffle/repartition the data.
Stages (per RDD) are always executed serially. Each stage consists of one or more
tasks.

Tasks is the minimum unit of execution; a task applies a narrow dependency
function on a data partition.

when it finishes, the cluster manager frees the resources.
The cluster manager starts as many jobs as the data partitions.

Job graph

Here is the graph for the word counting job we saw before.

val result = sc.textFile("sample.txt")

  .flatMap(_.split(" "))

  .filter(x => x.length > 1)

  .map(x => (x, 1))

  .reduceByKey((a,b) => a + b)

  .sortBy(_._1)
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Start application

Here is an example of how to start an application with a custom resource configuration.

spark-shell   \

    --master spark://spark.master.ip:7077 \

    --deploy-mode cluster  \

    --driver-cores 12

    --driver-memory 5g \

    --num-executors 52 \

    --executor-cores 6 \

    --executor-memory 30g


RDDs and formatted data
RDDs by default do not impose any format on the data they store. However, if the data is
formatted (e.g. log lines with known format), we can create a schema and have the Scala
compiler type-check our computations.
Consider the following data (common log format):

127.0.0.1 user-identifier frank [10/Oct/2000:13:55:36 -0700] \

 "GET /apache_pb.gif HTTP/1.0" 200 2326


We can map this data to a Scala case class

case class LogLine(ip: String, id: String, user: String,

                   dateTime: Date, req: String, resp: Int,

                   bytes: Int)


and use a regular expression to parse the data: ([^\s]+) ([^\s]+) ([^\s]+) ([^\s]+) "
(.+)" (\d+) (\d+)

Then, we can use flatMap in combination with Scala’s pattern matching to filter out bad
lines:
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import java.text.SimpleDateFormat

import java.util.Date



val dateFormat = "d/M/y:HH:mm:ss Z"

val regex = """([^\s]+) ([^\s]+) ([^\s]+) ([^\s]+) "(.+)" (\d+) (\d+)""".r

val rdd = sc

    .textFile("access-log.txt")

    .flatMap ( x => x match {

      case regex(ip, id, user, dateTime, req, resp, bytes) =>

        val df = new SimpleDateFormat(dateFormat)

        new Some(LogLine(ip, id, user, df.parse(dateTime),

                         req, resp.toInt, bytes.toInt))

      case _ => None

      })


Then, we can compute the total traffic per month

val bytesPerMonth = rdd

    .groupBy(k => k.dateTime.getMonth)

    .aggregateByKey(0)({(acc, x) => acc + x.map(_.bytes).sum},

                      {(x,y) => x + y})


Notice that all code on this slide is type checked!

Connecting to databases
The data sources that Spark can use go beyond textFiles. Spark can connect to databases such as

MongoDB

val readConfig = ReadConfig(Map("uri" -> "mongodb://127.0.0.1/github.events"))

sc.loadFromMongoDB(readConfig)

val events = MongoSpark.load(sc, readConfig)



events.count


MySQL or Postgres over JDBC

val users = spark.read.format("jdbc").options(

  Map("url" ->  "jdbc:mysql://localhost:3306/ghtorrent?user=root&password=",

  "dbtable" -> "ghtorrent.users",

  "fetchSize" -> "10000"

  )).load()



users.count


or to distributed file systems like HDFS, Amazon S3, Azure Data Lake etc

Broadcasts
Broadcast variables allow the programmer to keep a read-only variable cached on each
machine rather than shipping a copy of it with tasks so that they do not have to retransfer
them on every shuffle.

Accumulators
Using accumulators is a side-effecting operation and should be avoided as it complicates
design. It is important to understand that accumulators are aggregated at the driver, so
frequent writes will cause large amounts of network traffic.
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val taskTime = sc.accumulator(0L)

odyssey.map{x =>

  val ts = System.currentTimeMillis()

  val r = foo(x)

  taskTime += (System.currentTimeMillis() - ts)

  r

}


Sparq SQL
RDDs only see binary blobs with an attached type
Databases can do many optimizations because they know the data types for each field
In Spark SQL, we trade some of the freedom provided by the RDD API to enable:

declarativity, in the form of SQL
automatic optimizations, similar to ones provided by databases

execution plan optimizations
data movement/partitioning optimizations

The price we have to pay is to bring our data to a (semi-)tabular format and describe its
schema. Then, we let relational algebra work for us.
SparkSQL is a library build on top of Spark RDDs. It provides two main abstractions:

Datasets, collections of strongly-typed objects. Scala/Java only!
Dataframes, essentially a Dataset[Row], where Row ≈ Array[Object]. Equivalent to R or
Pandas Dataframes SQL syntax

It offers a query optimizer (Catalyst) and an off-heap data cache (Tungsteen).
It can directly connect and use structured data sources (e.g. SQL databases) and can import
CSV, JSON, Parquet, Avro and data formats by inferring their schema.
If a SparkContext object exists, it is straightforward to get a SparkSession

val spark = SparkSession.builder.config(sc.getConf).getOrCreate()


Creating Data Frames and Datasets

From RDDs containing tuples, e.g. RDD[(String, Int, String)]

import spark.implicits._

val df = rdd.toDF("name", "id", "address")


From RDDs with known complex types, e.g. RDD[Person]

val df = persons.toDF() // Columns names/types are inferred!


