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Machine Learning Summary
Aug 27, 2021

This is a summary of the CSE2510 Machine Learning subject

To do: do a small cheatsheet chapter for each node in the image stating some facts, some
pros and some cons, try to compare it to other nodes.

What is machine learning?
With machine learning we can automatize boring simple repetitive tasks such as identifying
patterns in a picture and group the patterns found into labels (i.e. recognising if the picture
has a dog, a cat, a fruit…)
In ML the algorithm “learns” from a “training” input data set and it applies what it “learned”
to new data inputs via “generalisation”

Learning == training on data (more on this later)
Formally, generalisation == Coming to general conclusions from (a limited number
of) specific observations

Example is to think “Bayesian”, guessing the gender of a random pool is a 50/50
chance, but if the (training) data is updated with a pool selected from a synchronised
swimming class, then the chance of guessing the gender is skewed towards female.
This is what the teacher means when she says that Prior knowledge = counting
observations (i.e. number of girls in a class) and that Learning is counting.

Usually the more (representative) data (examples) the more “counting” (counting
in proportion to the total pool, thus probability estimation)
Machine learning is about predicting through counting (historical) data and
assigning a most likely outcome (probability)

In a nusthell: Machine learning is “probablistic” classification

Note on notation
 is used for continous variables
 is used for discrete variables

p(x)
P(x)
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In machine learning the feature vector x is often continous (i.e. weight, height) while the class
labels are discrete (i.e. woman, man)

Therefore in machine learning we just use p(x) for both
In ML it is arbitrary to store the measurements of the feature vector in rows (i.e. one objecte
example per row) or in columns (one column contains 1 object example)
In CSE2510 we store object in rows such that:

Is a two-feature dataset with four objects

Supervised learning
CSE2510 (and most of applications of ML) focus on supervised learning, that is “learning by
example”:

Given input-output examples, (explicitly) determine input-output function (i.e. probability
of belonging to a “label” (apple, dog, cat, woman):

General input-output function: 
X = input = set of features = design matrix
A = weight or coefficients = size of the effect of x on prediction y
b = bias

Dataset with label for each training example. Learns the association between
example and label.
Example: inputs are apples and the output is the probability of the apple being red
(for a human it’s rather obvious or infered by context (i.e. lighting) whether an apple
is red or not, but a ML input-output function won’t output binary but as we observed
before in the gender example the probability of the apple being red)

If we use “good” training data, the function should be able to generalise to new and
previously unseen (apple) examples

The data needs to be relevant, you can’t train the red apple example with oranges, or
with only red apples, you need to feed the training set with both green and red
apples with already defined outcomes to let the algorithm learn the difference
between those sets of pictures

Alternatively, unsupervised learning does not use predefined outcome labels for the
algorithm and the algorithm decides on its own how to group the inputs, i.e. an algorithm
might group dogs and chimps in the same group while bald bodybuilders and
hippopotamus in the same one because it decided to use hair/fur as a label feature rather
than bipedalism.
There are other types of ML but they are not discussed in this course

Terminology
Machine Learning Algorithms

A machine learning algorithm is an algorithm that is able to learn from data. Formally
defined in 1997 as:

A computer program is said to learn from experience ( ) with respect to some class of
tasks ( ) when it’s task performance ( ) improves with (more) experience.

Task
Learning is our means of attaining the ability to successfuly perform a task

Learning != the task

⎡
⎢ ⎢ ⎢
⎣

−1 −1
−1 1
2 0
3 0

⎤
⎥ ⎥ ⎥
⎦

y = AX + b

E
T P
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I.e. a robot being able to walk with “walking” as the task:
We could (manually) program the robot to walk (QWOP style)
Alternatively, we could just program the robot to learn how to walk (this being just
import minecraft.py  style in python as opposed to codying the biomechanics

yourself…)
So ML is a lazy yet effective solution at the expense of consuming lots of CPU
and trainig resources (and as being a bruteforce approach rather than an elegant
“mathematical deduction proof-based” approach (it’s induction instead))

Machine learning tasks are usually described in terms of how the machine learning system
should process an example

An example is a collection of features that have been quantitatively measured from
some object or event (i.e. a picture of a cat) that we want the machine learning to
process
We typically represent the example as a vector  where each entry  of the
vector is a feature (such that colors and shapes of groups of pixels)

Formally, the features of an image are usually the values of the pixels in the image
Many tasks can be solved with machine learning ML such as:

Classification:
1. Take measurements (features) of the objects (examples) (training data)
2. Plot each object (examples) (training data)
3. Label (apple, cat…) each object (examples) and draw the decision boundary (training

data)
Avoid overfitting the decision boundary to the training data as this will make it
harder to predict the label of new data

4. Predict label of new objects (test data)
Regression: predicting a continous value (i.e. house prices)
Transcription: Transcribe a relatively unstructured representation of some kind of data
into discrete textual form (i.e. speech recognition like autogenerated subtitles)
More… (not covered in this course)

Experience (dataset)
This is the dataset to train the ML algorithm
Dataset: Collection of many examples or objects
May or may not be supervised, if it is, then each of the examples in the training dataset is
provided with an explicit label

Training set

The set of examples used to finetune the algorithm “parameters”
At the end of the day, the function that returns the likeliness of an input to belong to a
specific label is a function of the form  with zillions of weights
known as paramaters (well, or just use the mattrix notation)

Test set

Independent from the test set, thus it is used exlusively to determine whether the finetune of
the paramaters was accurate or not (formally known as generasiability of the trained model
to unseen data).
It must come from the same pool (same probability distribution as the training set)
Goal of training: Learn a function that can predict a label y for a new x with as little error as
possible = an input-output function that can generalise to new, unseen examples (without
labels)

Learn model parameters a and b so that the error of the function’s predictions is
minimised y = ax + b

Features

x ∈ R
n Xi

y = ax + by + cz…

https://www.youtube.com/watch?v=YbYOsE7JyXs
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Each data point/example/object is described in terms of features (i.e. shape, color, length,
width of something in image)
Features give a specific view of the objects: YOU (the user) are responsible for it
Good features allow for pattern recognition, bad features allow for nothing

Thus more is not always better

Design matrix

This matrix is just a way of describing a dataset
Recall that each observation/example/object was regarded as a vector  where each
entry  of the vector is a feature
The design matrix  is a matrix that contains a different observation in each row, each
column of the matrix corresponds to a different feature

This is expressed as 
with m = number of observations and n = number of features

See that  is the label,  are the features with  and the task: classify the penguins
into 3 species based on the measurements (= features)

In unsupservised learning the label is not provided in the training set and the dataset is
divided into clusters of “similar” objects

Performance
Usually this performance measure is specific to the task, but we often just use the accuracy
of the model (i.e. to predict the correct label)

The 1 - error rate is equivalent. The error rate is also regarded as “the expected 0-1 loss”
Other performance measures include arbitrary weights for true/false positives/negatives (i.e.
we might prefer to avoid false positives over maximizing true positives in insurance fraud
detection, a true positive saves you 10k on average but a false positive can sue you on court
and you lose 1 million and get bad reputation)
Different ML techniques require different performance measures.

Machine Learning is soft and hard classification
(probabilistic)

x ∈ R
n

Xi

X

X ∈ R
m×n

Xi,0 Xi,n n > 0
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ML learning (algorithms whose performance improves with experience) regards “soft”
classication tasks when probabilities to belong to a label are assigned with conditional
probabilities based on Baye’s rule (previous facts update the probability)

This is covered in Probability theory
ML uses “hard” classification when establishing decision boundaries (percentage thershold
that divides belonging to a label or not)

This is covered in decision theory
The combination is called probabilistic classification, which is done using one or multiple ML
techniques. This course covers:

Support vector machines
Linear regression
Neural networks

No free-lunch theorem: no machine learning algorithm is better than any other as every
classification algorithm has the same error rate for classifying new data. However, each
algorithm is suitable for a different set of resources available by the researcher and for a
specific task.

Machine Learning Pipeline
Regardless of the technique:

Factors that determine Performance:
The ML algorithm’s ability to Make the training error small
The ML algorithm’s ability to Make the gap between training and test error small
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Non-probabilstic example: Polynomial Curve Fitting
(Linear Model)

Regression problem used to introduce some terms. But note that this is not generally the
correct ML approach.
Suppose we observe a float input variable  x  and we want to use this input variable x to
predict the value of another float target variable  t

Secretly  with b  being some random noise and the goal of the
exercise is to identify a function that approxamites the real .

We’re given a training set comprising N observations of x  together with their
corresponding t

This may be written as tuples in set theory notation: 

Or it could be written seperately as:

Figure below shows a plot of a training set comprising N = 10 data points (blue circles) 

The green curve shows the function  (without the noise) that implicitly
applies to the observed the data.

Our goal is to predict the value of new  for some new value of  (hat denoting new
data set) different from training set), without knowledge of the green curve.

This implicitly involves trying to discover the underlying function 

t(x) = sin (2πx) + b

t(x)

N = {(x1, t1), (x2, t2), … , (xn, tn)}

x ≡ (x1, … ,xn)T

t ≡ (t1, … , tn)T

(xi, ti)
t(x) = sin (2πx)

t̂ x̂

t̂ (x) = sin (2πx)



20-10-2021 12:48 Machine Learning Summary | Sergio’s Blog

localhost:3000/datascience/2021/08/27/ml.html 7/157

The real observed data (and very likely the new one as well) are corrupted with noise, and so
for a given  there is uncertainty as to the appropriate value for 

Probability theory provides a framework for expressing such uncertainty in a precise and
quantitative manne
Decision theory allows us to exploit this probabilistic representation in order to make
predictions that are optimal

For the moment, however, we shall proceed rather informally and consider a simple
approach based on curve fitting.
In particular, we shall fit the data using a polynomial function of the form (note that ):

This polynomial to approximate  is an approximation to a known calculus series (series
are infinite)

sequences are infinite list of numbers written in a deffinite order i.e. 

Since a sequence is a function whose domain is the set of integers, its graph consists of
discrete point coordinates.

series are the sum of a sequence of numbers (they’re also discrete)
A series of the form  are called a power series
Any function f for which all derivatives exist in some point (such as a continous
function like sin(x)) can be expressed as a power series where

x̂ t̂

t ≈ y

y(x, x) = w0 + w1x + w2x
2 + ⋯ + wnx

n

y(x, x) =
n

∑
i=0

wix
i

t̂ (x)

f(n) = f(n − 2) + f(n − 1) for n ≤ 3

w0 + w1(x − a) + w2(x − a)2 + …

w0 = f(a)/0! = f(a)
w1 = f ′(a)/1!
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…
These are known as tylor series

Taylor polynomials are “finite tylor series” that better approximate the function f as 
increases (degree of the polynomial)

where  denotes the ith derivative of f evaluated at the point a.
We do not know which function our taylor polinomial is supposed to approximate but we
will see that we can come up with a linear model that regards the selection of weights and
then with an error function for those weights that can be minimized into a single solution.
The weights (polynomial coefficients)  are collectively denoted by the vector 

 although in statistics they are the vector  and X is the matrix that represents the
polynomial powers (and  is noise) such that  and:

In the CSE2510 this is expressed as 
Although the function having various powers of x makes it implicitly nonlinear, it
immedieately becomes a linear algebra equation once the x values have been inserted and
we just then have , which is reduced to a
system of linear equations with n unkowns and n equations, which in matrix notation is just
solving for .

This is formally known as a linear model
From linear algebra we know that a system of equations either has 0, 1 or infinite
solutions
It is very likely that the tailor polynomial won’t solve the system (the polynomial degree
is far from  to approximate y “perfectly” and we secretly know that there was b
random noise added deliberately)

The values of the coefficients  will be determined by fitting the polynomial to the training
data

Since there’s very likely no solution, we will just minimize the error function that
measures the misfit between the model function  and the actual training set data
points (see that we’re not using the hat notation as we are actually using training data
and not new data)
One simple and popular choice of error function is given by the sum of the squares of
the errors between the approximation model ) for each data point  and the
actual target value .

Squaring takes cares of “absolutizing” the negative differences and halving the error is
just for convinience, it doesn’t change the final solution anyway
The equation pretty much gives the error size of a given set of polynomial weights
(vector w).

w2 = f ′‘(a)/2!
w3 = f ′′‘(a)/3!

M

M

∑
i=0

(x − a)i
f (i)(a)

i!

f (i)(a)

w0,w1, … ,wn

w β
ϵ y = Xβ + ϵ

y =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

y1

y2

⋮
yn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

,X =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

1 x1 x2
1

1 x2 x2
2

⋮ ⋮

1 xn x2
n

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

,β =
⎡
⎢
⎣

β0

β1

β2

⎤
⎥
⎦

, ϵ =
⎡
⎢
⎣

ϵ0

ϵ1

ϵ2

⎤
⎥
⎦

y(x, w) = Xw + b

y = constantMatrix ∗ vector + ErrorV ector

Ax = b

∞

w

y(x, w)

y(x, w xj

tj

E(w) =
n

∑
i=0

(y(xi, w) − ti)21
2

https://www.youtube.com/watch?v=3d6DsjIBzJ4
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The error function corresponds to (one half of) the sum of the squares of the
displacements (shown by the vertical green bars) of each data point from the function 

.
E(x) = 0 if and only if the function  passes exactly through each training data
point

Because the error function is a quadratic function of the coefficients w, its derivatives with
respect to the coefficients will be linear in the elements of w, and so the minimization of the
error function has a unique solution, denoted by w*, with the resulting polynomial given by
the function 

We can actually solve the least square solution  with the so called “normal equation”
of linear algebra (instead of calculating a long deriviative).

This requires X to be invertible, if it isn’t you can instead project y onto the
columnsspace of X and then solve for 

There remains the problem of choosing the order M of the polynomial, as we see below, a
taylor ponimial with a high a low degree and a high degree produce poor results (note that
the higher the degree of the polynomial, the more columns X has)

y(x, w)
y(x, w)

y(x, w
∗)

w
∗

XTXw
∗ = XTy

Xw = ŷ
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Low order polynomial fit the training data very bad and we can clearly infer that they’ll
approximate new data very poorly as well
In the example below we see that M=3 produces close results for the training data but
also for new data.

The goal is to achieve good generalization by making accurate predictions for new
data, therefore we might be inclined to choose M=3. Altough it seems paradoxical.
After all, the best solution would be  itself.

High order polynomials fit the training data perfectly, in fact M=9 has 0 error. But we can
see that once new data is evaluated the model (red line) will give many errors. This is
known as over-fitting

The reason it was possible to achieve E(x)=0 with M=9 is that this polynomial
contained 10 degree of freedom corresponding to the 10 weight coefficients, which
can be tuned exactly to fit the 10 data points in the training set.
The problem is that the polynomial is tunning too much to the random errors on the
target values of the training set
For a given model complexity, the over-fitting problem becomes less severe as the
size of the training data set increases, we can see that the higher order polynomial
get’s closer to  than M=3 did

This follows the machine learning nature: an algorithm gets better with more training
data

y = sin(2πx)

y = sin(2πx)
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One rough heuristic that is sometimes advocated is that the number of data points
should be no less than some multiple (say 5 or 10) of the number of adaptive
parameters in the model (i.e. the taylor polynomial degree)
However there’s no need to use thumbrules. By adopting a Bayesian approach, over-
fitting problem can be avoided. There is no difficulty from a Bayesian perspective in
employing models for which the number of parameters greatly exceeds the number
of data points

In a Bayesian model the effective number of parameters adapts automatically to
the size of the data set

Probability theory in machine learning
In the context of ML: we want to design functions that classify an unknown object in the
most likely class
Our task is to determine what “most likely” is

For which we for any ML algorithm we will always use a form of conditional probablity:

which is read as “Probability of y knowing that x happened” (formally: probability of y
given x)

In the context of ML:

“Probability of a particular object belonging to a particular class”

“Probability of an example being a specific label given a set of features”
Recall that the feature vector is how we describe an object

Recall that all the tuples of  are regarded as the “probability distribution” of x.
The joint probability distribution would be all the tuples of 

Our ML classifier algorithm function will therefore not return a black and white answer
saying that “input belongs to class N”, instead the algorithm function will return the
probability of an input belonging to a class (i.e. when image recogintion have “90% dog”
output).
Only after having then outputted a probabilistic score, will we use decision theory to decide
whether the score (probablity) is high enough to assign it to a lable, to not assign, or to leave
it as “unclear”.