From RDDs, with manual schema definition

val schema = StructType(Array(

  StructField("level", StringType, nullable = true),

  StructField("date", DateType, nullable = true),

  StructField("client_id", IntegerType, nullable = true),

  StructField("stage", StringType, nullable = true),

  StructField("msg", StringType, nullable = true),

))



val rowRDD = sc.textFile("ghtorrent-log.txt")

             .map(_.split(" ")).

             .map(r => Row(r(0), new Date(r(1)), r(2).toInt,

                          r(3), r(4)))



val logDF = spark.createDataFrame(rowRDD, schema)


By reading (semi-)structured data files
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val df = spark.read.json("examples/src/main/resources/people.json")

or

df = sqlContext.read.csv("/datasets/pullreqs.csv", sep=",", header=True,

                          inferSchema=True)


The main difference is that Datasets use special Encoders to convert the data in compact
internal formats that Spark can use directly when applying operations such as map or filter.
The internal format is very efficient; it is not uncommon to have in-memory data that use
less memory space than their on disk format.
Moral: when in doubt, provide a schema!

Columns

Columns in DataFrames/Sets can be accessed by name:

//java?

df["team_size"]

df.team_size


//or in Scala

df("team_size")

$"team_size" //scala only


Columns are defined by expressions. The API overrides language operators to return
expression objects. For example, the following:

df("team_size") + 1



//is syntactic sugar for



spark.sql.expressions.Add(df("team_size"), lit(1).expr)


Data frame operations

DataFrames/Datasets include all typical relational algebra operations:

//    Projection



df.select("project_name").show()

df.drop("project_name", "pullreq_id").show()



//    Selection



df.filter(df.team_size.between(1,4)).show()


Joins

Dataframes can be joined irrespective of the underlying implementation, as long as they
share a key.

people = sqlContext.read.csv("people.csv")

department = sqlContext.read.jdbc("jdbc:mysql://company/departments")



people.filter(people.age > 30).\

       join(department, people.deptId == department.id)


//All types of joins are supported:
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//    Left outer:



people.join(department, people.deptId == department.id,

            how = left_outer)



//    Full outer:



people.join(department, people.deptId == department.id,

            how = full_outer)


Grouping and Aggregations

When groupBy is called on a Dataframe, it is (conceptually) split in a key/value structure,
where key is the different values of the column groupped upon and value are rows
containing each individual value.
Same as SQL, we can only apply aggregate functions on groupped Dataframes

df.groupBy(df.project_name).mean("lifetime_minutes").show()


Documentation
RDD Documentation
Spark documentation

Graph processing
Graph Processing
Georgios Gousios and Burcu Kulahcioglu Ozkan

08 October 2021

The Future is Big Graphs

CACM, 09/2021

“We are witnessing a unprecedented growth of interconnected data,
which underscores the vital
role of graph processing in our society.”

Processing Graphs
Graphs and other forms of hierarchical data structures appear every time a system models a
dependency relationship. Common big graphs are:

The social graph in social networking applications
The web graph of linked pages

http://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/api/scala/scala/index.html
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The dependency graph in (software) package ecosystems

Graph representations in short
A graph ( ) comprises nodes ( ) and edges ( ). Both can carry metadata. We represent graphs
as:

Adjacency matrix: An  matrix  ( ) where a non-zero element  indicates
and edge from  to 
Adjacency list: A List[(V, List[V])]  where each tuple represents a node and its
connections to other nodes.
Edge list: A List[(V, V)]  of node pairs that represents and edge

Graph (sub-)structures
Graph components: Subgraphs in which any two vertices are connected to each other by
paths.

Strongly connected component: The largest sub-graph with a path from each node to every
other node

Triangles or polygons: A triangle occurs when one vertex is connected to two other vertices
and those two vertices are also connected.

Spanning trees: A sub-graph that contains all nodes and the minimum number of edges

Typical graph algorithms
Traversal: Starting from a node, find all connected nodes

Depth-first: Recursively follow all graph edges until all reachable nodes are visited
Breadth-first: Follow graph edges per level; maintain a work-queue of visited nodes

Node importance: Calculate the importance of a node relative to other nodes
Centrality measures or PageRank

Shortest paths
Dijkstra’s algorithm or ‘traveling salesman’ approaches

Typical graph applications
Exploring the structure and evolution of communities or of systems of systems

WWW
Disease spreading / epidemiology
Software libraries

Link prediction:
Recommending friends
Recommending pages

Community detection: sub-graphs with shared properties

Approaches for graph processing
To process graphs, we can:

Use SQL databases and recursive queries
Use a graph database

For really big graphs, our options are somewhat limited

Efficiently compress the graphs so that they fit in memory
Use a message-passing architecture, like the bulk synchronous parallel model

G V E

n × n M n = |V | M ij
Vi Vj
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Typical graph applications
Not all applications need to process billions of nodes and trillions of edges. For small to medium
sized graphs (< 500M edges), existing tools can go a long way.

Graphs in SQL databases
CREATE TABLE nodes (

    id INTEGER,

    metadata ...

)



CREATE TABLE edges (

    src INTEGER,

    target INTEGER,

    metadata ...,

    CONSTRAINT src_fkey

        FOREIGN KEY (src) REFERENCES nodes(id),

    CONSTRAINT target_fkey

        FOREIGN KEY (target_id) REFERENCES nodes(id)

)

We model graphs as node pairs. Nodes and edges have metadata.

SQL-based graph traversals
WITH RECURSIVE transitive_closure (a, b, distance, path) AS

(

    SELECT a, b, 1 as distance, a || '->' || b AS path

    FROM edges



  UNION ALL



    SELECT tc.a, e.b, tc.distance + 1, tc.path || '->' || e.b

    FROM edges e

    JOIN transitive_closure tc ON e.a = tc.b

    WHERE a.metadata = ...   -- Traversal filters on nodes/edges

        and tc.path NOT LIKE '%->' || e.b || '->%'

)

SELECT * FROM transitive_closure

Recursive queries have a starting clause that is called on and a recursion clause

Example: Friend recommendation

A simple social network
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Given that we (blue node) are direct friends with the yellow nodes, we could recommend second
level (red) friends as potential new connections.

Recommending friends with SQL
WITH RECURSIVE transitive_closure (a, b, distance, path) AS

(

    -- Find the yellow nodes

    SELECT a, b, 1 as distance, a || '->' || b AS path

    FROM edges

    WHERE a = src -- the blue node



  UNION ALL

    -- Find the red nodes

    SELECT tc.a, e.b, tc.distance + 1, tc.path || '->' || e.b

    FROM edges e

    JOIN transitive_closure tc ON e.a = tc.b

    WHERE tc.path NOT LIKE '%->' || e.b || '->%'

      AND tc.distance < 2 -- don't recurse into white nodes

)

SELECT a, b FROM transitive_closure

GROUP BY a, b

HAVING MIN(distance) = 2 -- only report red nodes

The base expression will find all directly connected nodes, while the second will recurse into their
first level descendants.

Graph databases
Graph databases are specialized RDBMs for storing recursive data structures and support CRUD
operations on them, while maintaining transactional consistency (ACID or otherwise).

The most commonly used language for graph databases is Cypher, the base language for Neo4J.

(emil:Person {name:'Emil’}) 

  <-[:KNOWS]-(jim:Person {name:'Jim’}) 

  -[:KNOWS]->(ian:Person {name:'Ian’}) 

  -[:KNOWS]->(emil)

Find mutual friends of a user named Jim:

Big Graphs
Graphs are an inherently recursive data structures, which means that computations may have
dependencies to previous computation steps (and thus they are not trivially parallelizable).

Traditional frameworks are not well-suited for processing graphs.

Poor locality of memory accesses
Access patterns not very suitable for distribution

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b:Person)-[:KNOWS]->(c:Person), (a)-[:KNOWS]->(
RETURN b, c
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Further complicated due to latency issues
Little work to be done per node

Applications mostly care about the edges

Computation example: PageRank
PageRank is a centrality measure based on the idea that nodes are important if multiple
important nodes point to them. For node , its Page rank is recursively defined as

where  is a damping factor (usually set 0.85) and  are the nodes pointing to  We
notice that each node updates other nodes by propagating its state.

Simplified PageRank on Spark
val links: RDD[(V,List(E))] = ....cache()

var ranks = links.mapValues(v => 1.0)



for (i <- 1 to iters) {

  val contribs = links.join(ranks).values.flatMap {

    case (links, rank) =>

      val size = links.size

      links.map(url => (links, rank / size))

  }

  ranks = contribs.reduceByKey(_ + _).mapValues(0.15 + 0.85 * _)

}

The computation is iterative and side-effecting and
therefore non-parallelizable. To make it side-
effect free, we need to write each step of the computation to external storage.

The bulk synchronous parallel model
The BSP model is a general model for parallel algorithms.

It assumes that a system has:

multiple processors with fast local memory
pair-wise communication between processors
a barrier implementation (hardware or other) to synchronize super steps

pi
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The BSP model

BSP supersteps
BSP computation is organized in supersteps. A superstep comprises three phases:

Local execution: Processors use own memory to perform computations on local data
partitions
Data exchange / remote communication: Exchange of data between processes
Barrier synchronization: Processes wait until all processes finished communicating

Pregel: Using BSP to process graphs
Pregel (by Google) is a distributed graph processing framework.

Pregel computations impose a BSP structure on program execution:

Computations consist of a sequence of supersteps
In a superstep, the framework invokes a user-defined function for each vertex
Function specifies behaviour at a single vertex (V) and a single superstep (S)

it can read messages sent to V in superstep (S-1)
it can send messages to other vertices that will be read in superstep (S+1)
it can modify the state of V and its outgoing edges

Open source implementations: Apache Giraph and GraphX.

Vertex centric approach
Pregel is a vertex-centric graph processing model: the algorithm iterates over vertices

Reminiscent of MapReduce
User (i.e. algorithm developer) focus on a local action
Each vertex is processed independently

By design: well suited for a distributed implementation
All communication is from superstep S to (S+1)
No defined execution order within a superstep
Free of deadlocks and data races

Algorithm termination
BSP programs run until the programs stop themselves. Termination works as follows

Superstep 0: all vertices are active
All active vertices participate in the computation at each superstep
A vertex deactivates itself by voting to halt

https://giraph.apache.org/
https://spark.apache.org/docs/latest/graphx-programming-guide.html
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No execution in subsequent supersteps
A vertex can be reactivated by receiving a message

Roles in a Pregel cluster
Graphs are stored as adjacency lists, partitioned (using hash partitioning) and distributed using a
network filesystem

Leader: Maintains a mapping between data partitions and cluster node. Implements the BSP
barrier

Worker: For each vertex, it maintains the following in memory:

Adjacency list
Current calculation value
Queue of incoming messages
State (active / inactive)

The worker applies all computationally intensive operations.