Discrete random variable
Discrete (i.e. “int”,”enum” instead of “float”(kinda)) random variables are capitalized

each of the possible values that they can take are expressed in small cap (for enum) or
the actual discrete number value they can take

p(y|x)

p(class|object)

p(label|featurevector)

(x, p(x))
(x, y, p(x, y))
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Joint probability
The joint probability of 2 random variables occuring can be infered graphically:

The joint probability is equal to the number  of cases where both  occurred, divided
by the total number of cases N (which is the number of cases from the cross product of X
and Y possible values sets only when the objects of the sets have all the same probability, if
not you have to count them manually yourself from the context)

Sum rule

nij xi, yj
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L = number of total possible y values

Example let S = sum of 2 dice, M = max of 2 dice
P(S=3,M=2) would be 2 scenarios ((1,2),(2,1)) of ouf the 6 x 6 possible, so 

If we would just be given the joint probability mass function  (inside cells)
we can derive the individual proabilities of  and  respectively: i.e. 

.

Marginal distributions are those on the borders and the joint distribution is made from the
inside cells.
With the joint, we can always find the marginals (and conditionals in all orders), but with the
marginals we cannot always find the joint (nor the conditionals)

p(S = 3,M = 2) = 2/36
p(S = a,M = b)

p(S = a) p(M = b)
P(S = 6) = P(S = 6,M = b1) + P(S = 6,M = b2) + ⋯ + P(S = 6,M = bL)
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Conditional probability (and product rule)
for p(y|x) it’s the number of cases where y and x holds, divided by the number of cases where
x holds

If you divide both the numerator and the denominator by N each, then you actually get:

Which is the product rule

Fundamental probability rules

Bayes rule

p(y|x) =
p(y,x)

p(x)

p(y,x) = p(y|x)p(x)
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The power behind bayes rule is that while P(Y|X) might not be given, we can on our own find
P(X|Y) as well as the marginal probabilties.

Note that bayes rule is just a conditional probability rule whose joint probability term has
been replaced with the product rule equivalent

With that we can calculate the conditional probability of an object belonging to a label,
which is basically the solution for the machine learning algorithm we’re trying to design!
In ML you’ll hear the marginal probability of y being refered to as the “prior probablity”
In ML you’ll hear the conditional probability of y given x as the “posterior probability”
x is often regarded as feature or object (object with certain features)

Relation to ML
During the training phase, the training data helps us estimate the “probability distribution
over a set of classes” (aka p(label))
During the testing phase, the training data helps us estimate the “probability that a sample
belongs to a class” (aka p(label|object))

Conditional probablity for continous variables
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If we define feature 1 as having a value between -2 and -1, we can see that p(blue|feature 1)
is 100%

The training data (historical) eventually estimates the probability distributions for each of the
class posterior probabilities

Although we start with a “discrete” amount of training data, the computer will estimate
for us the continous probability functions based on the data that we have
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In this example the classes (aple vs orange) are mutually exclusive, therefore the class
posterior probabilities add to 1 for any continous value of feature 1

Decision theory
Decision theory complements the “soft” classifaction (giving probability of belonging to a
class rather than black and white outcomes) with “hard” (black and white) final outcomes.

Decision boundary
In order to ultimately classify x to a given class, we generally have n-1 decisions boundaries
for n classes

The criteria to assign an object to a class is simply that the (posterior) conditional probability
of that class is higher than the other ones. Basically the most likely class is selected.



20-10-2021 12:48 Machine Learning Summary | Sergio’s Blog

localhost:3000/datascience/2021/08/27/ml.html 18/157

Soft-Hard classification process recap and complicated decision
boundaries

The training data defines the probability of a feature present in a label (note that this class
conditional probability is the reversed of the posterior (but it’s not the prior, the prior would
be , we’re just reversing the roles of  since the training data itself intrinsically
describes ).

(Soft classification) From the training set we do have the marginal probabilities to plug
the values into bayes rule and get:

(Hard classification) Assign the objects to the label that has the highest class posterior
probablity 

p(Ck) Ck

p(x|Ck)

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)

p(Ck|x)
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Rewritting the classifier for convience

Classifiers are often rewritten i.e. such that the derivative is easier to compute

Model
Note on the probability function for the conditional probability ( (called class
conditional probability): The shape of the distribution (utterly based on the training data) is
based on the model used in the training phase.

p(x|Ck)
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We covered a sample linear moder but more details on selecting a model come in next
sections

During training estimate the model parameters such that the example objects fit well:
maximum likelihood estimators

Classification error

This is due to noise in the data as well as how well it can be naturally split into different
categories (classifier quality)

The yellow part are actually errors (but we can shift the decision boundary to one side to
minimize the errors)
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 is read as probabilty of x being assigned to c2 but actually being c1.
The total classification error is basically adding up the yellow spaces, or the weighted sum of
errors

Bayes error is the minimum attainable error (not necessarily intersection of 2 distributions
but just the place where the yellow area is the smallest)
In practice we do not have the true distributions, and we cannot obtain them
The Bayes error does not depend on the classification rule that you apply, but on the
distribution of the data
In general you cannot compute the bayes error

You do not know the true class conditional probabilities
The high dimensional integrals are very complicated

Missclassification costs
We want to make as few errors as possible with the assignment of x to class C
Error: x is assigned to C1 but should have been assigned to C2 and viceversa
Sometimes missclassification of class A to class B is much more costly than misclassification
of class B to class A

We can add a loss value for false positives and false negatives respectively
Then the goal becomes to minimize the loss function

Density-based classifiers
Most basic fundamental assumption for a machine learning algorithm: goal is to estimate
the “posterior probability” P(label|object) (if we already know the real posterior probability,
then the job is already done and we just jump onto drawing decision boundaries)
First we encode the object into a set of features

Height
Weight
Color
etc

The “feature space” has as meany dimensions as there are features

Prob(x ∈ C1,x → C2)
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The ploted crosses/circles/stars are the training data of this classification task of 3 possible
labels (setosa, versicolour, virignica) and 2 features (sepal width and sepal legth)

This can be plotted because we have p(x,y) (joint probability of x and y) which is explicitly
derived from the training set that has labels

Then we can draw decision boundaries

The underlying criteria to draw this lines is that the posterior probability of an object
belonging to that class is higher than to all the other classes (individually)

w is also expressed as y to indicate the class
We can use computers to calculate the probability density functions for each label/class/y/w 

 for a given object x with k features (k denoting the dimension of the model).
For the 2 features flowers trainging set we get:

p(y1|x) > p(y2|x)

yn
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For each point in the feature space we should be able to get n posterior probabilities (1 for
each class) and all of them should sum up to 1

Estimating probability (density) functions
It is very hard to calculate posterior class probability distributions (shape, that they all add up
to one, etc)

The class conditional distribution is also hard, but that integral has been studied and
estimated for much more time and there have been satisfying solutions. (It is thus
slightly less hard)

All estimations are eventually computed from the training set/sample/examples
Instead of directly estimating the posterior probability we’ll use baye’s rule to estimate an
equivalent distribution based on the baye’s rule terms

 is the class conditional distributtion
Probability distribution of a feature vector given that it belongs to a certain class:
This is equal to p(x,y)/p(y) (which we both know)
If we go to the iris flower example,  is just the integral fuction that
wraps approximately all of the blue data points underneath the curve
 is the class prior

it’s a constant (for each discrete class is different), easy to compute (class occurence /
total occurences)
 is the unconditional data distribution

What’s the distribution of x regardless of the class

p(y|x) =
p(x|y)p(y)

p(x)

p(x|y)

p(x|iris setosa)

p(y)

p(x)
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Since p(x) is a common term in all class comparisions, we can remove it from the inequation,
so we just have to compute to terms
To approximate  which is a poor man’s version of \p(y|x)\) (only within the
context of comparing classes, as p(x) is defenetly missing in the first one) we will consider:

Discriminative and generative models
Parametric and nonparametric models

Histogram-based density estimation

The problem is to get enough data points to reach the central limit theorem

p(x, y)p(y)
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The thumbrule is to use 1k training objects to the power of the number of features.
parameter = bin = rectangle

However this is unworkable for probability density functions with more than 2 features as the
require sample size increases dramitically with the number of features

Curse of dimensionality
There is a trade-off between having more features (and thus distinguishing objects better)
and having to estimate density functions that require exponentially more training objects
The number of parameters (bins) increases with the number of features as well

Parametric density estimation
In a parametric model you assume you know the shape of the full distribution (i.e. it should
be round, normally distributed, etc.) and the only thing you need to estimate is the
paramaters of that well known established shape
Picking it from where we left it, we’re gonna use parametric modeling & estimation for the
class conditional probablity (that is, not the class posterior, but ), which we later
combine with  to define the classifier: 

Assume Gaussian (Bell shaped) distribution
By using a known shape we can just focus on estimating it’s parameters, for a gaussian that’d
be the mean and standard deviation
However, to make the model accurate, we should choose features that are also distributed in
the same way in real life, such as height and weight

p(x|y)
p(y) p(x|y1)p(y1) > p(x|y2)p(y2)
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We choose gaussian distribution because it is the one from the central limit theorem
sums of large numbers of independent identically distributed random variables will have
a gaussian distribution

It occurs in real life
It has few paramaters (2 (mean and variance) as opposid as lots of bins for histograms)

These parameters are easy to estimate

Both x and  are vectors (aka feature vector and mean feature vecture) and  is a covariance
matrix (variance for higher dimensions)

μ Σ
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The red star is the mean vector 
The covariance matrix is k x k with k being the number of dimensions (features)
On the diagonal we find the variances for each of the features

 is the correlation coefficient between features 1 and 2

Covariance matrix and mean vector in a 2D gaussian distribution

The mean vector determines the center of the distribution
The covariance matrix determines the shape in 2 ways

The diagonal matrix variances determine the breadth on their respective axis
The correlation coefficients determine the “rotation” (it’s the “slope” if we watched the
data points from the top)

Note that in the pictures above the mean feature vector is expressed in one column, but in
CSE2510 we will express de design matrix in rows for each object. This doesnt change the
fact that we’ll usea the feature vector as a vector (thus n x 1) (as in the picture)
Top view of some gauss distributions with 0,0 mean vector

μ

ρ12
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Maximum likelihood estimates (for the mean and coveriance
matrix)

Note that the hat denotes estimation variable
For the mean:

just sum all feature vectors and divide all entries by the number of objects in the data set
For the covariance matrix:

T denotes the transpose
Multipling an n x 1 matrix with it’s transpose makes a n x n matrix

They are estimations because they are based on the training data and may not be exactly the
same as the real parameters
If you recall the gaussian model for p-dimensions, we need the inverse of the covariance
matrix.

The covariance matrix will be inversible only with at least  data points
The number of data needed increases quadratically
For a 32 by 32 pixels images you need at least  examples per class

μ̂ =
n

∑
i=1

xi
1
n

Σ̂ =
n

∑
i=1

((xi − μ̂)(xi − μ̂)T )
1
n

0.5p(p + 1)

322
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Gausian density based classifiers
As discussed earlier, the classifier is to classify to class 1 when  or the
proportionally equivalent inequation 
The model behind either posterior or class conditional density distribution is the gauss bell
shape distribution

For each class y we have a gaussian distribution

We have to estimate the parameters  and 
recall that all density functions derived from the training set are only estimations of the real
world distributions, and hence the “hat”

p(y1|x) > p(y2|x)
p(x|y1)p(y1) > p(x|y)p(y2)

μ̂ Σ̂
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Two-Class case
We can use the log of the conditionals as the classifier.
Instead of using an inequality, we just do the subtraction and if the number is positive it
goes to the class on the left operand class and if it’s negative it goes to the right operand
class.
The function is called the “discriminant” and it’s a quadratic classifier because the decision
boundary is a quadratic function of x

Taking the logs encapsulates the gaussian distribution inside a log, whose exponent is
cancelled out, (the other term of the product is a constant that we can ignore) and we’re left
with a quadratic distribution in terms of the feature vector x
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The black line of the quadratic classifier below is the set of x features that have a 0 output
from the discriminant function (neither one class nor the other, the decision boundary)

The quadratic (hiperbola) discrminant function can take multiple shapes (within quadratic
nature) depending on the shapes of the distributions of the classes (depending on the
covariances)
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Linear when the covariances are the same (and the means are different)
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Happens when one of the classes is spread across the feature space while the other class is
concentrated in a smaller area

2 decision boundaries described by a single function

Fixing no inverse covariance matrix for Two-classes case
Assume that gaussian shape of the other class is the same (i.e. just differeant mean but same
covariance)
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This allows us to use all our data from all classes to estimate 1 single covariance matrix
The 1/C times sum of C elements is just the average of the term inside the summation

This makes the classifier a linear function since the W term is multiplied by 0 by assuming
that all class covariances are the same

We are then just left with the constant  and with 

We end up with the LDA (linear discriminant analysis), assumes both distributions to have the
same covariance matrix

wo wTx
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It’s the classic (now rather old) approach
It’s simple and fast
Doesn’t need enough data
Works well for simple data sets
Never the best, but always in the top best when multiple features are used

Linear discriminant

The way w was defined makes it a vector that is perpendicular to the decision boundary
 is a constant that shifts the decision boundary
A positive constant shifts the decision boundary to the left, and a negative one to the
right

w0
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Recall that w and  can be both found just by having the mean and variance parameters of
the distribution

This dot product of w and x allows us to observe that certain “weights” (entries) of w have
larger impact on the dot product outcome (by being larger), thus we can observe from w
which features are important for the classification.

Those equal or close to zero could be removed

Rewriting the bias term ( )

w0

w0
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Sometimes called homogenous coordinates

Nearest Mean Classifier (NMC)
No estimated covariance matrix:

When the number of features far exceeds the sample size it becomes hard to estimate even
the average covariance matrix
Instead one can assume that all features have the same variance and all are uncorrelated
Thus the covariance matrix is justa diagonal matrix with the same values, the variance of all
features:
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Feature scaling
When a classifier depends on euclidiean distances, scaling of the features matter
Changing the scaling can improve/deteriorate the classifier (check the previous NMC
example with different scales)
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A good practice is to standardize the features (objects) to Z scores (how many standard
deviations away is a feature from the mean), here they are denoted as

Model complexity and available data trade-off
Using plug-in Bayes’ rule with normal distribution for every class can give rise to different
classifiers. From more flexible/complex to more simple:

Quadratic classifier: Separate mean and covariance matrix per class
Linear classifier: Separate mean, equal covariance matrix per class
Nearest mean classifier: Separate mean, same diagonal covariance matrix per class

This is the only one from the list that suffers from non-standardize data points
More flexible classifier needs more training data
Simple classifiers still perform well in practice
Curse of dimensionality: The more features the more training data required

Lab: Parametric Bayes classifier
Classification using Gaussian distributions

Occurences of data typicaly follow probability distributions that we know how to model.
In this assignment, we will assume that data has a normal distribution and try to estimate
the parameters of the assumed normal distribution to correctly fit our data, hence the name
parametric classifiers.

We will then use Bayes’ rule to build a classifier based on the probability distribution.

We will try to classify flowers from Fisher’s Iris dataset into Iris setosa, versicolor xor virginica
based on the length and width of the spals and petals of 150 flowers (3 classes, 4 features,
150 examples)

This dataset is such a classic example that it is even included in machine learning libraries. The
following code will load the dataset from scikit-learn (this was installed with conda) into the

~x =
x − μ

σ
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variable iris

import numpy as np 
from sklearn import datasets 
 
iris = datasets.load_iris() 
iris 

Getting to know the data
The dataset is stored as a dictionary, a data structure in Python that resembles a Java(script)
object (map with keys and values)
We can access items in the dictionary with a dot ., so we access the data and their target
labels with iris.data and iris.target, these are both NumPy arrays.