A Pregel superstep
1. Workers combine incoming messages for all vertices.

The combinator function updates the vertex state
2. If a termination condition has been met, the vertex votes to exclude itself for further

iterations
3. (Optional) The vertex updates a global aggregator
4. Message passing:

If receiving vertex is local: update its message queue
Else wrap messages per receiving node and send them in bulk

Spark GraphX
GraphX is a new component in Spark for graphs and graph-parallel computation. It provides a
variant of Pregel’s API for developing vertex-centric algorithms.

Spark uses its underlying fault tolerance, check pointing, partitioning and communication
mechanisms to store the graph. Halting is
determined by examining if the vertex is sending /
receiving messages.

GraphX allows for operating on the underlying data structures as both as a graph using graph
concepts and processing primitives, and also as separate collections of edges and vertices that
can be transformed using fp primitives.

class Graph[VD, ED] {

  val vertices: VertexRDD[VD]

  val edges: EdgeRDD[ED]

  . . .

}

Pregel API in Spark
def pregel[A](

    // Initialization message

    initialMsg: A,

    // Max super steps
    maxIter: Int = Int.MaxValue,

    activeDir: EdgeDirection = EdgeDirection.Out,

    // Program to update the vertex
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    vprog: (VertexId, VD, A) => VD,

    // Program to determine edges to send a message to

    sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],

    // Program to combine incoming messages

    mergeMsg: (A, A) => A

) : Graph[V, E]

Processing a superstep

PageRank with Pregel/Spark

From Pregel.scala in Apache Spark

Fault tolerance
The fault tolerance model is reminiscent of Spark.

Periodically, the leader instructs the workers to save the state of their in-memory data to
persistent storage

Worker failure detected through keep-alive messages the leader issues to workers

In case of failure, the leader reassigns graph partitions to live
 workers; they reload their
partition state from the most recently available checkpoint

Data pipeline for graph processing

val pagerankGraph: Graph[Double, Double] = graph

  .mapVertices((id, attr) => 1.0) // Initial Pagerank for nodes



def vertexProgram(id: VertexId, attr: Double, msgSum: Double): Double =

  resetProb + (1.0 - resetProb) * msgSum

def sendMessage(id: VertexId, edge: EdgeTriplet[Double, Double]): Iterator[(VertexId, Do
  Iterator((edge.dstId, edge.srcAttr * edge.attr))

def messageCombiner(a: Double, b: Double): Double = a + b

val initialMessage = 0.0



// Execute Pregel for a fixed number of iterations.

Pregel(pagerankGraph, initialMessage, numIter)(

  vertexProgram, sendMessage, messageCombiner)

https://github.com/apache/spark/blob/v3.0.1/graphx/src/main/scala/org/apache/spark/graphx/Pregel.scala
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Ongoing research for: Abstractions, ecosystems, and performance

Links
Graphs in the Database
Graph database example from Neo4j blog on SQL vs. Cypher Query Languages
GraphX - Graphs on Spark
The image for Pregel API superstep processing is from [1].
A comparison of state of the art graph processing systems
Recommending items to a billion people
The image for data pipeline for graph processing is from the article: The Future is Big Graphs,
Communications of ACM, September 2021.

[1]
M. Malak and R. East, Spark GraphX in action. Simon; Schuster, 2016.

Stream processing
Stream processing
Georgios Gousios

23 August 2021

What is streaming?

Big data is big
Typical processing scenario for big data:

Aggregate data in intermediate storage
Run batch job overnight, store results in permanent storage
Use Spark for interactive exploration of recent data

Assumes that the value of the data is hidden in it (“needle in haystack”)

Data is NOT static
Running processes generate data continuously, users need to continously monitor processes.
The fact that we use mostly static data is due to legacy constraints.

https://www.slideshare.net/quipo/rdbms-in-the-social-networks-age/
https://neo4j.com/blog/sql-vs-cypher-query-languages/
https://spark.apache.org/docs/latest/graphx-programming-guide.html
https://engineering.fb.com/core-data/a-comparison-of-state-of-the-art-graph-processing-systems/
https://engineering.fb.com/core-data/recommending-items-to-more-than-a-billion-people/
https://cacm.acm.org/magazines/2021/9/255040-the-future-is-big-graphs/fulltext
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Static data vs time

Bounded and unbounded datasets
Bounded Data: A dataset that can be enumerated and/or iterated upon

Students in CSE2520
Countries in the world

Unbounded Data: A dataset that we can only enumerate given a snapshot. Unbounded data
does not have a size property.

Natural numbers
Facebook/Twitter posts

Q: Most datasets are:

you guessed right, unbounded.

Stream and batch processing
Batch processing applies an algorithm on a bounded dataset to produce a single result at
the end

Unix, Map/Reduce and Spark are batch processing systems
Stream processing applies an algorithm on continuosly updating data and continuously
creates results

Flink and Storm are stream processing systems
Natural fit for unbouded datasets
Bounded data are usually a time-restricted view of unbounded data

Use cases for stream procesing
Intrusion and fraud detection
Algorithmic trading
Process monitoring (e.g. production processes, or logs)
Traffic monitoring
When we can discard raw data and prefer to store aggregates

What changes faster over time; data or code?

If , this is a streaming problem

If , this is an exploration problem

≫Δd
Δt

Δc
Δt

≫Δc
Δt

Δd
Δt
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— Joe Hellerstein

Data in streaming processing
Some real-world examples of such data include:

Tweets
Github events
Web server logs

Unix for stream processing
Suppose we want to calculate the total number of users on our system per hour every hour.

tail -f log.txt |               # Monitor interactions

sed -e …        |               # Extract user from logline

sort | uniq     |               # Unique users

wc -l           |               # Get user count

xargs -I {} echo -n `date` {}   # Print with timestamp

Q When will the above command finish?

Never! There is no way to tell tail  that we want it to aggregate data per hour and make the
pipeline recompute when tail  emits.

What can we learn from Unix?

Unix streaming

Unix has many components required for stream processing:

Streaming data acquisition: tail  or pipe
Intermediate storage: pipes
Ways of applying functions on streaming data

It is missing:

Splitting streams in batches (windowing)
Recomputing when new batches arrive (triggers)

Stream processing in a nutshell
Stream processing is a set of techniques and corresponding systems that process timestamped
events. For a stream processing system to work, we need two major components:

A component that acquires events from producers and forwards it to consumers
A component that processes events

[11/Oct/2018:09:02:41 +0000] "GET /pub/developer-testing-in-IDE.pdf HTTP/1.1" 200 823280
[11/Oct/2018:09:04:36 +0000] "GET /courses/bigdata/spark.html HTTP/1.1" 200 2145339 "-" 
[11/Oct/2018:09:06:20 +0000] "GET /atom.xml HTTP/1.1" 200 255069 "-" "Gwene/1.0 (The gwe
[11/Oct/2018:09:08:37 +0000] "GET /pub/eval-quality-of-open-source-software.pdf HTTP/1.1

https://stream.twitter.com/1.1/statuses/sample.json
https://api.github.com/events
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To make stream processing viable in the real world, both components must be scalable,
distributable and fault-tolerant.

Messaging systems
The fundamental entity that stream processing deals with is an event. Events are produced by
continuous processes and in order to be processed they must be consumed.

Messaging systems solve the problem of connecting producers to consumers.

Unix again
tail -f log.txt | wc -l

tail  is the producer and wc  is the consumer. The messaging system is the pipe. A pipe has the
following functionality

Reads data from the producer and buffers it
Blocks the producer when the buffer is full
Notifies the consumer that data is available

Pipes implement the publish / subscribe model for 1 producer to 1 consumer.

Publish / Subscribe
Publish/subscribe systems connect multiple producers to multiple consumers.

Direct messaging systems use simple network communication (usually UDP) to broadcast
messages to multiple consumers.
They are fast, but require the producers/consumers to deal
with data loss. Example: ZeroMQ

Message brokers or queues are centralized systems that sit between producers and
consumers and deal with the complexities of reliable message delivery.

Broker-based messaging
The producers send messages in any of the following modes:

Fire and forget. The broker acks the message immediately
Transaction-based: The broker writes the message to permanent storage prior to ack’ing it.

The broker:

Buffers the messages, spilling to disk as necessary
Routes the messages to the appropriate queues
Notifies consumers when messages have arrived

The consumers:

Subscribe to a queue that contains the desired messages
Ack the message receipt (or successful processing)

Messaging patterns

Competing workers: Multiple consumers read from a single queue, competing for incoming
messages
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Fan out pattern

Fan out: Each consumer has a queue of its own. Incoming messages are replicated on all queues

Topics pattern

Message routing: The producer assigns keys to msg metadata. The consumer creates topic
queues by specifying the keys it is interested to receive messages for.

Broker-based example: GHTorrent

GHTorrent architecture

GHTorrent uses topic queues to decouple the following the GitHub event stream from the
retrieval of items linked from events. Events are written to the RabbitMQ broker with
a routing
key according to their event type; a configurable number of data retrieval processes subscribes
to those queues.

Drawbacks of broker-based messaging
Broker-based messaging is widely used and well understood. It has however one drawback: after
a message is received, it dissapears. This leads to lost opportunities:

We cannot reprocess messages (e.g. when a new application version is installed)
We cannot prove that a message was delivered

Q: How can we solve those problems?

A: Instead of just forwarding messages, we can store and forward them.

Log-based messaging systems
A log is an append-only data structure stored on disk. We can exploit logs to implement
messaging systems:

Producers append messages to the log,
All consumers connect to the log and pull messages from it. A new client starts processing
from the beginning of the log.
To maximize performance, the broker partitions and distributes the log to a cluster of
machines.
The broker keeps track of the current message offset for each consumer per partition

http://ghtorrent.org/
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Log-based messaging overview

A generic partitioned log system

Kafka

Kafka use at Uber

Kafka is the most well known log server. It is being used both to aggregate and store raw events
and as an intermediary between systems.