To get an idea of the distribution of our data, we can make plots:

print("First five flowers: \n", iris.data[:5, :]) 
print("Their labels: ", iris.target[:5]) 
print("And the label names: ", iris.target_names) 
 
last_five_flowers = None 
third_feature_only = None 
first_ten_names = None 
 
# START ANSWER 
last_five_flowers = iris.data[len(iris.data)-5:len(iris.data)] 
third_feature_only = iris.data[:,2] 
first_ten_names = iris.target[:10] 
# END ANSWER 
 
setosa_flowers = None 
versicolor_flowers = None 
virginica_flowers = None 
 
# START ANSWER 
setosa_flowers = iris.data[np.where(iris.target == 0)] 
versicolor_flowers = iris.data[np.where(iris.target == 1)] 
virginica_flowers = iris.data[np.where(iris.target == 2)] 
# END ANSWER 
 
 
print("Last five flowers: \n", last_five_flowers) 
print("Only the third feature: ", third_feature_only) 
print("All label names: ", first_ten_names) 
  
print("Class: ", iris.target_names[0], "; Items: \n", setosa_flowers) 
 
assert last_five_flowers.shape == (5,4), "Expected a two dimensional array of shape (5,4
assert third_feature_only.shape == (150,), "Expected an array of shape (150,)" 
assert first_ten_names.shape == (10,), "Expected an array of shape (10,)" 
 
assert setosa_flowers.shape == (50,4), "Expected a two dimensional array of shape (50,4)
assert versicolor_flowers.shape == (50,4), "Expected a two dimensional array of shape (50
assert virginica_flowers.shape == (50,4), "Expected a two dimensional array of shape (50

# From the Matplotlib library, import pyplot. We will refer to this library later as plt
# This is a widely used library that lets you create images and plot your data. 
from matplotlib import pyplot as plt 
 
# Create a scatterplot of the first two features, and use their labels as colour values. 
plt.scatter(iris.data[:, 0], iris.data[:, 1], c=iris.target) 

http://localhost:3000/datascience/2021/08/27/py.html#dictionaries
http://localhost:3000/datascience/2021/08/27/py.html#numpy-arrays
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Test sets
Now that we have an idea what our dataset looks like, our goal is to create a model that will
predict the class of each flower based on its features
In order to evaluate how well the model fits, we will also need a separate test set where we
can evaluate our final model on
For this, we will split the data randomly in a train and test set.

plt.xlabel(iris.feature_names[0]) 
plt.ylabel(iris.feature_names[1]) 
plt.show() 
# Create a scatterplot of the third and fourth feature. 
plt.scatter(iris.data[np.where(iris.target == 0), 2], iris.data[np.where(iris.target == 0
plt.scatter(iris.data[np.where(iris.target == 1), 2], iris.data[np.where(iris.target == 1
plt.scatter(iris.data[np.where(iris.target == 2), 2], iris.data[np.where(iris.target == 
plt.xlabel(iris.feature_names[2]) 
plt.ylabel(iris.feature_names[3]) 
plt.show() 

from sklearn.model_selection import train_test_split #to split in train and test set 
 
# load the data and create the training and test sets 
iris = datasets.load_iris() 
# X is the feature vectors for the data points, and Y is the target (ground truth) class 
# the iris.data and iris.target entries are randomly divided into training and test sets
X_train, X_test, Y_train, Y_test = train_test_split(iris.data, iris.target, test_size=0.
 
# Due to the randomness of the split, number of each flowers is not necessarily the same 
# Separate the training dataset into the three flower types. 
setosa_X_train = None 
versicolor_X_train = None 
virginica_X_train = None 
# START ANSWER 
setosa_X_train = X_train[np.where(Y_train == 0)] 
versicolor_X_train = X_train[np.where(Y_train == 1)] 
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Univariate model
The plots shows that sepal length and sepal width have lot’s of overlaping datapoints, which
creates a natural high bayes error, and the plot shows that petal length and width are a
much better feature to use to identify classes

Furthermore, one can see a strong correlation between the later two, so in practice we
will only need one of them, we’ll use the petal length (3rd feature)

# We use the third feature
feature_idx = 2 

Let’s first take a look at the distribution of all flowers (both train and test) along this feature
to confirm that our assumption of a normal distribution is correct.

plt.hist(setosa_flowers[:,feature_idx], label=iris.target_names[0]) 
plt.hist(versicolor_flowers[:,feature_idx], label=iris.target_names[1]) 
plt.hist(virginica_flowers[:,feature_idx], label=iris.target_names[2]) 
plt.xlabel(iris.feature_names[feature_idx]) 
plt.ylabel('Number of flowers') 
plt.legend() 
plt.show() 

That looks about correct!
Now, let’s find the parameters of the normal distribution that describe our data best.
The parameters that we need to describe the distribution are the mean and standard
deviation.

virginica_X_train = X_train[np.where(Y_train == 2)]
# END ANSWER 
 
assert setosa_X_train.shape[0] != versicolor_X_train.shape[0] 
assert setosa_X_train.shape[0] != virginica_X_train.shape[0] 
assert versicolor_X_train.shape[0] != virginica_X_train.shape[0] 
 
setosa_X_train.shape, versicolor_X_train.shape, virginica_X_train.shape

def compute_mean(x): 
    mean = 0 
    # START ANSWER 
    mean = np.sum(x)/len(x) 
    # END ANSWER 
    return mean 
     
def compute_sd(x, mean): 
    sd = 0 
    # START ANSWER 
    sd = np.sqrt(np.sum((x-mean)*(x-mean)/len(x))) 
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Probability density function

A guassian probability density function p goes like  (it’s the one

we use for p(x|y))

    # END ANSWER 
    return sd 
 
# Compute the mean for each flower type. 
mean_setosa = compute_mean(setosa_X_train[:, feature_idx]) 
mean_versicolor = compute_mean(versicolor_X_train[:, feature_idx]) 
mean_virginica = compute_mean(virginica_X_train[:, feature_idx]) 
 
# Compute the standard deviation for each flower type. 
sd_setosa = compute_sd(setosa_X_train[:, feature_idx], mean_setosa) 
sd_versicolor = compute_sd(versicolor_X_train[:, feature_idx], mean_versicolor) 
sd_virginica = compute_sd(virginica_X_train[:, feature_idx], mean_virginica) 
 
# Print the computed means and standard deviations. 
print("setosa", mean_setosa, sd_setosa) 
print("versicolor", mean_versicolor, sd_versicolor) 
print("virginica", mean_virginica, sd_virginica) 
 
assert np.isclose(mean_setosa, 1.4729729729729728), "Expected a different mean" 
assert np.isclose(mean_versicolor, 4.25), "Expected a different mean" 
assert np.isclose(mean_virginica, 5.572222222222222), "Expected a different mean" 
 
assert np.isclose(sd_setosa, 0.17652600857089654), "Expected a different standard deviat
assert np.isclose(sd_versicolor, 0.44300112866673375), "Expected a different standard dev
assert np.isclose(sd_virginica, 0.547017728288333), "Expected a different standard deviat

from scipy.stats import norm 
 
def normal_PDF(x, mean, sd): 
    pdf = 0 
    # START ANSWER 
    pdf = (1/np.sqrt(2*np.pi*np.power(sd,2)))*np.power(np.e,-np.power((x-mean),2)/(2*sd*
    # END ANSWER 
    return pdf
 
# Set x, mean and standard deviation 
x = 0.5 
mean = 2 
sd = 0.5 
my_pdf = normal_PDF(x, mean, sd) 
 
# You can compare your outcome to scipy's built-in normal PDF 
scipy_pdf = norm.pdf(x, mean, sd) 
print("Your pdf function outcome: ", my_pdf, " Scipy's function outcome: ", scipy_pdf) 
assert np.isclose(my_pdf, scipy_pdf) 
 
# And we plot the result of your PDF function for 100 points between 0 and 4: np.linspac
xs = np.linspace(0, 4, 100) 
plt.plot(xs, normal_PDF(xs, mean, sd)) 
plt.show() 

p(x|μ,σ) = e
−1

√2πσ2

(x−μ)2

2σ2
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we can now also define PDFs for each separate class by inserting their respective paramaters
into the pdf (their respective means and standard deviations)

The histogram shows the number of flowers that have a petal length within a certain window
(bin). That means the values shown in the histogram are absolute counts.

Posterior probabilities
To get the posterior probability, we can use Bayes’ rule (and the sum rule):

We will use the good ol’  posterior probability as a class classifier such that we can
also know the probability of the classification being correct (rather than just “most likely

# Histograms of the flower types of the training set 
plt.hist(setosa_X_train[:,feature_idx], label=iris.target_names[0]) 
plt.hist(versicolor_X_train[:,feature_idx], label=iris.target_names[1]) 
plt.hist(virginica_X_train[:,feature_idx], label=iris.target_names[2]) 
 
# Plot your PDFs here 
xs = np.linspace(0, 7, 100) 
# START ANSWER 
plt.plot(xs, normal_PDF(xs, np.mean(setosa_X_train[:,feature_idx]), np.std(setosa_X_trai
plt.plot(xs, normal_PDF(xs, np.mean(versicolor_X_train[:,feature_idx]), np.std(versicolo
plt.plot(xs, normal_PDF(xs, np.mean(virginica_X_train[:,feature_idx]), np.std(virginica_X
# END ANSWER 
 
plt.xlabel(iris.feature_names[feature_idx]) 
plt.ylabel('Number of flowers / PDF') 
plt.legend() 
plt.show() 

(Ci|x) = =
p(x|Ci)P(Ci)

p(x)

p(x|Ci)P(Ci)

∑K
k=1 p(x|Ck)P(Ck)

P(Ci|x)
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among all other classes”)
Hint, since we assumed that the gaussian model ( ) for the class conditional
probability,  with  and  being the parameters of the objects that
belong to class k

Let’s plot the posterior probabilities and compare them with the data

def posterior(x, means, sds, priors, i): 
    """ 
    Compute the posterior probability P(C_i | x). 
    :param x: the sample to compute the posterior probability for. 
    :param means: an array of means for each class. 
    :param sds: an array of standard deviation values for each class. 
    :param priors: an array of frequencies for each class. 
    :param i: the index of the class to compute the posterior probability for. 
    """ 
    posterior = 0 
     
    # START ANSWER 
    p_x = 0.0 
        for k in range(len(priors)): 
        p_x += normal_PDF(x, means[k], sds[k])*priors[k] 
         
    posterior = normal_PDF(x, means[i], sds[i])*priors[i]/p_x 
    #END ANSWER 
     
    return posterior 
 
means = [mean_setosa, mean_versicolor, mean_virginica] 
sds = [sd_setosa, sd_versicolor, sd_virginica] 
priors = [ 
    setosa_X_train.shape[0]/X_train.shape[0], 
    versicolor_X_train.shape[0]/X_train.shape[0], 
    virginica_X_train.shape[0]/X_train.shape[0] 
] 
 
# Test out the code 
flower_idx = 6 
print("Flower belongs to class", iris.target_names[Y_train[flower_idx]]) 
 
# iterate over all classes
for i in range(3): 
    x_post = posterior(X_train[flower_idx, feature_idx], means, sds, priors, i) 
    print("Posterior probability for class", iris.target_names[i], ": ", x_post) 
 
post_setosa = posterior(X_train[flower_idx, feature_idx], means, sds, priors, 0) 
post_versicolor = posterior(X_train[flower_idx, feature_idx], means, sds, priors, 1) 
post_virginica = posterior(X_train[flower_idx, feature_idx], means, sds, priors, 2) 
 
assert np.isclose(post_setosa, 1.1048294835009998e-107, rtol = 0.0001, atol = 0.), "Expe
assert np.isclose(post_versicolor, 0.03817178391547811, rtol = 0.0001, atol = 0.), "Expe
assert np.isclose(post_virginica, 0.9618282160845218, rtol = 0.0001, atol = 0.), "Expecte

xs = np.linspace(0, 7, 100) 
# START ANSWER 
plt.plot(xs, posterior(xs, means, sds, priors, 0),label=iris.target_names[0]) 
plt.plot(xs, posterior(xs, means, sds, priors, 1),label=iris.target_names[1]) 
plt.plot(xs, posterior(xs, means, sds, priors, 2),label=iris.target_names[2]) 
 
plt.scatter(iris.data[np.where(iris.target == 0), 2], iris.target[np.where(iris.target ==
plt.scatter(iris.data[np.where(iris.target == 1), 2], iris.target[np.where(iris.target ==
plt.scatter(iris.data[np.where(iris.target == 2), 2], iris.target[np.where(iris.target ==
 

p(x|μ,σ)
p(x|Ck) = p(x|μ,σ) μ σ
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The posterior probabilities matches the data

Bayes Classifier
We can compute the posteriors for every class such that an input x in
classify(x,params,priors)  returns a class 

Predicted class ['virginica' 'versicolor' 'setosa'] 
Flower belongs to class ['virginica' 'versicolor' 'setosa'] 

Let’s now use the test set to evaluate how good the classifier was by returning the
percentage of elementsin the test set that were classified correctly

def evaluate(X_test, Y_test, means, sds, priors): 
    accuracy = 0 
    # START ANSWER 

 
# END ANSWER 
plt.xlabel(iris.feature_names[feature_idx]) 
plt.ylabel('Posterior probability') 
plt.legend() 
plt.show() 

def classify(x, means, sds, priors): 
    classification = -1 
    # START ANSWER 
    post_0 = posterior(x, means, sds, priors, 0) 
    post_1 = posterior(x, means, sds, priors, 1) 
    post_2 = posterior(x, means, sds, priors, 2) 
     
    if (post_0 > post_1) and (post_0 > post_2): classification = 0 
    elif (post_1 > post_0) and (post_1 > post_2): classification = 1 
    elif (post_2 > post_0) and (post_2 > post_1): classification = 2 
    # END ANSWER 
    return classification 
 
# Test out the code 
flower_idxs = [5,20,30] 
predicted_classes = np.zeros(3, dtype=np.int64) 
for i, flower_idx in enumerate(flower_idxs): 
    predicted_classes[i] = classify(X_train[flower_idx, feature_idx], means, sds, priors
 
print("Predicted class", iris.target_names[predicted_classes]) 
print("Flower belongs to class", iris.target_names[Y_train[flower_idxs]]) 
assert (predicted_classes == Y_train[flower_idxs]).all() 

Ci
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    total = len(Y_test) 
    predicted_classes = np.arange(total) 
    correct = 0 
     
    for i in range(total): 
        predicted_classes[i] = classify(X_test[i], means, sds, priors) 
        if (predicted_classes[i] == Y_test[i]): correct+= 1 
     
    accuracy = correct/total 
    # END ANSWER 
    return accuracy 
 
accuracy = evaluate(X_test[:, feature_idx], Y_test, means, sds, priors) 
 
print(accuracy) 
assert accuracy > 0.9, "Expected a higher accuracy" 

Decision boundary

The function to create the decision boundaries does this:
For each class, compute the posterior for 1000 points between 1 and 7
If for any two classes the posteriors are as good as equal (and not very close to 0) at a
point, add that point to the list of decision boundaries
Plot vertical lines at these points

def decision_boundary(means, sds, priors): 
    decision_boundaries = [] 
    # START ANSWER 
    decision_boundaries = np.zeros(1000) 
    bcount = 0 
     
    posterior_0 = np.zeros(1000) 
    posterior_1 = np.zeros(1000) 
    posterior_2 = np.zeros(1000) 
     
    xs = np.linspace(1, 7, 1000) 
        
    for i in range(1000): 
        posterior_0[i] = posterior(xs[i], means, sds, priors, 0) 
        posterior_1[i] = posterior(xs[i], means, sds, priors, 1) 
        posterior_2[i] = posterior(xs[i], means, sds, priors, 2) 
          
        if np.isclose(posterior_0[i],posterior_1[i], atol=0.05) and posterior_0[i] > 0.1
            decision_boundaries[bcount] = xs[i]  
            bcount += 1 
 
        elif np.isclose(posterior_0[i],posterior_2[i], atol=0.05) and posterior_0[i] > 0
            decision_boundaries[bcount] = xs[i]  
            bcount += 1 
 
        elif np.isclose(posterior_1[i],posterior_2[i], atol=0.05) and posterior_1[i] > 0
            decision_boundaries[bcount] = xs[i]  
            bcount += 1   
         
     
    # END ANSWER 
    return decision_boundaries 
 
# Create a scatterplot of the third feature. 
feature_idx2 = 3 
 
plt.scatter(iris.data[np.where(iris.target == 0), 2], iris.target[np.where(iris.target ==
plt.scatter(iris.data[np.where(iris.target == 1), 2], iris.target[np.where(iris.target ==
plt.scatter(iris.data[np.where(iris.target == 2), 2], iris.target[np.where(iris.target ==
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This method was complicated, it’s easier to just solve for the x where the class probabilities
are equal

Non-parametric density estimation
No knowledge of the distriubtion
Need to manage the smoothness of the distribution

Histogram

For a reasonably precise approximation the bin size (h) can’t be too large
For a estable estimate the bin size cannot be too small (otherwise it overfits to training data
and it’s too affected by noised)
The final value will depend on the number of training examples
From the histogram there are two deriving techniques:

plt.xlabel(iris.feature_names[feature_idx]) 
plt.ylabel('Posterior probability') 
decision_boundaries = decision_boundary(means, sds, priors)
for boundary in decision_boundaries: 
    if boundary != 0: 
        plt.axvline(x=boundary) 
 
# Add the posterior probabilities 
plt.plot(xs, posterior(xs, means, sds, priors, 0),label=iris.target_names[0]) 
plt.plot(xs, posterior(xs, means, sds, priors, 1),label=iris.target_names[1]) 
plt.plot(xs, posterior(xs, means, sds, priors, 2),label=iris.target_names[2]) 
plt.show() 
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Parzen (window/kernel) density estimate
K-nearest-neighbor density estimate

Parzen (window/kernel) density estimate
Goal: Estimate the class conditional distribution p(x|y) (which is easily derived from the
training data where both x and y hold) without assuming a known model (such as gaussian)
We apply a “kernel” function to each point

This function does have a defined shape (gaussian (round), histogram boxes (squared),
etc.)

Guassian shape for the kernel function is the most popular choice
We also fix the size (h) of the kernel function, such as the width of the bin box or the
variance of the gaussian

Then we merge all the shapes together (and apply some smothing) to get the final “kernel”
probability density function that we’ll use for the class conditional probability p(x|y)
(although in this isolated kernel context it is just regarded as , aka probability of a point
x given the kernel distribution)

p̂(x)
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The “smoothing” and “merging” (Parzen probability density) function is:

K = kernel function (gaussian, box, triangle, etc)
h is the fixed size of the K kernel function
x is the object/point/feature vector which we are interested about knowing his class
conditional probability (aka parzen probability)

 are all the other points in the training set (with the same class).
 is just a normalization constant

In the event of a guassian kernel function,  and 

This is simply the average of n gaussian functions with each data point as a center.
For non-gausian kernels it is implicitly assumed that “x” in  is actually the result of 
, to which the final outcome might be determined by a series of if else statements:

p̂(x) =
n

∑
i=1

K (x,xi,h)
1
nh

xi
1
nh

xi = μ h = σ2

p̂(x) =
n

∑
i=1

( e
− )1

nh

1

√2πh2

(x−μ)2

2h2

K(x)
x−xi

h
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Consistent notation for higher dimensions

In the context of ML of trying to estimate the class conditional probabilities \\hat{p}(x|y)\)
(with hat denoting estimation), we’ll express a kernel density function that uses Gauss
(normal) as kernel model as:

With I as the identity matrix used to generate a covariance matrix for higher dimension
models

Parzen width (h size) parameter optimization

If width is too small, you overfit to the training points
If width is too big, you don’t distinguish well between classes anymore
The sweet spot lies in between

p̂(x|yi) =
ni

∑
j=1

N(x|x(i)
j ,hI)

1
ni
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There are multiple approaches to optimize it:
Trial and error for each h size and choose the one that perofrms the best
Optimize the “likelihood” (maximize “log-likelilhood) = 
Use the average 10-nearest neighbor distance
Use a heuristic

K-nearest neighbors

k should be odd to avoid draws

∑ log(p̂(x))
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In practice we won’t be using K-nn density estimation for the conditional probablity nor the
posterior one, but just for the classifier, and hence we’ll just be interested in 

Optimizing k

The largest k value is the number of observations in the entire data set
You’d end up classifing everything to the class that already had more observations

The smallest k value is 1
You’d end up overfitting to the training data

You can do trial and error for different values of k and test which value gives the best
performance with the test set

Breaking ties

Use odd k, but with more than 2 classes it won’t necessarily solve it
Assign randomly to a tied class
Assign to the class that has the largest prior probability
Use first nearest neighbor to decide

Distance measures

ki > kj
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K-nn pros and cons

Simple and flexible classifier
Often a very good classificaiton performance
It is simple to adapt the complexity of the classifier
relateively large training sets are needed
the complete training set has to be stored
distances to all training objects have to be computed
the features have to be scaled sensibily
the value for k has to be optimized

Naive bayes
Works well for small datasets
We make strong assumption that all features are independent “given y” such that  is
the joint product of all 
With this assumption we get rid of the curse of dimensionality
In our context, the class value explains all the dependence between features
To find the individual  we can either use parametric or non-parametric approaches

Classifier evaluation
There are many machine learning classifier algorithms:

generative classifiers (based on a model such as gaussian, and decision boundary based
on bayes rule):

parametric densities (features are spread like the model):
Two-Class case:

Quadratic Density classifier: Uses the log of the conditionals as classifier,
which is a quadratic function (line or hyperbola).
Linear Discriminant Analisys (LDA): for 2D and more dimensions, the
covariance matrix of each class gauss distribution might not be inversible.
Therefore covariance matrix of all classes are the same (just identity times
average variance of all features), which inherently makes the decision
boundary a stright line. Although covariance is the same each class guassian
can have different mean.

p(x|y)
p(xi|y)

p(xi|y)
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Nearest mean classifier: When even the average variance of the entire feature
space is hard to compute (i.e. curse of dimensionality). We assume all features
have the same variance and all features are uncorrelated. It’s also a linear
decision boundary but just uses the shortest distance to the mean of a class as
classification criteria.

nonparametric densities:
Parzen (it uses a model but it is only applied in the “kernel” function, which is
applied at individual feature vectors, and the only hyperparameter is the size of
the window (i.e. bin width, gaussian width (variance)) and then average the
distributions of all individual points)

i.e. simply the average of n gaussian functions with each data point as a
center (and all gaussians having the same variance h).

k-nearest neighbour: classifier purely based on distance. (could be euclidian aka
normal, “manhattan”, amount of matches, etc.). Class is assigned to the majority
class among the nearest k neighbours.]

discriminative densities:
logistic classifier
support vector
decision trees
perceptio
neural networks

To select which one to use we could either test each of them on cross-validated training/test
sets and select the one that performs best on average
Alternatively we could take the nature of the characteristics of data sets to chose a model

When the data is scarce, gaussian based classifiers perform poor
For high dimensional data sets (more than 2D) it is common to bruteforce and try all
classifiers and rank them by classification performance/error.

Don’t overfit to the training despite the training set being a representative sample of the
true distribution
Split data into train and test set
Apply bootstarapping, cross-validation or leave-one-out
Analyze the learning curve
Consider classifier complexity
Analyze the bias-variance tradeoff
Consider confusion matrices
Analyze ROC curve
Consider reject curve

Error estimation by Test Set
Typically all the data that you start with is called the design set
How to test the classifier? -> Use test data separated (sacrificed) from the training data
If you change the training set, you get a different classifier with a different error estimate

Evaluating correctness

Just apply the test object (of which we know the class) to the classifier function and assess
whether the output matches the known class.
Each of these evaluations returns a boolean: correct or incorrect, 1 or 0. Therefore the
“correctness” or it’s antagonist “error” are the sum of “Bernoulli” random variables wherer
error is the average of :Zi

ϵ̂ =
N

∑
i=1

Zi
1
N

Zi = { 0 if xi is correctly classified
1 if xi is incorrectly classified
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Bernoulli error random distribution has the variance:

We can see that as the test size (N) increases, the variance of the error will decrease.
Which means that the estimate of the error that you got might be way off the real error.
Therefore even though we might want to use the smallest average error classifier, if that
error has high variance we might have to discard it to be sure

We can also see that he variance is a quadratic formula with error 0% and 100% giving the
minimum (zero) variance and error 50% giving the highest variance

Training set size vs test set size

There is a trade off between being having a large enough training set to fit the training
parameters of the model and having a large enough test set to have a small classifier error
variance.

Large training set = good classifier
Large test set = reliable, unbiased error estimate

Bootstrapping

in the context of a 40 deck card set, taking a card, writting its value on a piece of paper, then
putting the card back to the deck (replacement) and repeat the same process 40 times, will

σ2 = Var(ϵ̂  | test sizeN) =
ϵ(1 − ϵ)

N
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probable make some cards to be withdrawn more than once and some cards to not have
ben withdrawn at all (left-over).
In the context of the design set, the left-over objects are sent to the test set, and the
withdrawn objects are sent to the training set.

Some classifiers perform bad when there are duplicates in the training set (i.e. non-
invertible covariance matrix?)

Then the classifier is trained an evaluated under those sets and it’s error is annotated.
However this error belongs to a single random training/test setting.
You repeat the bootstrapping process m times and take the average error as a measure of
the classifier performance.

K-fold cross validation

Splits the design set in k separate parts
Then use all fractions but 1 for training and the remaining for testing
You can then train and test the classifier 10 times for each possible test set
Take the average the error estimate of those k tests
If you like the average error, then train once more but with the whole design set as the
training set and keep that as the final classifier (but it cannot be tested anymore as there’s
no partition left for testing)

Leave-one-out procedure

This is good because eventhough the single object test is very small, we average it over all
possible permutations.
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However, this is computationally very expensive
We generally chose the biggest number of folds we can afford (with design set len being the
max)

This lies between 5 and 10 folds

Optimising hyperparmaters
Hyperparameters are those values used in kernel functions such as bin size, number of
neighbours k, width paramater h (gaussian variance), etc.
DON’T optimise them by chosing the number that performs best on the tests.

If you do it you are likely overfitting to the test set and you won’t have any left-over
samples to test the choice of hyperparemeters on an independent set

To optimise hyperparameters apply double cross-validation

The test set of the hyperparameter (nested) cross-validation is called the validation set
You start with the regular training/test k fold crossvalidaiton to test different classifiers.

within each fold you test each value of the hyperparameter, then write the average error
for that fold

Repeat for all folds and chose the classifier whose average hyperparameter error is the
smallest

Learning curve
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For all models, the apparent classification error of the classifier on the training set itself
increases as the size of the training set increases, because as more data points are added,
there’s more room for overlaping features with different classes.
However, when testing the model on an independent test set, (which aims to measure the
true error), a small training sample is very likely to be irrepresentative of the true
population, so as the training set size increases, it’s distribution resembles the independent
test set, and thus it can be fit closser to the test set.
Overfitting is the error distance between true error (from test set) and apparenet error (from
training set)

Aim for a small gap or perhaps chose a less flexible/complex classifier (which perform
better on smaller sets)

Different classifier complexity

Complex classifiers perform better with larger training sets
Same holds for larger feature sets

Simple classifiers perform better with smaller training set
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Same holds for feature sets
Fundamentally best classifier depends on the size of the training set
As the training size increases it reaches an horizontal asymptote
Larger training sets yield better classifiers
Independent test sets needed for unbiased error estimates
Larger test sets yield more accurate error estimates
LOO cross validation “optimal”, but might be infeasible
10-fold crossvalidation is often used

Bias-variance tradeoff
Squared Error

We have to deal with the fact that we can encounter an arbitrariliy complex distribution
The squared error is used to measure the difference between the predicted output and the
real value
E  means expected value

Biass-variance dilema
The classifier function could be expressed as f(x)  with x as the feature vecture/object we
want to predict it’s class. But technically f(x) depends on the training set D it was trained, so
we express the classifier function as f(x;D)
We can re-write the square error as:

This can be rewritten as:

The take away is that the error of any given classifier can be decomposed in two terms that
depend on the design set

variance indicates how stable the error value is if we change the design set (if we change
the train/test partitioning)
bias = how good on average my model is compared to the true labels

Bias-variance trade-off

Usually the more complex the model, the lower the bias but the highest hte variance

L(w) = E[|g(x) − y|2]

ED[(g(x;D) − y])2]

ED[(g(x;D) − ED[g(x;D)])2] + ED[(ED[g(x;D)] − y)2]

= variance + bias
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Variance, bias, in relation to changing the arrangement of the design test (into train/test
sets)
More simple classifier is more stable (and need less data to train)
More complex classifier only works when you have sufficient number of training data

Feature curve
While keeping the training set size constant:

Error/Performance measures
Error: probability of erroneous classifications
Performance / accuracy: 1 – error
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Sensitivity of a target class [e.g. diseased patients]: performance for objects from that target
class
Specificity: performance for all objects outside target class
Precision of a target class: fraction of correct objects among all objects assigned to that
class.
Recall: fraction of correctly classified objects; identical to sensitivity when related to particular
class
True positive rate: identical to sensitivity
False positive rate: error for all objects outside targ

Two-class classification errors
There are tons of different performance measures
Standard classification error: the weighted average (in terms of class frequency) of the
classifier error for each class 
Weighted classification error: we apply an additional weight to each type of missclassification
error  means classifying 1 as 2: 
…

Confusion Matrices
Gives you more insight on where things go wrong

Which classes and objects are troublesome by producing counts of class-dependent
errors (How many objects have been classified as A that should have been B?)

Reciever-Operator Analysis
Depending on where you draw the threshold, increasing the number of errors on one class
will naturally decrease the number of missclassified errors on the other class (in a two-class
case)

ϵ = ϵ1p(y1) + ϵ2p(y2)

λ12 ϵ = λ12ϵ1p(y1) + λ21ϵ2p(y2)
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The optimal location for the trade-off of a two class classifier with different errors for each
class is found when the line touches the curve
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Area under the ROC curve (AUC)
Integrate the area under the roc curve (in terms of true vs false rate of the same class) and
the higher the better, ideally it should be 1
A random classifier (that is correct half the time for a two class problem) would give 0.5
This performance measures is insensitive to class priors (frequency of each class doesnt
affect)

Lab: K-Nearest Neighbors in python
Load Data

Load the iris dataset

import numpy as np 
from sklearn import datasets # To load the dataset 
from sklearn.model_selection import train_test_split # To split in train and test set 
 
seed = 20 
# Load the data and create the training and test sets 
iris = datasets.load_iris() 
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Plot the data (of the 1st and 2nd features) to verify that they can be sperated by non-
linear/parametric boundaries

from matplotlib import pyplot as plt 
 
# START ANSWER 
from matplotlib import pyplot as plt 
 
# START ANSWER 
plt.scatter(iris.data[:, 0], iris.data[:, 1], c=iris.target) 
plt.xlabel(iris.feature_names[0]) 
plt.ylabel(iris.feature_names[1]) 
plt.show() 
# END ANSWER 

Distance
Next, we will create a function to compute distance between two points p  and q . We will
employ the often used Euclidean distance to find the nearest neighbours of a point

from scipy.spatial import distance 
 
def euclidean(p, q): 
    """ 
    Computes the Euclidean distance between point p and q. 
    :param p: point p as a numpy array. 
    :param q: point q as a numpy array. 
    :return: distance as float. 
    """ 
     
    dist = 0 
    # START ANSWER 
    dist = np.sqrt((p-q) @ (p-q)) 
    # END ANSWER 
    return dist 
 

# X is the feature vectors of the data points, and Y is the target (ground truth) class f
X_train, X_test, Y_train, Y_test = train_test_split(iris.data, iris.target, test_size=0.4
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# Check whether your algorithm is correct 
a = np.array([2, 4, 8]) 
b = np.array([3, 5, 9]) 
 
print('The output of your algorithm:', euclidean(a, b)) 
assert np.isclose(euclidean(a, b), distance.euclidean(a, b)) 

Nearest neighbours

Use the provided plot code to show the nearest neighbours for a couple of different values
for k  and a number of test samples.

def get_neighbours(training_set, test_instance, k): 
    """ 
    Calculate distances from test_instance to all training points. 
    :param training_set: [n x d] numpy array of training samples (n: number of samples, 
    :param test_instance: [d x 1] numpy array of test instance features. 
    :param k: number of neighbours to return. 
    :return: list of length k with neighbour indices, with increasing distance of the ne
    """ 
     
    neighbours = [] 
    # START ANSWER 
    neighbours = np.zeros(len(training_set)) 
                          
    i = 0                    
    for q in training_set: 
        neighbours[i] = euclidean(test_instance,q) 
        i += 1 
         
    neighbours = np.argsort(neighbours)[0:k].tolist() # argsort returns the indices of th
    # END ANSWER 
    return neighbours 
 
neighbours = get_neighbours(X_train, X_test[0], 5) 
 
# Check whether your algorithm is correct 
print('The indices returned by your algorithm are:', neighbours) 
assert neighbours == [63, 41, 76, 51, 10] 

def plot_neighbours(X_train, Y_train, test_instance, k): 
    """ 
    Plots all points in the dataset and shows the neighbours of a given test instance. 
    """ 
     
    neighbours = get_neighbours(X_train, test_instance, k) 
    # Initialization of the sizes of the points to be plotted, size 10  
    neigh_sizes = np.ones((len(Y_train), 1)) * 10 
    neigh_sizes[neighbours] = 50 
    plt.scatter(X_train[:, 0], X_train[:, 1], c=Y_train, s=neigh_sizes) 
    plt.xlabel(iris.feature_names[0]) 
    plt.ylabel(iris.feature_names[1]) 
    plt.colorbar(ticks = [0, 1, 2], format = plt.FuncFormatter(lambda i, *args: iris.targ
    plt.scatter(test_instance[0], test_instance[1], c='r', s=50, marker='x') 
    plt.show()
 
for i in range(3): 
    test_instance = X_test[i, [0, 1]] 
    k = 5 
    plt.title('Test instance %s and its nearest neighbors' % (i+1)) 
    plot_neighbours(X_train[:, [0,1]], Y_train, test_instance, k) 