Programming models for stream processing
What programming models for streams enable processing of events to derive (some form of)
state.

Event sourcing / Command Query Segregation (CQS)
Reactive programming
The DataFlow model

Read also this comprehensive blog post by Martin Kleppmann.

Event sourcing and CQS

https://www.confluent.io/blog/making-sense-of-stream-processing/
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Capture all changes to an application state as a sequence of events.

Instead of mutating the application state (e.g. in a database), we store the event that causes the
mutation in an immutable log. The application state is generated by processing the events. This
enables us
to:

Use specialized systems for scaling writes (e.g.  Kafka) and reads (e.g.  Redis), while the
application remains stateless.
Provide separate, continuously updated views of the application state (e.g.  per user, per
location etc)
Regenerate the application state at any point in time by reprocessing events

Reactive programming
Reactive programming is a declarative programming paradigm concerned with data streams
and the propagation of change (Wikipedia).

Reactive APIs model event sources as infinite collections on which observers subscribe to receive
events.

Observable.from(TwitterSource).      // List of tweets

  filter{_.location == 'NL'}.        // Do some filtering

  flatMap{t => GeolocateService(t)}. // Precise geolocation

  groupBy{loc => loc.city}.          // Group results per city

  flatMap{grp => grp.map(v => (grp.key, v))}.

  subscribe(println)

Example is in the Reactive Extensions (Rx) formulation. .NET Rx and Java 9 (Flow), include
facilities for reactive programming.

The Dataflow model
The Dataflow model was introduced by Akidau et al. [1] as a generic implementation of the
MillWheel system [2]. Flink was heavily inspired by it.

The DataFlow model attempts to explain stream processing in four dimensions:

: results are being computed
: in event time they are being computed
: in processing time they are materialized

: earlier results relate to later refinements

Time in stream processing
In streaming systems, we have two notions of time:

Processing time: the time at which events are observed in the system
Event time: the time at which events occurred

D: Describe a scenario where those are different.

Applications that calculate streaming aggregates (e.g.  avg rainfall per country per hour) don’t
care much about the event order.

Applications with precise timing requirements (e.g.  bank transactions, fraud detection) care
about event time. Events may however enter the system delayed or out of order.

Event Time skew

What
Where
When
How

https://github.com/dotnet/reactive
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html
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Event time skew

If processing (wall-clock) time is 

Skew is calculated , where  is the timestamp of the latest event processed
Lag is calculated as , where  is the actual timestamp of an event

 operations on streams
Element-wise ops apply a function to each individual message. This is the equivalent of
map  or flatMap  in batch systems.

Aggregations group multiple events together and apply a reduction (e.g.  fold  or max ) on
them.

Element-wise operations: map

Convert types of stream elements

Map

// Rx

Observable.from(List(1,2,3)).map(x => 10 * x)



// Flink

env.fromCollection(List(1,2,3)).map(x => 10 * x)

Element-wise operations: filter

Only keep events that satisfy the predicate.

t

t − s s
t − s s

What :

Stream[A].map(x : A→ B) : Stream[B]

Stream[A]. filter(x : A→ Boolean) : Stream[A]
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Filtering

// Rx

Observable.from(List(2,30,22,5,60,1)).map(x => x > 10)



// Flink

env.fromCollection(List(2,30,22,5,60,1)).map(x => x > 10)

Element-wise operations: merge

Emit a stream that combines all events from both streams.

Merging streams

// Rx

val a = Observable.from(List(20,40,60,80,100))

val b = Observable.from(List(1,1))

a.merge(b)



// Flink

val a = env.fromCollection(List(20,40,60,80,100))

val b = env.fromCollection((List(1,1))

a.union(b)

Element-wise operations: flatMap

Apply f  on all elements of Stream[A]  and flatten any nested results to a new stream.

// Rx

Observable.from(List('foo', 'bar')).

           flatMap(x => Observable.from(x.toCharArray))



// Flink

env.fromCollection(List('foo', 'bar'))

    flatMap(x => x.toCharArray)

Element-wise operations: keyBy

Stream[A].merge(b : Stream[B >: A]) : Stream[B]

flatMap(f : A→ Stream[B]) : Stream[B]

Stream[A]. keyBy(f : A→ K) : Stream[(K,Stream[K])]
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Partition a stream using a discriminator function and produce (a stream of) streams that emit the
partitioned data.

Stream keyBy

keyBy  (or groupBy  in Rx) creates partitioned streams that can be processed in parallel.
Moreover, keys are required for various operations combining data.

Element-wise operations: join

Stream[A].join(b: Stream[B],

               kl: A => K,
               kr: B => K,
               rs: (A,B) => R): Stream[R]

Join streams  and . Key selector functions kl  and kr  extract keys of type , on which the
join operation is performed. On each joined pair, the result selector function rs  is applied to
derive the result type.