20-10-2021 12:48 Machine Learning Summary | Sergio’s Blog

localhost:3000/datascience/2021/08/27/ml.html 69/157

Majority vote
from collections import Counter # To count unique occurrences of items in array, for majo
 
def get_majority_vote(neighbour_indices, training_labels): 
    """ 
    Given an array of nearest neighbours indices for a given test case,  
    tally up their classes to vote on the correct class for the test instance. 
    :param neighbours: list of nearest neighbour indices. 
    :param training_labels: the list of labels for each training instance. 
    :return: the label of most common class. 
    """ 
     
    most_common = -1 
    # START ANSWER 
    labels = np.array(training_labels) 
    most_common = Counter(labels[neighbour_indices]).most_common(1)[0][0] 
     
    # END ANSWER 
    return most_common 
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Accuracy
Compute the accuracy of the k-nn model with the the training set itself (which uses the
training set to calculate the neighbours)

Below we use scikit-learn

Manually check accuracy

 
predicted_label = get_majority_vote(neighbours, Y_train) 
print('Your predicted label:', predicted_label) 
 
assert predicted_label == 0 
assert get_majority_vote([0,1,2,3,4], [0,2,2,1,3]) == 2 
assert get_majority_vote([0,1,2,3,4], [3,1,1,3,0]) == 3 

from sklearn.metrics import accuracy_score 
 
def predict(X_train, X_test, Y_test, k=5): 
    """ 
    Predicts all labels for the test set, using k-nn on the training set. 
    :param X_train: the training set features. 
    :param X_test: the test set features. 
    :param Y_test: the training set labels. 
    :return: list of predictions. 
    """ 
 
    # Generate predictions 
    predictions = [] 
    # For each instance in the test set, get nearest neighbours and majority vote on pred
    # START ANSWER 
    predictions = np.zeros(len(X_test)) 
     
    for i in range(len(X_test)): 
        predictions[i] = get_majority_vote(get_neighbours(X_train, X_test[i], k), Y_test
     
    predictions = predictions.tolist() 
    # END ANSWER 
    return predictions 
 
k = 5 
predictions = predict(X_train, X_test, Y_train, k) 
 
# Summarise performance of the classification using scikit-learn 
accuracy = accuracy_score(Y_test, predictions) 
print('The overall accuracy of the model using scikit-learn is:', accuracy) 
 
assert predictions == [0, 1, 1, 2, 1, 1, 2, 0, 2, 0, 2, 1, 2, 0, 0, 2, 0, 1, 2, 1, 1, 2, 
assert np.isclose(accuracy, 0.9666666666666667) 

def accuracy_score_self(Y_test, predictions): 
    """ 
    Computes the accuracy of a test set as the fraction of items that was classified cor
    :param y_test: the list of true labels for the test set. 
    :param y_pred: the list of predicted labels for the test set. 
    :return: accuracy as a floating point. 
    """ 
     
    accuracy = 0 
    # START ANSWER 
     
    correct = 0 
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Complete the plot_errors function to get a better understanding of why some points are
misclassified.

See below that the misclassified points are those that are merged with other classes.

    total = len(Y_test) 
     
    for i in range(total): 
        if (Y_test[i] == predictions[i]): 
            correct += 1 
     
    accuracy = correct/total 
     
    # END ANSWER 
    return accuracy 
 
# Summarise performance of the classification 
accuracy_self = accuracy_score_self(Y_test, predictions) 
print('The overall accuracy of the model using your implementation of accuracy:', accura
assert np.isclose(accuracy, accuracy_self) 

def plot_errors(X_train, X_test, Y_train, Y_test, predictions, k): 
    """ 
    Plots the test points that were misclassified and their nearest neighbours using plot
    """ 
     
    # START ANSWER 
    predictions = predict(X_train, X_test, Y_train, k) 
    accuracy_self = accuracy_score_self(Y_test, predictions) 
     
    total_errors = int(np.round((1-accuracy_self)*len(Y_test))) 
    errors = np.zeros((total_errors,len(X_test[0]))) 
     
     
    count = 0 
     
    for i in range(len(Y_test)): 
        if (Y_test[i] != predictions[i]): 
            errors[count] = X_test[i] 
            count += 1 
     
    print("k =", k) 
    print(errors) 
    # Complete set 
    plt.scatter(iris.data[:, 0], iris.data[:, 1], c=iris.target) 
    # Mark errors 
    plt.scatter(errors[:, 0], errors[:, 1], c='r', s=25, marker='.') 
    plt.xlabel(iris.feature_names[0]) 
    plt.ylabel(iris.feature_names[1]) 
    plt.show()
    # END ANSWER 
    return 
 
for i in range(1,10,2): 
    plot_errors(X_train, X_test, Y_train, Y_test, predictions, i) 
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However that was only the result from 1 random split of the data in training and test. To test
the optimal k value properly we must calculate multiple accuracies of k over multiple
train/test splits (and average each k accuracy over the different random splits). This is known
as cross-validation

Look below the difference in random seeds for the same k
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Learning curve
For a learning curve, we plot the number of samples (x-axis) in the train set against the
accuracy (y-axis).

n_repetitions = 10 
max_neighbours = 20 
accuracies = np.zeros((max_neighbours, n_repetitions)) 
mean_accuracies = np.zeros(max_neighbours) 
seeds = [x for x in range(n_repetitions)] 
 
for i in range(n_repetitions): 
    # Generate a new split of train and testset 
    X_train, X_test, Y_train, Y_test = train_test_split(iris.data, iris.target, test_size
     
    for k in range(1, max_neighbours + 1): 
        # START ANSWER
        accuracies[k-1][i] = accuracy_score_self(Y_test, predict(X_train, X_test, Y_trai
 
mean_accuracies = np.mean(accuracies, axis=1)         
# END ANSWER 
 
plt.plot(range(1, 21), mean_accuracies) 
plt.title('The averaged accuracies over the different values of k') 
plt.xlabel('k') 
plt.ylabel('Accuracy') 
plt.show() 

k = 9 
 
X_train, X_test, Y_train, Y_test = train_test_split(iris.data, iris.target, test_size=0.4
 
total_samples = X_train.shape[0] 
# Set up array to store accuracies 
accuracies = np.zeros(total_samples + 1) 
 
# We want to learn with at least k samples and up to the size of the train set 
for i in range(k, total_samples): 
    predictions = predict(X_train[:i], X_test, Y_train[:i], k) 
    accuracies[i + 1] = accuracy_score(Y_test, predictions) 
     
# Plot learning curve 
plt.plot(range(total_samples + 1), accuracies) 
plt.title('The learning curve for the k-NN classifier') 
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Linear classifiers
Liniear (Discriminative) as opposed to bayesian (generative) cannot “generate”/simulate new
data points as we don’t know nor haven’t modeled the class distributions(P(X|Y)).
Instead linear models just model P(Y|X) directly (and linearly) as all we care about is the
decision boundary

The first decision boundary we make might be arbitrary, but it can be easily improved
with the gradient descent algorithm

Why linear?
Simple
Optimzation (minimization) is possible and fast
Interpretable
Often a reasonable local approximation given limited data

Minimizing the risk
Let h(x) be the function that determines the class of input vector x

also known as “hypothesis function” or “discriminant function” (that maps input to a
decision value)

plt.xlabel('Number of training samples') 
plt.ylabel('Accuracy') 
plt.show() 
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Let L(h(x),Y) be the Loss/cost function that measures how well the predicted decision value
matches the real outcome (Y)
In theory minimizing that loss function would require us to know the actual class
distributions (and calculate their averages (expectect values)), which in linear models we
don’t know.

Instead we just manually check the average value of all loss functions of all “versions” of
the hypothesis function
Then select the hypothesis version (h) function with the minimum loss

Breakdown of the minimization algorithm steps:

Hypotheses
When the outcome is continuous (regression), h(x)  can directly correspond to the function
we want to find (i.e. the expected price).

We dont map input x to a class but to a continous value.
In classification h(x)  is the discriminatn function which gives a real-valued output (such as
the bayes probability)
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To go from this output to a class decision we still need to set a cut off, i.e.:

Hypothesis class: Linear

Decision function is a weighted linear combination of the input features plus a constant
(intercept/bias/threshold)

The bias term may be added to the weight vector by adding a constant feature, (just a
notational trick):

A linear hypothesis class is a unique combination of different weights entries for the weight
vector

Linear decision boundaries (2 feature vectorspace case)

The weights vector is perpendicular to the decision boundary hyperplane (hyperplane us a
subspace of 1 dimension smaller than it’s container)
The bias constant shifts the decision boundary

All the  are all the different weight vector (w) that we consider to search among them
the one that has the minimum cost

Linear regression

{ c1 if h(x) > 0
c2 if h(x) ≤ 0

h(x) = xTw + w0

h(x) = xTw + w0 = [ x
1
]
T

[ w

wo
]

h ∈ H
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Mean squared error, mean absolute error etc are all examples of loss functions

Minimizing risk
We want to find the parameters (weight vector w) that minimize the risk (that have the
lowest cost)
We could bruteforce all values of w and choose the smallest cost (not practical)
We could take the derivative of the loss function and euqal it to 0 (might be a bit of a hussle)
Alternatively we can start at some w and keep making small changes to improve it (gradient
descent)

It’s like a combination of bruteforcing all possible values (but only those surrounding
your last position) and taking the derivative. So instead of taking all values around you
take the “derivative” (just the difference with the current position) of all values around
you and choose the one with the deepest decrease.

For simple linear regressions we can just use the “normal equation” (linear algebra) which
also finds the minimum:

XTXw = XTy
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Gradient descent

Used in procuderues where the normal equation cannot be used.
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Logistic regression (logistic classifier)
It’s actually not a regression problem, it tries to solve a classificaiton problem
It emerges from the fact that the classical loss function of % of wrong classess assigned does
not fit well with the gradient descent algorithm

Slightly modifying the discriminant function in any direction will keep providing the
same number of correct/incorrect predictions, which makes the algorithm stall on that
position.
The logistic regression therefore has a different approach: find a function that
approximates the likelihood (of a correct assignment), (which does not need to calculate
the class conditional, the priors and then bayes, for all predictions) using a given
classifier (a given weight vector and bias constant)

The change in likelihood does react to slight modifications of the discriminant
function! (which fits well with the gradient descent algorithm)

 but it does returns a continous value between [0,1]

Logistic function

With 

We could see that 

For class predictions, we eventually need to have a cut-off minimum probability of h(x)
to assign x to the class

The reason we are transforming h(x) to a logistic function eventhough h(x) already works as
a classifier is because h(x) as a classifier is discrete and h(x) raw could be any number and we
just want to have a continous output between 0 and 1 (so it resembles the posterior
probability). Furthermore, the logistic function also has a nice property that allows us to get
a density function and likelihood function

The likelihood function penalizes gray assignments and rewards black and white
assignments. This is very sensitive to gradient descent tweaks in the weight vector (which

h(x) = xTw + w0 ≠ p(y|x)

z = h(x) = h(x,w,w0)

p(y|x) ≈ σ(h(x,w,w0)) = =1
1+exp(−h(x))

1
1+exp(−xTw−w0)



20-10-2021 12:48 Machine Learning Summary | Sergio’s Blog

localhost:3000/datascience/2021/08/27/ml.html 83/157

is what we’re looking for) and this enable us to move towards the best weight vector.
Instead of having a loss function (negative we want to minimize), we have a likelihood
function (positive we want to maximize) (likelihood that the ojbects are assigned to the
correct classes)

Logistic regression loss function (Objective function)

The adaption with the log is to get easier to compute numbers and the minus sign is to turn
it back to a minimization problem
So while L(h) is a think we want to maximize J(h) is a cost that we want to minimize

Logistic regression hypothesis class

Same as with the linear regression, we consider all possibilites of weight vectors for 

Gradient Descent Procedure (to minimize loss function)

The derivative of  is:

h(x) = xTW + w0

J(w) = −∑N
i=1 yilog (σ(xTi w)) + (1 − yi)log (1 − σ(xTi w))
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Which is equivalent to the difference between the model prediction and the actuall class
times the vector object

Suport vector machines
We only cover the linear version (classifier)

We assume that classes are linearly separable
Beautiful math and popular in the 90’s but computationally expensive and hard to optimize

We are trying to find a decision boundary that is robust to changes in the data set (that is
generalizable), and hence why we try to maximize the space between the support vectors
and the decision boundaty
The classification is based on the sign of:

However, we are gonna also include a margin threshold M such that the ones that are too
close to the decision boundary do not get assigned to either class, and the ones that get
classified follow:

 if 
 if 

Since we a priori had the freedom to scale w to reach M, we have to enforce the constraint
to fix w scale such that the closest object has decision value -1 or 1 (which means M = 1)
Remember that we want to maximize the margin (to be robsust). The complete margin (thus
from one antagonist support vector to the other instead of just to the decision boundary) is
2 * M

Remember that M=1, but also remember that we need to make sure that regardless of
the scale of w , the distance between the suport vector and the decision boundary
remains one. To do so we divided M over the length of w

We end up with maximizing .Which is equivalent to:

Subject to the prioirly established margin constraints

Soft margin support vector machine and (hinge) loss function

∇wJ(w) = −
N

∑
i=1

(yi − σ(xTi w))xi

xTi + w + w0

xTi + w + w0 ≥ M yi = +1
xTi + w + w0 ≤ −M yi = −1

2
||w||

minw ||w||2
1
2
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Where C is the penalty constant and  is a loss term without data also known as
a regularization term

Multiclass classification

minw ||w||21
2
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Instead of using the hard classifiers (discrete class = this or class = that), which for multi class
lead to awkward overlaps, just use the highest posterior conditional probability to determine
the class

Lab 4: Logistic regression classifier
We have n training images, each  is a 64 x 1vector representing the grayscale values for
each pixel in the 8 x 8 px image.
Each image is associated with a discrete label 
We want to derive an hypothesis function that can predict the label of any new image x
We want to measure the (log) likelihood of how good the classifier is
We want to find the weight vector  that maximizes the log likelihood

Setup
import scipy 
import sklearn
import numpy as np 
import matplotlib.pyplot as plt 

xi

yi ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

θ
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MNIST database
Snippet below shows multiple versions of digits 0 and 1 of the MNIST database included in
Scikit-learn

Although we have have 10 different classes (digits), we will first focus on the binary
classification of the digits 0 and 1

# Load the digits with 2 classes (0 and 1) 
binary_digits = datasets.load_digits(n_class=2) 
binary_digits_images = binary_digits.images 
binary_digits_labels = binary_digits.target 
 
''' 
all_digits_images is a numpy array where: 
- the first index is the index of individual images 
- the second index corresponds to the row of the pixel 
- the third index corresponds to the column of the pixel 
i.e.: all_digits_images[image_index,row,column] 
the values of the pixels are values between 0 (black) and 16 (white) 
''' 
 
for i in range(4): 
    digit_image = binary_digits_images[i,:,:] 
    plt.figure() 
    plt.gray()
    plt.title("digit: " + str(binary_digits_labels[i])) 
    plt.imshow(digit_image) 
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Basic features
We start with two basic features: crude measures of the length and width of the digit.

For widths, we measure this by taking the maximum values for every column and then
taking the average of these values.
For lengths, we take the maximum value of each row and then we average over these
values.

Once we can classifiy based on simple features, we will extend our classifier to include more
features.

# width: average of the column-wise max values 
widths = np.zeros(len(binary_digits_images)) 
# START ANSWER 
for i in range(len(binary_digits_images)): 
    widths[i] = np.mean(np.amax(binary_digits_images[i], axis=0)) 
# END ANSWER 
 
# length: average of the row-wise max values 
lengths = np.zeros(len(binary_digits_images)) 
# START ANSWER 
for i in range(len(binary_digits_images)): 
    lengths[i] = np.mean(np.amax(binary_digits_images[i], axis=1)) 
# END ANSWER 
 
assert (widths[:5] == np.array([8.5, 8.0, 9.25, 8.125, 9.5])).all() 
assert (lengths[:5] == np.array([12.875, 15.625, 15.0, 15.75, 14.875])).all() 

Let’s combine these two arrays into one numpy array called binary_digits_features:

binary_digits_features = np.vstack((widths, lengths)).T
print(binary_digits_features[:10]) 

Plot the features in a scatterplot and see what the data looks like:
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def plot_scatter(features, labels, db_x = None, db_y = None): 
    widths = features[:,0] 
    lengths = features[:,1] 
     
    # Separate the 2 classes 
    widths_0 = widths[labels == 0] 
    lengths_0 = lengths[labels == 0] 
    widths_1 = widths[labels == 1] 
    lengths_1 = lengths[labels == 1] 
 
    # Plot 
    plt.scatter(widths_1, lengths_1, c='blue', label='ones') 
    plt.scatter(widths_0, lengths_0, c='red', label='zeros') 
     
    # Extra code to plot the decision boundary 
    # You won't be using this right away 
    if not(db_x is None or db_y is None): 
        plt.plot(db_x, db_y, label = "Decision_Boundary") 
 
    plt.title('Digits') 
    plt.xlabel('width') 
    plt.ylabel('length') 
    plt.axis('square') 
    plt.xticks(np.arange(widths.min(), widths.max()+1, 1, dtype=int)) 
    plt.yticks(np.arange(lengths.min()-1, lengths.max()+ 1, 1, dtype=int)) 
    plt.xlim((widths.min()-1, widths.max()+1)) 
    plt.ylim((lengths.min()-1, lengths.max()+1)) 
    plt.legend(loc=3) 
    plt.show()
 
plot_scatter(binary_digits_features, binary_digits_labels) 

Linear classifier h(x)
We want to construct a classifier which, given digit features, decides whether the digit is a 1 or 0.
To achieve this, we want to find a “decision function” 𝑓(𝑥), that, given an object represented by
the vector 𝑥, returns a high value if the object belong to class 1 and a small value if it belong to
class 0. To decide which class to assign an object to, we can set a threshold informing whether a
given decision value is large enough. A linear classifier makes a particular choice for what the
decision function f(x) can look like: the function is a linear combination of the values of the
features. For a one-dimensional dataset the decision takes the following form:

Here theta_1, the bias and the threshold are the parameters that need to be tuned for
the classifier to work properly.

In case of the two features we have now, this classifier will look like

if θ1 ⋅ x + bias > threshold classify as 1 else classify as 0

if θTx + bias > threshold return 1 else return 0
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with theta having each weight for each feature of x (thus theta and x having the same
length)
The classifier takes the dot product of these vectors and checks whether the obtained
value exceeds the threshold value for a positive classification.
We can include the threshold into the bias term

We can also get rid of the bias - threshold notion and just call it bias such as 

Logistic function 
Instead of finding the  that minimizes the classification error, we are going to construct a
linear classifier that returns probabilities of objects belonging to the different classes (p(y|x))
and find the  that maximizes how well these probabilities reflect the data we have observed.
To do this, we first have to convert the values of our decision function , into
values between 0 and 1. These values will reflect the probability of the object to belong to
class 1. For this conversion, we will use the logistic function:

See that when the bias is infinity large not only the classifier is obviously larger than 0
but sigma = 1
When bias is + dot product are 0 (kissing the boundary), sigma = 0.5
When bias is minus infinity, simga = 0

Another useful property of the derivative of the logistic function that we will use later on is
the following:

Posterior probabilities

Indeed the sigma function that models the probability of the object belonging to class 1 or 0
is used to model the posterior probablity:

Using only the width feature, below the logistic function that encapsulates the probability of
P(Y=1|x)=h(x)=sigma(theta,x,bias):

def plot_hypothesis(features, labels, theta, bias): 
    # Some noise is added to better visualize the labels of the datapoints 
    labels_noise = labels + np.random.normal(0, .05, labels.shape) 
     
    widths = features[:,0] 
    plt.scatter(widths, labels_noise, c='red') 
    x = np.linspace(np.min(widths), np.max(widths), 100) 
         
    sigmoid_1D = 1 / (1 + np.exp(-(theta*x + bias))) 
    plt.title('hypothesis function') 
    plt.xlabel('x') 
    plt.ylabel('label (red)/probability class 1 (blue)') 
    plt.plot(x, sigmoid_1D) 
    plt.show()
 
# Try to find proper values for theta and bias 
# Such that the sigmoid properly goes through both the datapoints with label 0 and 1 
theta = -2.5 
bias = 20 
# START ANSWER 
# END ANSWER 

θTx + (bias − threshold) > 0

θTx + bias > 0

σ(z)
θ

θ
θTx + bias

σ(θTx + bias) =
1

1 + e−(θTx+bias)

σ′(z) = σ(z)(1 − σ(z))

P(Y = 1|x) = σ(θTx + bias)
P(Y = 0|x) = 1 − σ(θTx + bias)



20-10-2021 12:48 Machine Learning Summary | Sergio’s Blog

localhost:3000/datascience/2021/08/27/ml.html 91/157

 
plot_hypothesis(binary_digits_features, binary_digits_labels, theta, bias) 

The temporary hypothesis function has theta = -2.5 and bias = 20.
It will be optimized in the next sections

Simplifying notation

Instead of having a separate bias term, we will incorporate into the weights and add an extra
feature to x with 1

# This function adds an extra 1.0 to every feature vector 
def add_one_features(data): 
    return np.vstack((data.T, np.ones(len(data)))).T 
 
binary_digits_features_prime = add_one_features(binary_digits_features) 
print(binary_digits_features_prime[:10]) 

The logistic function (p(y|x)) with the updated vectors:

# Implement the hypothesis function so that it works for thetas/features of arbitrary len
def hypothesis(x, theta): 
    """ 
    Calculate the hypothesis function for every datapoint in x 
    :param x: numpy array of size (n, d) where n is the number of samples 
    and d is the number of features per sample including the 1 extra feature 
    :param theta: numpy array of size (d,) 
    :return: predicted probability. 
    """ 
    # START ANSWER 
    sigmoid = np.zeros(len(x)) 
    for i in range(len(x)): 
        sigmoid[i] = 1/(1 + np.exp(-(x[i] @ theta))) 
    # END ANSWER 
    return sigmoid 
 
x = binary_digits_features_prime 
# To test our hypothesis function, we set three different theta vectors 
# All 1 
theta_ones = np.ones(3) 
# All 0 
theta_zeros = np.zeros(3) 
# All -1 
theta_min_ones = -5 * np.ones(3) 
 
# And apply the prediction
hypothesis_ones = hypothesis(x, theta_ones) 
hypothesis_zeros = hypothesis(x, theta_zeros) 
hypothesis_min_fives = hypothesis(x, theta_min_ones) 
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Likelihood function
We can compute the likelihood  for the entire dataset by computing the product of the
likelihood of all samples:

Or we could compute an equivalent but more computation friendly likelihood function, the
log likelihood (recall that  and  ):

As the log function is an monotonic increasing function, this approach will also lead to
maximizing the likelihood itself

 
# Output for each theta vector 
# expected = 1.0 
print("Prediction ones: {}".format(hypothesis_ones[:5])) 
# expected = 0.5 
print("Prediction zeros: {}".format(hypothesis_zeros[:5])) 
# expected = ~0 
print("Prediction minus fives: {}".format(hypothesis_min_fives[:5])) 
 
assert np.isclose(hypothesis_ones, 1).all() 
assert np.isclose(hypothesis_zeros, 0.5).all() 
assert np.isclose(hypothesis_min_fives, 0).all() 

near_0 = 1e-16 
near_1 = 1.0 - near_0 
 
def log_likelihood(h_x, y): 
    """ 
    Computes the log likelihood of your classifier. 
    :param h_x: numpy array of predicted probabilities. 
    :param y: numpy array of actual labels (positive (1) or negative (0)). 
    :return: The log likelihood. 
    """ 
    log_likelihood = 0 
    # START ANSWER 
    log_likelihood = np.sum( 
        y*np.log(np.where(h_x == 0, near_0, h_x)) 
        +(1-y)*np.log(1-np.where(h_x == 1, near_1, h_x))) 
    # END ANSWER 
    return log_likelihood 
 
# These predictions should do very well 
h_x1 = np.array([0.01, 0.01, 0.99, 0.99]) 
y1 = np.array([0, 0, 1, 1]) 
ll1 = log_likelihood(h_x1, y1) 
print(ll1) 
 
# These predictions should do ok 
h_x2 = np.array([0.2, 0.1, 0.9, 0.8]) 
y2 = np.array([0, 0, 1, 1]) 
ll2 = log_likelihood(h_x2, y2) 
print(ll2) 
 
# These predictions should do bad 

L(θ)

L(θ) =
N

∏
i=1

σθ(h(xi))yi(1 − σθ(h(xi))1−yi

log(ab) = log a + log b log(ab) = b log a

logL(θ) =
N

∑
i=1

yi log(σθ(h(xi)) + (1 − yi) log(1 − σθ(h(xi))
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To visualise the effect of  on the likelihood function, you can run the code below. Here only
the width is used for visualisation purposes.

# Use only the width feature 
width_features = binary_digits_features[:,0] 
width_features_prime = add_one_features(width_features) 
binary_digits_labels 
 
# Axis limits to plot 
min_theta_0 = -20.0 
max_theta_0 = 5.0 
min_bias = -30.0 
max_bias = 150.0 
 
# Resolution for both axis
N = 50
thetas_0 = np.linspace(min_theta_0, max_theta_0, N) 
biases = np.linspace(min_bias, max_bias, N) 
 
# 2D array with log likelihoods to be filled 
log_likelihoods = np.zeros(shape=(len(biases), len(thetas_0))) 
# Fill the 2D array 
for i_theta_0, theta_0 in enumerate(thetas_0): 
    for i_bias, bias in enumerate(biases): 
        # Construct theta 
        theta = np.array([theta_0, bias]) 
        h_x = hypothesis(width_features_prime, theta) 
        ll = log_likelihood(h_x, binary_digits_labels) 
        log_likelihoods[i_bias,i_theta_0] = ll 
 
# Plot log likelihoods
X, Y = np.meshgrid(thetas_0, biases) 
cs = plt.contourf(X, Y, log_likelihoods, cmap="PuRd") 
plt.title('Log-Likelihoods') 
plt.xlabel(r'$\theta_0$') 
plt.ylabel('bias') 
plt.colorbar(cs) 
 
plt.show() 

h_x3 = np.array([0.9, 0.8, 0.99, 0.3, 0.1]) 
y3 = np.array([0, 0, 1, 1, 1]) 
ll3 = log_likelihood(h_x3, y3) 
print(ll3) 
 
assert np.isclose(ll1, -0.040201) 
assert np.isclose(ll2, -0.657008) 
assert np.isclose(ll3, -7.428631) 
 
# There might be warnings from numpy regarding division by zero and invalid value.  
# You can solve this by replacing 0/1 values with near_0/near_1 values with the np.where 
h_x4 = np.array([0.0, 0.1, 1.0, 0.95]) 
y4 = np.array([0, 0, 1, 1]) 
ll4 = log_likelihood(h_x4, y4) 
print(ll4) 
# h_x5 0.0 will become 1e-16 so you can divide with that. 
h_x5 = np.array([1.0, 0.99, 0.0, 0.01]) 
y5 = np.array([0, 0, 1, 1]) 
ll5 = log_likelihood(h_x5, y5) 
print(ll5) 
 
assert np.isclose(ll4, -0.156653, rtol=0.5) 
# Due to the wrong predictions, this likelihood is very low 
assert ll5 < -10.0 

θ
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Gradient ascent
We will reformulate the gradient descent algorithm and simply apply it in the opposite
direction. This is what that looks like:

Set  to a vector of random values.
For each training epoch:

Compute the gradient of the log likelihood function for  and training samples.
The derivative of  for a a specific  configuration (while keeping other
variables as constants (y and x)) is:

Adjust  in the direction of the gradient potentiated by the step size 

With :=  denoting assignment (of new value) rather than predicating that (the current) 
equals (the new) definition

def calculate_gradients(theta, x, y): 
    """ 
    Calculate the gradient for every datapoint in x 
    :param theta: numpy array of theta 
    :param x: numpy array of the features 
    :param y: the label (positive (1) or negative (0)) 
    :return: The gradients for every datapoint in x 
    """ 
    gradients = np.zeros((len(x), len(theta))) 
    # START ANSWER 
    gradients = x * ((y-hypothesis(x, theta)).reshape(len(y),1)) 
    # END ANSWER 
    return gradients 
 
theta = np.array([1,1.5,2.5]) 
x = np.array([[-10,5,1],[0.5,1,1]])
y = np.array([0,1]) 
gradients = calculate_gradients(theta, x, y) 
print(gradients) 
 
assert np.isclose(gradients[0], np.array([5.0, -2.5, -0.5])).all() 
assert np.isclose(gradients[1], np.array([0.00549347, 0.01098694, 0.01098694]), atol= 0.0

θ

θ
L(θj) θj

ℓ(θ) = (y − hθ(x))x
∂

∂θj

θ α

θj := θj + α ℓ(θ)

= θj + α(y − hθ(x))x

∂
∂θj

θ
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In this context  is actually 

def apply_gradient(theta, gradient, alpha): 
    """ 
    Applies the gradient step to theta and returns an adjusted theta. 
    :param theta: current theta array of size (d,) 
    :param gradient: the gradient array of (d,) 
    :param alpha: learning rate 
    :return: the updated theta array of size (d,) 
    """ 
    updated_theta = theta 
    # START ANSWER 
    updated_theta = theta + alpha * gradient 
    # END ANSWER 
    return updated_theta 
 
theta = np.array([1,2,3]) 
gradient = np.array([10,-10,5]) 
alpha = 0.1 
updated_theta = apply_gradient(theta, gradient, alpha) 
print(updated_theta) 
 
assert (updated_theta == np.array([2,1,3.5])).all() 

Repeat from step 2 until convergence or a set number of epochs.

Now we have obtained a trained theta vector, let’s plot the decision boundary in the 2D
scatterplot.

def decision_boundary(theta, plot_x): 
    return (-1/theta[1]) * (theta[0] * plot_x + theta[2]) 
 
def plot_decision_boundary(theta, data, labels): 
    db_x = np.array([data[:,0].min()-1, data[:,0].max()+1]) 
    db_y = decision_boundary(theta, db_x) 

def train_theta(features, labels, n_epochs=200, theta=None, alpha = 0.1): 
    assert len(features) == len(labels) 
 
    num_features = len(features[0]) 
    num_items = len(features) 
    # Set theta to intial random values 
    # Initialize theta randomly if it's not provided 
    if theta is None: 
        theta = np.random.normal(0, .05, num_features) 
 
    # We go through the entire training set a number of times 
    # Each of these iterations is called an epoch 
    for epoch in range(n_epochs): 
        # Calculate the average gradient for all items and apply gradient ascent to theta
        # START ANSWER
        gradient = np.mean(calculate_gradients(theta, features, labels),axis=0) 
        theta = apply_gradient(theta, gradient, alpha) 
        # END ANSWER 
     
    return theta 
 
 
# Train a theta vector for the features and labels of the binary digits: 
theta = train_theta(binary_digits_features_prime, binary_digits_labels, n_epochs=100000, 
 
print("theta vector:  " + str(theta)) 
print("log likelihood: " + str(log_likelihood(hypothesis(binary_digits_features_prime, t

h(x) σ(h(x))
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    plot_scatter(data, labels, db_x = db_x, db_y = db_y) 
 
plot_decision_boundary(theta, binary_digits_features_prime, binary_digits_labels) 

Logistic regression Implementation on MNIST data
Great! We now have implemented logistic regression to separate two classes based on 2
features. Let’s extend this implementation to use a different representation of the object: the
intensities of the 64 pixels!