Stream join

Stream joining example
Find commits that caused exceptions and notify the authors.

case class StackEntry(file: String, line: Int)

case class Exception(exception: String, entries: Seq[StackEntry])

case class DiffLine(file: String, line: Int, content: ...)

case class Commit(author: String, diff: Seq[DiffLine])



val logs : Stream[(Exception, StackEntry)] = env.socketTextStream(host, port).

  flatMap(e => for(s <- e.entries) yield (e, s))

val diffs : Stream[(Commit, Diff)] = env.GitRepoSource(...).

  flatMap(c => for(d <- c.diff) yield(c, d))



logs.join(diffs).

     where(stackEntry => stackEntry.file).

     equalTo(diff => diff._2._file).

     apply((log, diff) => (diff._1.author, diff._1.commit.sha, log.exception)).

     map(e => sendEmail(...))

Q: How can a stream processor execute this?

A: Presumably, stack traces is a faster stream than commits; joining will require all keys to be
kept in memory (per processing node). Theoretically, this requires infinite memory.

Aggregations / Reductions

A B K
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Stream[A].aggregate(f: AggregationFunction[A, T, B]): Stream[B]



trait AggregationFunction[IN, ACC, OUT] {

  def createAccumulator(): ACC

  def add(value: IN, acc: ACC): ACC // Type conversion IN -> ACC

  def getResult(acc: ACC): OUT      // Type conversion ACC -> OUT

  def merge(a: ACC, b: ACC): ACC

}

Aggregations group multiple events together and apply a reduction on them.

Q: How can we aggregate events, when our event stream is infinite?

Hint: remember the Unix example from before.

A: We can create event groups by time (e.g. every 2 minutes) or by count (e.g., every 100 events).

 Streaming Windows

Windowing in streaming systems

Windows are static size (e.g., 1000 events) or time-length (e.g., 10 secs) “batches” of data.

Session windows

Session windows

Where:
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Session windows are dynamically sized windows that aggregate batches of (typically) user
activity. Windows end after session gap time.

Example: Aggregating via windows

Out of order events

// Count number of tweets per user per minute

tweets.map(t => (t.user_id, 1))

      .keyBy(x => x._1)

      .timeWindow(Time.minutes(1))

      .reduce((a,b) => a._2 + b._2)

Every minute, this will produce a list of pairs like so:

(323, 1)

(44332, 4)

(212, 32)

...

Example: Using session windows

Session Windows

// Number of clicks per user session

case class Click(id: Integer, link: String, ...)

clickStream.map(c => (c.id, 1))

           .keyBy(x => x._1)

           .window(EventTimeSessionWindows.withGap(Time.minutes(10)))

           .sum(1)

When a session terminates, we get results like:

(323, 1)

(44332, 4)

(212, 32)

...

Windows: Things to remember
There are 2 things to remember when using event-time windows.

Buffering: Aggregation functions are applied when the window finishes (see ). This
means that in-flight events need to be buffered in RAM and spilled to disk.

When
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Completeness: Given that events may arrive out of order, how can we know that a window
is ready to be materialized and what do we do with out of order events?

 Window Triggers
A trigger defines when in processing time are the results of a window materialized / processed.
Two types of triggers can be defined:

Per-record triggers fire after  records in a window have been encountered.

Aligned delay triggers fire after a specified amount of time has passed across all active
windows (aka micro-batching).

Unaligned delay triggers fire after a specified amount of time has passed after the first
event in a single window.

Click on the links to watch Akidau’s excellent visualizations

Watermarks
Event-time processors need to determine when event time has progressed enough so that they
can trigger windows. When reprocessing events from storage, a system might process weeks of
event-time data in seconds; relying on processing time to trigger windows is not enough.

Watermarks flow as part of the data stream and carry a timestamp. They are a declaration that
by a point in the stream, all events carrying a timestamp up to the watermark timestamp should
have arrived.

Watermarks allow late messages to be processed up to a specified amount of (event-time) delay
(allowed lateness).

Watermarks in parallel streams

Watermarks

As the watermarks flow through the streaming program, they advance the event time at the
operators where they arrive. Whenever an operator advances its event time, it generates a new
watermark downstream for its
successor operators.

 Window Refinements
In certain complex cases, a combination of triggers and watermarks flowing may cause a window
to be materialized multiple times. In such cases, we can discard, accumulate or accumulate and
retract the window results.

When:

x

How:

http://streamingsystems.net/fig/2-6
http://streamingsystems.net/fig/2-7
http://streamingsystems.net/fig/2-8
https://beam.apache.org/
https://beam.apache.org/documentation/programming-guide/#composite-triggers
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For further reading, consult the Beam documentation.

Stream processing systems
Messaging systems are purposed to move data from produces to consumers, in a scalable and
fault-tolerant way.

However, they do not process the moved data; this is the job of dedicated, stream processing
systems.

The stream as a database
There is nothing that fundamentally disallows event streams from acting as a database.

Events can be filtered and transformed
Event streams can be joined with other event streams
Event streams can be aggregated (given time constraints)
Event streams can be replicated on other hosts for scaling and fault tolerance

The main difference between streams and databases is that databases contain state, whereas
streams contain state modifications. Therefore, databases can be updated, while streams can be
appended.

Approaches to processing streams
Micro-batching: Aggregate data in batches of configurable (processing-time) duration

Event-based streaming: Process events one by one

Event-time systems can emulate micro-batching by setting an aligned delay trigger to keyed
windows.