Initialize the data:

Train theta

# train a theta vector for the features and labels of the binary digits: 
theta_digits = train_theta(x_train_digits, y_train_digits) 
print("theta vector: " + str(theta_digits)) 

Predict classes

def predict_binary(x_test, theta): 
    """ 
    Predicts a label for each image in x_test using theta. 
    :param x_test: an array of size (n, 65) of all test images. 
    :param theta: a (65,) array of trained theta. 
    :return: an integer array of size (n,) of labels for each test_image. 
    """ 
    predictions = np.zeros(x_test.shape[0], dtype=int) 
    # START ANSWER 
    predictions = np.round(hypothesis(x_test, theta)).astype('int') 
    # END ANSWER 
    return predictions 
 
x_test = np.array([[1,2,3,1], [-1,2,1.5,1], [4,-5,2,4]]) 
theta = np.array([1,-1,2,-2]) 

from sklearn.model_selection import train_test_split 
 
# Flatten the data so all items are 1D and append an extra one feature to every item 
binary_digits_pixels = add_one_features(binary_digits_images.reshape(binary_digits_image
 
# The shape should be (360, 65) 
assert binary_digits_pixels.shape[0] == 360 
assert binary_digits_pixels.shape[1] == 65 
 
# Split dataset into train and test set 
x_train_digits, x_test_digits, y_train_digits, y_test_digits = train_test_split(binary_d
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predictions = predict_binary(x_test, theta) 
print(predictions) 
 
assert (predictions == np.array([1, 0, 1])).all() 
assert predictions.dtype == np.dtype('int') 

Accuracy function:

Accuracy test with the data:

predictions = predict_binary(x_test_digits, theta_digits) 
accuracy = compute_accuracy(predictions, y_test_digits) 
 
print("accuracy: " + str(accuracy)) 
assert accuracy > 0.95 

With the pixel features we are able to obtain quite a good 𝜃 to create an accurate classifier.
You can visualise the 𝜃 vector with the code below.

def plot_theta_image(theta, title=r"$\theta$ vector"): 
    # remove bias from the image 
    theta_no_bias = theta[:64].reshape(8,8) 
    plt.figure() 
    plt.gray()
    plt.title(title) 
    plt.imshow(theta_no_bias) 
 
plot_theta_image(theta_digits) 
theta_digits 

def compute_accuracy(predictions, y_true): 
    """ 
    Computes the accuracy of the predictions based on the true labels. 
    :param predictions: an array of size (n,) of the computed predictions for each image
    :param y_true: an array of size (n,) of the true labels of each image. 
    :return: the accuracy of the predictions. 
    """ 
    accuracy = -1 
    # START ANSWER 
    total = len(y_true) 
    correct = 0 
     
    for i in range(total): 
        if (predictions[i] == y_true[i]): correct+= 1 
     
    accuracy = correct/total 
    # END ANSWER 
    return accuracy 
 
predictions = np.array([0,1,1,0,1]) 
y_true = np.array([0,1,0,1,1]) 
 
accuracy = compute_accuracy(predictions, y_true) 
assert accuracy == 0.6 
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We can see that the theta vector has high (brighter) values in the midle and dark in the
edges

This because in the edges people don’t ofen write
Most of the info regarding the shape of a number is contained in the middle of the
image

Learning curves

# Set learning rate (try experimenting with this) 
alpha = 0.001 
 
# Set theta to intial value of None 
theta_digits = None 
 
# We go through the entire training set a number of times 
# Each of these iterations is called an epoch 
n_epochs = 50 
 
accuracies_train = [] 
accuracies_test = [] 
log_likelihoods_train = [] 
log_likelihoods_test = [] 
 
for epoch in range(n_epochs): 
    theta_digits = train_theta(x_train_digits, y_train_digits, n_epochs=1, theta=theta_d
    # Calculate accuracy 
    accuracy_train = -1 
    accuracy_test = -1 
    # START ANSWER x_train_digits, x_test_digits, y_train_digits, y_test_digits 
    predictions_train = predict_binary(x_train_digits, theta_digits) 
    accuracy_train = compute_accuracy(predictions_train, y_train_digits) 
    predictions_test = predict_binary(x_test_digits, theta_digits) 
    accuracy_test = compute_accuracy(predictions_test, y_test_digits) 
    # END ANSWER 
    accuracies_train.append(accuracy_train) 
    accuracies_test.append(accuracy_test) 
     
    # Calculate log likelihood 
    ll_train = 0 
    ll_test = 0 
    # START ANSWER 
    ll_train = log_likelihood(hypothesis(x_train_digits, theta_digits), y_train_digits) 
    ll_test = log_likelihood(hypothesis(x_test_digits, theta_digits), y_test_digits) 
    
    # END ANSWER 
    log_likelihoods_train.append(ll_train) 
    log_likelihoods_test.append(ll_test) 
         
plt.plot(np.arange(len(accuracies_train)), accuracies_train, label='train') 
plt.plot(np.arange(len(accuracies_test)), accuracies_test, label='test') 
plt.title('accurracy') 
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Multi-class logistic classifier
Next, we will extend your code for binary classification to a multiclass classification for all 10
classes. First load the data with the code below

plt.xlabel('epoch') 
plt.ylabel('accurracy') 
plt.legend(loc=3) 
plt.show() 
 
plt.plot(np.arange(len(log_likelihoods_train)), log_likelihoods_train, label='train') 
plt.plot(np.arange(len(log_likelihoods_test)), log_likelihoods_test, label='test') 
plt.title('log likelihood') 
plt.xlabel('epoch') 
plt.ylabel('log likelihood') 
plt.legend(loc=3) 
plt.show() 

# Import the load function for the dataset 
from sklearn import datasets 
from sklearn.model_selection import train_test_split 
 
n_classes = 10 
 
# Load the digits with 10 classes (digits 0 - 9) 
all_digits = datasets.load_digits(n_class=n_classes) 
all_digits_images = all_digits.images 
all_digits_labels = all_digits.target 
 
# Flatten the data so they are 1D and append extra ones to the feature vectors 
all_digits_pixels = add_one_features(all_digits_images.reshape(all_digits_images.shape[0
 
# The shape should be (1797, 65) 
assert all_digits_pixels.shape[0] == 1797 
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The strategy we will be using to construct a multiclass classifier from a binary classifier is
known as “one-vs-all”, or “one-vs-rest”. The idea is to construct separate binary classifiers for
each class that discriminate between that class and all other classes. We then combine the
predictions of the resulting ten classifiers.

We will create ten hypothesis functions (ten different theta’s 𝜃𝑖): one for each class. Each
hypothesis tells us the probability that a given image belongs to the corresponding class of
𝜃𝑖. If the probability is low, it must belong to some other class.

We pretend for each class to be y=1 and the rest y=0

Responsible Machine Learning
Bias is fast decisiom making without explicit thought

Formally “prefrence or inclination for or against something”
Can be positive, negative or neutral
Often accompanied by a refusal to consider the merits of other poitns of view

Useful in real life
Can cause problems in software
Subconscious decision making of the programmer have an influence on developed software
and machine learning

We will never be able to develop a system that is bias-free
But we can do things to identify them and to reduce them

Bias can develop into prejudice:
Assumptions made without adequate knoweldge
Most commonly used to refer to a preconcieved judgement toward a person or a groupe
of people because of a personal or specific characteristic
Usually resistant to rational influence

Prejudice leads to discrimination:
Taking actions based on a prejudice
Treating a person or group of persons based solely on their membership of a certain
group or category
The behaviour of excluding or restricting members of a group from opportunities that
are available to people from another group

Two types of bias
Implicit:

assert all_digits_pixels.shape[1] == 65 
 
# Split dataset into train and test set 
x_train_digits, x_test_digits, y_train_digits, y_test_digits = train_test_split(all_digit

# Initialize a theta array, one for every class 
multiclass_thetas = np.zeros((10,65)) 
 
for class_no in range(n_classes): 
    current_label = class_no 
    # Hint: convert the labels array to have only 1's at the current class_no 
    multiclass_thetas[class_no] = train_theta(x_train_digits, np.where(y_train_digits == 
    # START ANSWER 
 
    # END ANSWER 
    print("class_no: " + str(class_no)) 
 
print("first 3 parameters of every theta") 
print(multiclass_thetas[:,:3]) 
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Expectations based on learned coincidences which unknowingly affect everyday
perceptions, judgment, memory and behaviour
This is like bayes conditional probability
Subsconcious thought

Explicit:
Is informed by our implicit bias but it also at least in part a conscious choice

Source of bias in Machine learning
AI systems or ML techniques are not inherently bad nor turn bad by themselves
Resolving data bias in ML projects means first determining where it is
Important source for bais: training dataset
The training database should represent the real world
Skewed data is okay as long as you are aware of it (it may serve the purpose of analyzing
that specific type of instances)
The bad data comes from human biases:

Association bias: ML model reinforces and/or multiplies a cultural bias, which canc reate
gender bias
Selection bias: dataset does nto reflect realities of the environment in which a model will
run
Racial bias: data skews in favor of particular demographics

Lack of diversity in ML teams (think of facial recognition at amazon that didnt work with
black people)

Cultural bias in language
Word embeddings:

Tool to extract (semantic) associations between words/concepts
Each word is a vector in a vector space of 300 dimensions
Computed on the context it keeps in large text corpora
Influenced by culture (and gender)

Algorithmic bias
Algorithm doesnt understand semantics and collects irrelevant information that corrupts the
model

Evil programmers
No ML/AI programming is self-learning
All programs are implemented by people

Detecting bias
There’s no silver bullet solution
Biases in ML remain a black box most of the time
Bias is hard to quantify

Fairness
Fairness is the bais or discrimination on specific realms
Can be quantified in 3 ways (non of them are concrete):

It can be measured in stages (training data vs learned model)
It can be compared by demographic groups

they should be treated equally
We are all equal vs what you see is what you gate

First one assume everybody is equally capable and should given the same treatment,
the other one disputes it
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Debiasing training set/model

Check the distribution of class labels in training
Equalize the distribution training set (or make sure that it is representative of the
population in which the model will be run on)

Debiasing group vs Individual level

Similar outcomes for different groups
Smart algorithms
Carefully selecting the features used for the ML task e.g. zip codes are well-known
proxies for race, are often eliminated

Similar outcomes for similar individuals: much harder
2 individuals on either side of the line are very similar but different outcome

WAE vs WYSIWYG

Fix bias through smart implementation of the algorithm
Be aware of the bias
test the system
Choose the right features

make sure that they dont correlate with discrimanting features
Work in a diverse team

Bias in IT decision making systems
Decision making systems (i.e. getting a loan) don’t leave room for human interpretation and
are not sympathisizing with the situation as a whole

Street-level bureaucracy: you can bend the rules
qualitative evaulation

System-level bureaucracy: you can’t bend the rules
quantitative evaluation
programmers control the system
independent judge reviews individual cases only when there is an appeal

Harmless bias in one domain (i.e. sport scouting) can be harmful in other domains (insurance
fraud)
ML does not scale well across domains for which it has not been specifically trained

Ethics
Moral standards of “right” or “wrong” that prescribe how we must act
There are two kinds:

Descriptive ethics: factual explanations about the moral systems we abide to (discussed
by biology and pyschology)
Normative ethics: prescriptive rules on how to behave (discussed by philosophy).
Examples:

Consequentialism (base your behaviour based on the consequences). It’s utilitarian:
Actions must optimize “utility” (vague measure of “goodness” in terms of
pleasure, hapiness, well-being etc)
Leads to quantification and justification of difficult trade-offs between
alternatives.
System-bureacracy is like this.

Duty ethics (behaviour based on a backlog of tasks)
Rules for right action regardless of outcomes
The tasks are right/wrong because of their nature, regardless of the context
Satisfies the need for universal principles that wont admit exceptions
It’s the opposite of consequentialism/utilitarism

Virtue ethics (stoic virtue)
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Focuses on developing a virtuous individual, in the context of his own life, who is
capable of deciding for himself
It’s a lifetime learning experience
It’s the oppsoite of both utilatirism/consequentialism and duty eithics in terms of
adopting a set of rules (utility score vs dogma activities) vs using common sense
(developed as an individual through life experiences and rational judgement)…

Moral foundations theory

There are 5 balances that determine moral virtue
Care vs harm
Fariness vs cheating
Loyalty vs betrayal
Authority vs subversion (legit leadirship vs rebelious (without cause))
Sanctity vs degradation (religious virtue vs profane behaviour)

The proxy problem
Often the source of a bias is impossible to determine
Implicit bias has no clear explanation that can be targeted for mitigation techniques
Deep neural networks are so blackboxed that it’s impossible to mitigate its implicit biases
proxy attributes are seemingly innocous attributes that correlate with socially sensitive
attributes, serving as proxies for the socially sensitive attributes themselves

I.e. kanaleneiland postcode correlates with muslim
There is often a trade-off that the best available indicators for some classification task als
serve as proxies for discriminative outcomes

Concluding remarks
Justifying the application of ML in the real world is a complex and often morally fraught
process that should invo0lve various stakeholders, adequate testing procedures, policy
making, specific engineering expertise, variety of user involvement and a variety of expertise
of the domain of application
ML is nevera shortcut solution for complex problems, they have to be integrated into
complex practices and institutions with preexisting problems of justice and power

Non-linear classifiers
Decision trees

Especially in high dimensional spaces linear classifiers might not work so well.
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Defening the class of possible (hypothesis) functions

Split the feature space using one feature at a time, recursively
Splitting forms a tree structure
Partitions the space in “rectangles”
In each rectangle/leaf, we assign a value
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Defnining the cost function (to measure the quality of the hypotheses)

Just count the number of mistakes…
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Technically means go through the function, measure the final leave node, and compare it
with the actual value

Measuring/learning the average cost on the training data

The most optimal solution is that one such that for a given tree node, the classification is
equal the the most common class:

If all objects in a node belong to one class: we are done
If not, find a node-variable combination that increases the quality of the tree the most if we
split it the node further

The left term is the current misclassification error, the right term is the new misclassifcation
error after applying the extra node-varaible combination classification

There are multiple measurements for the misclassifcation error:
Missclasification (the normal one): 
Entropy: 
Gini Index: 

maxc(1 − pc)
−∑c pc log(pc)

−∑c pc(1 − pc)
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Splitting continous variables

We set an arbitrary threshold
And based on this one assign to either side

The number of thresholds is determined by measuring the information gain and chosing the
amount that provides the highest information gain
To tell when to stop growing a tree we can:

Put a minimum number of objects per node (partition) required
Put a maximum tree depth
Set a minimum information gain

The alternative is to start with a given tree and “prune it”
Remove branches parts based on performance on validation set

A too large tree is probably overfitted to the training data

Overview

What it is:
Non-linear classifier
Choices in learning:

Splitting criterion (information gain, gain ratio, misclassifation error)
Stopping (minimum gain, node size, max depth)
Pruning
Condocorcet’s jury theorem:

When the individual jury has a probability of getting it right above 50%, then the
more the better as the law of large numbers will ensure that the number of good
decisions is larger than the bad ones, such that choosing the max class will be
the right choice.
If it’s below 50%, then the less the better as we might be lucky

Fixed rules:
Hard rules i.e. majority voting
Soft rules i.e. mean
Learned rules

Learn a classifier to output a decision based on the training set
Good features:

Interpretable
Automatic feature selection
Easy to incorporate discrete features and missing values
Fast

Bad features:
Unstable
Cannot model linear relationships efficiently
Greedy partitioning approach to non-linear classification that leads to an intuitive
classifier, but typicall has high variance

Neural net-works (Multi-layer perceptrons)
There was a caveat with the information gain algorithm

If at a certain node, splitting the objects does not lead to information gain (like in the
example above), the algorithm halts, although we can clearly see that we could have
achieved a 100% classification rate if we had splited the data with two lines! (namely the
axes).
This is problem happens because the logic tree aproach first desribes the possible
classification functions, and then assign thems to the available nodes in an optimal way
(which is halted in the first step)

Gain Ratio(S) =
IG(S)

IV (S)
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The solution to this particular problem is to transform the features into a new feature
space where we have the product of y and x such that the we can make a linear classifier
into the new subspace (that splits positive against negative values), however, when it’s
boundaries are displayed back to the original feature space note that the classifier is not
longer a straight line

Neural netowrks use a combination of classifiers in a “dynamic way”
It is the common machine learning altorithm used today
Relative of multi-layer perceptrons, artificial neural networks and feed-forward “deep” neural
networks and connected to logistic regression, gradient descent and classifier combining
A perceptron is an algortihm classifier that teaches itself without human training

The name originates from the Navy computer called Perceptron that did that

We take the inner product of the object features and the weights vector and then apply an
“activation” function

It classifies the input to a binary solution (part of class or not)
Same as a linear classifier but uses a step function instead of a logistic regression

Perceptron loss function



20-10-2021 12:48 Machine Learning Summary | Sergio’s Blog

localhost:3000/datascience/2021/08/27/ml.html 110/157

Perceptron training
We train the perception with the gradient descent (like in the linear classifier logistic
regression)

The perceptron itself remains a linear classifier and remains incapable of solving the XOR
logic gate problem
But the beauty of the perceptron is that it is used in combination with other perceptrion
such that their outputs can be the inputs of others
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Doing so creates a network of classifiers outputs linked to classifier inputs

See that the first node is the bias and that the lines represent the weights of the weight
vector

At each step, these lines may not only have different weights, but also may be forwarded
differently to nodes (formally each of the nodes points to all of the nodes of the next
layer, but if the weight is 0 you might remove it from the chart)
Then see how the last layer feeds back into a single node, namely the final output that
classifies the object into a category

The beauty of this approach is that we can combine linear classifiers (each representing a
layer in the network) that can eventually classify problems that a priori were not solvable by
a single linear classifier
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It’s called a feed-forward network because all the arrows point to the right (information flows
only in one direction)
See how we can implement the output layer in way that it can have a value for different
classes (thus a multiclass classifier)
The computations happen in the hidden layer and output layer

The fundamental difference between the output layer and the hidden layer is that in the
output layer you can compare the results with the actual labels of the training set,
however, with the hidden layer we are not able to tell whether the hidden layer vector
has the right values (as they can’t be compared to any previously collected data about
the object)
You can also add as many hidden layers as you want/need

Activation function

To have a more useful cost function, one that allows you to use the gradient descent more
efficently, we need to move from the step function (which does not show any
(mis)improvements other than when operating near the boundary) to other activation
function (such as the logistic one, where we can see (mis)improvements from tweakments
everywhere)
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Nowadays “multi-layer perceptron” stands for combination of layers (which may have
different activation functions each) rather than the original one from the 60’s where it
exclusively regarded the step up function

Learning is hard

Since the object input has its weights linked to the hidden layers, the effects of changing the
weights in the first layer do not necessarily have direct impact on the final output, which
makes the gradient descent algorithm more clumsy but the implementation remains mostly
the same

However the gradient descent can only fix the weights at the input layer, not the hidden.
This is called “propagation of error”

Backpropagation suggests us to start tweaking the highest weights first, as they are most
likely contributing to the error the most, and then move onto the smaller ones

Challenges, advantages and disadvantages
Challenges:

Non-convex risk function may get stuck in local optima, convergion might be slow
Many architecture choices, hard too chose
Flexible model: risk of overfitting
Dificult to interpret the black box part of the model
With large parameter size it becomes computationally demanding

Advantages
Flexible model class
Good empirical performance on many structured problems
Can be easily adapted to different learning settings

Disadvantages
Computationally expensive
Lots of hyperparameters
Does not converge to a unique optimum
Optimizing is hard
Hard to interpret

Recap
Perceptrons are simple linear binary classifiers
Multi-layer perceptrons are connected architectures of perceptron-like nodes, inspired
by a simplified model of the brain
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They are trained using stochastic gradient descient, efficently calculating the gradient
using back propagation

Lab: non-linear classifier
Decisions trees

Decision trees are non-linear classifiers. In other words: we can separate data with a decision
boundary that does not resemble a single line.