Apache Spark Streaming
Spark Streaming is an example of a micro-batching architecture. Spark Streaming breaks the
input data into batches (of x 
 seconds processing time length) and schedules those in the
cluster using the exact same mechanisms for fault tolerance as normal RDDs.

ssc.socketTextStream("localhost", 9999).

  flatMap(_.split(" ")).map(word => (word, 1)).reduceByKey(_ + _)

Micro-batch

Issues with micro-batching
Latency

The micro-batch computation is triggered after the batch times out
Each batch needs to be scheduled, libraries need to be loaded, connections need to be
open etc

https://beam.apache.org/
https://beam.apache.org/documentation/programming-guide/#composite-triggers
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Programming model

No clean separation of mechanism from business logic
Changing the micro-batch size leads to different results

Real streaming: Flink

Flink job splitting

In Flink, a program is first compiled to a data-flow graph. Each node in the DFG represents a task,
and can be scheduled within a task manager (essentially, a JVM instance).

A DFG consists of a Source, a Sink and intermediate computations. A sink cannot be a source:
this means that 2 Flink computations cannot exchange data directly.

Anatomy of a Flink cluster

Flink cluster architecture

More streaming: Kafka Streams cluster
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Kafka Stream architecture

Stateful streaming
Imagine that for each item we process, we would like to keep a counter.

val stream: DataStream[(String, Int)] = ...



val counts: DataStream[(String, Int)] = stream

  .keyBy(_._1)

  .mapWithState((in: (String, Int), count: Option[Int]) =>

    count match {

      case Some(c) => ( (in._1, c), Some(c + in._2) )

      case None => ( (in._1, 0), Some(in._2) )

    })

The mapWithState  operator takes and returns an optional state, which the stream processor
must maintain.

Implicit states
In addition, many operators, for example windowing and aggregation ones, are inherently
stateful.

Stateful vs Stateless processing

Q: As the processing graph is distributed, we need a
consistent, fault-tolerant global view of the
counter. How can we implement this?

A: An idea would be to pause all operators, start a 2-phase commit process and restart the
processing when all nodes are committed.
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But we can do better than that!

The Chandy-Lamport Algorithm
The Chandy-Lamport algorithm [3] can be
 used to capture consistent global snapshots. It
models a distributed system as a graph of processes that have input and output channels,
overseen by a snapshot initiator:

The snapshot initiator saves its local state and sends a marker to all its output channels
All receiving nodes: i) save their local state and the state of the channel that delivered the
marker, ii) forward the marker to all outgoing channels
When the marker reaches the initiator, the snapshot is done

Flink snapshots

The Flink snapshot algorithm

Flink takes incremental snapshots by interleaving epoch markers with messages [4].
 It assumes
that input streams are durably logged and repeatable (e.g., with Kafka). Operators wait for the
same epoch markers from all channels
before they take a snapshot.

System view of snapshots

How Flink co-ordingates snapshots

Event processing guarantees
The following guarantees are offered by streaming systems

At most once an event will be processed once (if delivered at all)
At least once an event might flow through a system twice, in case of failure.
Exactly once an event only flows through a set of operators once.

Flink supports exactly once. To do so, it requires the source to support event replay on request
and the sink to be transactional. Both requirements are satisfied by Apache Kafka.

Deployment view of a simple application
Image credits
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Spacetime continuum image isfrom the NASA/WMAP science team
Many of the stream processing figures are (c) Tyler Akidau, available here
The message broker pattern graphics are from the RabbitMQ documentation
Kafka @ Uber, from the Uber engineering blog
Streaming Operator screenshots from RxMarbles
Watermark image, by the Flink documentation
Flink snapshoting, by Carbone et al.[4]

Bibliography
[1]
T. Akidau et al., “The Dataflow
model: A practical approach to balancing correctness, latency, and
cost
 in massive-scale, unbounded, out-of-order data processing,” Proceedings of the VLDB
Endowment, vol. 8, no. 12, pp. 1792–1803, 2015.

[2]
T. Akidau et al., “MillWheel: Fault-tolerant stream processing at internet scale,” Proceedings of the
VLDB Endowment, vol. 6, no. 11, pp. 1033–1044, 2013.

[3]
K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global states of distributed
systems,” ACM Transactions on Computer Systems (TOCS), vol. 3, no. 1, pp. 63–75, 1985.

[4]
P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and K. Tzoumas, “State management in apache
flink: Consistent stateful distributed stream processing,” Proceedings of the VLDB Endowment, vol.
10, no. 12, pp. 1718–1729, 2017.

[5]
M. Kleppmann, Designing data-intensive applications. O’Reilly Media, Inc., 2017.

[6]
T. Akidau, S. Chernyak, and R. Lax, Streaming systems: The what, where, when, and how of large-
scale data processing. O’Reilly, 2018.

[7]
M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized streams: Fault-tolerant
streaming computation at scale,” in Proceedings of the twenty-fourth ACM symposium on
operating systems principles, 2013, pp. 423–438.

Copyright
This work is (c) 2017, 2018, 2019, 2020, 2021 - onwards by TU Delft and Georgios Gousios and
licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
license.

http://streamingbook.net/fig
https://www.rabbitmq.com/getstarted.html
https://eng.uber.com/ureplicator/
http://rxmarbles.com/
https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/event_time.html#late-elements
http://creativecommons.org/licenses/by-nc-sa/4.0/