Think of the XOR problem given by the following points:
X = (0,1), (1,0)
O = (0,0),(1,1)

Which resembles

o x

x o
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A priori there’s no single line that can split the two classes
But we can implement a series of true/false statements to classify the class of the objects in
question:

          x < 0.5? 
           /   \ 
         yes   no 
         /       \ 
    y < 0.5?    y < 0.5? 
      /  \       /  \ 
    yes  no    yes   no 
    /     \     /     \ 
   o      x    x       o 

Dataset: Heart Disease
We will use decision trees to predict whether a patient has a heart disease using a dataset
containing symptoms, prescriptions, and diagnoses from four different hospitals.

Relevant Information: 
     This database contains 76 attributes, but all published experiments 
     refer to using a subset of 14 of them.  In particular, the Cleveland 
     database is the only one that has been used by ML researchers to  
     this date.  The "goal" field refers to the presence of heart disease 
     in the patient.  It is integer valued from 0 (no presence) to 4. 
     Experiments with the Cleveland database have concentrated on simply 
     attempting to distinguish presence (values 1,2,3,4) from absence (value 
     0). 
Attribute Information:
   -- Only 14 used 
      -- 1. #3  (age)        
      -- 2. #4  (sex)        
      -- 3. #9  (cp)         
      -- 4. #10 (trestbps)   
      -- 5. #12 (chol)       
      -- 6. #16 (fbs)        
      -- 7. #19 (restecg)    
      -- 8. #32 (thalach)    
      -- 9. #38 (exang)      
      -- 10. #40 (oldpeak)    
      -- 11. #41 (slope)      
      -- 12. #44 (ca)         
      -- 13. #51 (thal)       
      -- 14. #58 (num)       (the predicted attribute)      

The dataset contains both discrete and continuous variables
An example of a discrete variable is attribute #9, chest pain type, with four different
possible labels for the chest pain type.
An example of a continuous variable is attribute #12, serum cholestoral in mg/dl, with
the concentration of cholesterol in mg/dl

Decision trees are particularly good at handling both discrete and continuous variables, so
they could be a good classifier for this dataset.

Cleaning up the data

The heart disease directory contains four datasets from different hospitals. We have created
a cleaned-up version of the dataset where patient records from all four hospitals are
aggregated together. You can load it in using NumPy:

import numpy as np 
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data = np.load('data/heart_disease.npy') 
data.shape 

(299,14)  (299 patient records with 14 features)

We can easily find out which ones are discrete and which ones are continous by counting the
number of unique values for each of them:

sorted_data = np.sort(data, axis=0) 
frequencies = (sorted_data[1:,:] != sorted_data[:-1,:]).sum(axis=0) + 1 
frequencies 

array([ 41, 2, 4, 50, 153, 2, 3, 92, 2, 40, 3, 4, 3, 5])

We can see that index 0,3,4,7,9 have significantly more unique values, and we’re inclined to
assume that these are the continous variables.
The last value is the diagnosis (outcome, output, y, object class label)

We can visualize hoew these are distributed:

import matplotlib.pyplot as plt 
 
plt.hist(data[:, 13], np.arange(0, 4 + 1.5) - 0.5) 
plt.title('The distribution of labels in the dataset') 
plt.ylabel('Count') 
plt.xlabel('Label') 
plt.grid() 
plt.show() 

We will simplify the outcome such that it is either belonging to class abscence (0) or to class
presence (1,2,3,4).

Splitting the dataset

In order to train and validate the decision trees, we split the dataset into a training and
validation set and separate each of these into three arrays:

1. x_discrete, a 2d-array of integers containing the discrete variables for each patient.
2. x_numeric, a 2d-array of floats containing the numeric variables for each patient.
3. y, a 1d-array of booleans indicating for each patient whether the diagnosis was class 0 or

not. This array contains the labels.

# Separate the array into features and labels 
x = data[:, :13] 
y = data[:, 13] 
 
# Transform classes to booleans 
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Entropy and information gain
A decision tree splits a dataset based on the values of certain features. To find the best
features and values to split on, we need some way to measure the quality of a split. We will
use information gain (which is based on the entropy in the nodes) for this purpose.

Entropy

For decision trees we use the information theoretic entropy, also known as Shannon entropy.
It tells us about the amount of information contained in a certain distribution of data.

# y = (y == 0), Numpy will repeat this equality check for each entry in the array 
# and return an array of booleans. 
y = y == np.zeros(len(y)) 
 
def split_dataset(x, y, random_state): 
    # Split data into train and validation 
    from sklearn.model_selection import train_test_split 
     
    # For this assignment, we state the random_state variable. 
    # This variable will be used as the seed for the random number generation so that th
    # Therefore, all exercises will give the same results every run. 
    x_train, x_validation, y_train, y_validation = train_test_split(x, y, test_size=0.3, 
 
    # Separate features into discrete and numeric arrays.  
    # You can verify that the split (with a boundary of 5) is correct by looking at the d
    x_train_discrete = x_train[:, np.where(frequencies < 5)[0]].astype(int) 
    x_train_numeric = x_train[:, np.where(frequencies > 5)[0]] 
    x_validation_discrete = x_validation[:, np.where(frequencies < 5)[0]].astype(int) 
    x_validation_numeric = x_validation[:, np.where(frequencies > 5)[0]] 
     
    return x_train_discrete, x_train_numeric, x_validation_discrete, x_validation_numeri
 
x_train_disc, x_train_num, x_validation_disc, x_validation_num, y_train, y_validation = 
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The best split is the split on a feature that separates most of the “1s” from the “0s” in the
resulting two sets. Entropy can thus also be regarded as a measure of purity, and we aim to
increase the purity of nodes.
An entropy close to 1.0 indicates that a subset of the data contains an equal number of
labels “1” and “0”, and thus a split resulting in such subsets is not useful.
In the graph below, the relation between entropy and the proportion of data points
belonging to one class (in this case ‘+’) in a data set is plotted.

As can be seen in the image, the entropy is maximal when the set contains an equal number
of “1” and “0” labels (At this point the uncertainty is the highest).
The entropy decreases as the data set becomes ‘purer’. Our goal is to decrease the entropy
by making proper splits.
The Shannon entropy for any number of classes is given as:

As mentioned, we will only decide whether an entry belongs to class 0  or not: True or False.
Thus, in or our case, we can re-write Shannon entropy as follows:

where 𝑝, the probability that an item has label 0, is equivalent to the ratio between the
number of items with label 0 (True) and the number of items with another label (False).
First complete the ratio()  function to compute p . The function, given a list of boolean
values as class labels, should return the ratio of True  labels in the list, e.g. 1.0  would
indicate the list only contains True  labels.

import math 
 
def ratio(labels): 
    if len(labels) == 0: 
        return 0 
    # START ANSWER 
    return labels[np.where(labels == 1)].size/len(labels) 
    # END ANSWER 
     
#print('Ratio for train set:', ratio(y_train)) 
#print('Ratio for validation set:', ratio(y_validation)) 
 
# Verify the correctness of the ratio function 

ϕ(p) = −∑
i

pi log2(pi)

ϕ(p) = −p log2(p) − (1 − p) log2(1 − p)
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assert np.isclose(ratio(y_train), 0.53110)     
assert np.isclose(ratio(y_validation), 0.54444)     

Next, we compute the entropy. Before we start writing the code, we deal with a possible
source of error: the computation of 0 𝑙𝑜𝑔2(0) (when 𝑝 is 0) will correctly result in a math
error. Then combine ratio() and entropy_sub() to compute the entropy() of a list of boolean
class labels.

def entropy_sub(p): 
    """ 
    Returns the value for p * log_2(p) 
    """ 
    # START ANSWER 
    if p == 0: 
        return 0 
    return p * math.log2(p) 
    # END ANSWER  
     
def entropy(labels): 
    """ 
    Returns the entropy of an array of labels, computed using equation (3.1.b) 
    """ 
    # START ANSWER 
    p=ratio(labels) 
    return -entropy_sub(p)-entropy_sub(1-p) 
    # END ANSWER  
 
print('Entropy for train set:', entropy(y_train)) 
print('Entropy for validation set:', entropy(y_validation)) 
 
# Verify the correctness of the entropy function 
assert np.isclose(entropy(y_train), 0.9972)     
assert np.isclose(entropy(y_validation), 0.9943)     

The entropies of s sets of labels can be combined using a weighted sum:

This will give us the overall entropy T of a split on variable m, where N is the size of the set
before the split,  is the size of the  set after the split, and  is the entropy of the 
set.

Complete the function split_entropy()  to compute this value for a list of labels and N .
This is nothing more than a weighted average for the entropy for each partition (node)
weighted against how large the partition is

def split_entropy(label_lists, N): 
    information = 0 # I (m is assumed to be class 0 or 1??) 
    # N is the size of the set before the split.... 
     
     
    for label_list in label_lists: 
        # START ANSWER
        information += entropy(label_list) * label_list.size/N 
        # END ANSWER 
    return information 
 
# Verify the correctness of the split_entropy function 
labels = np.array([0, 0, 0, 0, 1, 1, 1, 1]) 
N = len(labels) 
print('Entropy of the data before splitting:', entropy(labels)) 

Im =
s

∑
j=1

ϕ(pj)
Nj

N

Nj jth ϕ(pj) jth
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# Worst case split 
labels_list = np.array([[0, 0, 1, 1], [0, 0, 1, 1]]) 
print('Worst case:', split_entropy(labels_list, N)) 
assert np.isclose(split_entropy(labels_list, N), 1.0)     
 
# Better split 
labels_list = np.array([[0, 0, 0, 1], [1, 1, 1, 0]]) 
print('Better:', split_entropy(labels_list, N)) 
assert np.isclose(split_entropy(labels_list, N), 0.81128)     
 
# Perfect split 
labels_list = np.array([[0, 0, 0, 0], [1, 1, 1, 1]]) 
print('Optimal:', split_entropy(labels_list, N)) 
assert np.isclose(split_entropy(labels_list, N), 0.0)     

Information gain

Information Gain (IG) measures how much the entropy changes by making a specific split, i.e.
the relative gain in predictability of the data by creating a specific distribution of labels
IG is defined as the entropy of the original distribution  minus the entropy of the split
distribution  resulting from the split on variable m .

The IG thus depends on two things:
the current list of labels.
How these labels are divided into new distributions by the split.

Creating decision trees
With the data turned into a usable format and the functions to measure entropy and IG
ready, we can start building the actual decision tree
Classes are a great way to represent trees: each DecisionTree object class represents a node
(or subtree) in the tree and we only have to store references to that node’s children to build
the structure of the tree. We will distinguish two types of ‘nodes’:

DiscreteTree nodes, split on the basis of the value a discrete variable
NumericTree nodes, split on the basis of the value of a numeric variable

Because these two classes are very similar, we will use inheritance to avoid redundancy.
We create a general DecisionTree node and then turn it into a DiscreteTree or NumericTree
instance based on the best possible split

def information_gain(labels, indices):  
    labels_list = [] 
    for index_list in indices: 
        labels_list.append(labels[index_list]) 
    # START ANSWER 
    return entropy(labels)-split_entropy(labels_list, labels.size) 
    # END ANSWER 
     
labels = np.array([0, 0, 0, 0, 1, 1, 1, 1]) 
labels_list = np.array([[0, 0, 0, 1], [1, 1, 1, 0]]) 
 
# Now we create `indices` that correspond to the indices of the split (compare them with 
# You will have to write code that creates such a list later. 
indices = np.array([[0, 1, 2, 4], [5, 6, 7, 3]]) 
 
# Verify the correctness of the information_gain function 
assert np.isclose(information_gain(labels, indices), 0.18872) 

ϕ(p)
Im

IGm = ϕ(p) − Im
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from collections import defaultdict 
 
class DecisionTree(object): 
    def __init__(self, data_discrete, data_numeric, labels, tree_type=0, thres=0.1): 
        """ Creates a Decision Tree, based on the following arguments: 
                data_discrete - A 2D array of ints, each row containing the discrete feat
                data_numeric - A 2D array of floats, each row containing the numeric feat
                labels - An array of boolean class labels, each corresponding to a 
                        DataRow instance of a patient at the same index.  
                tree_type - 0: create the Tree with the highest IG every node  
                            1: create DiscreteTrees only 
                            2: create NumericTrees only 
                thres - The cutoff value for IG, to stop splitting the tree. 
                        Below this value the node becomes a leaf node and no 
                        further splits are made. 
            N.B. This function has already been provided and does not need to be modifie
        # Store the basic attributes for any DecisionTree 
        self.data_discrete = data_discrete 
        self.data_numeric = data_numeric 
        self.labels = labels 
        self.tree_type = tree_type 
        self.thres = thres 
         
        # Compute the current ratio of labels and assign this node the most common label 
        self.ratio = ratio(self.labels) 
        # This will assign a boolean value to self.label, as `self.ratio >= 0.5` is a boo
        self.label = self.ratio >= 0.5 
         
        if self.tree_type == 1: 
            # Convert this DecisionTree to a DiscreteTree and perform the split 
            discr_tree = DiscreteTree(self) 
            self.convert_tree(discr_tree) 
        elif self.tree_type == 2: 
            # Convert this DecisionTree to a NumericTree and perform the split 
            numer_tree = NumericTree(self) 
            self.convert_tree(numer_tree) 
        else: 
            # If no specific type has been given (tree_type: 0), we determine which type 
            # by computing both options and comparing the IG. 
            # Create a DiscreteTree and NumericTree, passing all the stored attributes 
            # as an argument, and compute the best possible split for each 
            discr_tree = DiscreteTree(self) 
            numer_tree = NumericTree(self) 
             
            # Based on the results of the split computations, replace this generic 
            # DecisionTree node with either a DiscreteTree or a NumericTree node 
            if discr_tree.info_gain > numer_tree.info_gain: 
                self.convert_tree(discr_tree) 
            else: 
                self.convert_tree(numer_tree) 
         
        # Create an empty dictionary to contain the (possible) branches from this node, 
        # where the values should be new DecisionTree nodes, or None if not present 
        self.branches = defaultdict(lambda: None) 
         
        # Check if this split produced a high enough IG to actually create 
        # the resulting branches with new split nodes below it, 
        # else no split is carried out and the original node is a leaf node 
        self.leaf = self.info_gain < self.thres 
        if not self.leaf: 
            self.create_subtrees() 
     
    def store_split_values(self, feat_index, feat_values, indices, info_gain): 
        """ Stores the values of the passed parameters as object attributes. Is intended 
            to store the results of a split computation for either a DiscreteTree or a 
            NumericTree. The stored attributes are: 
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                feat_index - The index of the feature on which the split was 
                    based.
                feat_values - A list of the possible values that this split feature can 
                    take, each corresponding to a different branch in the DecisionTree 
                indices - A list of index lists, with each list containing the indices 
                    defining a subset of the current data and label attributes, as 
                    computed by the split. The order of these subsets should match the 
                    order of the corresponding feat_values used to define the branches 
                    of the split. 
                info_gain - IG computed for this split 
            N.B. This function has already been provided and does not need to be modifie
        self.feat_index = feat_index 
        self.feat_values = feat_values 
        self.indices = indices 
        self.info_gain = info_gain 
     
    def convert_tree(self, new_tree): 
        """ Converts this object to the tree passed as the new_tree parameter. 
            All attributes from the new_tree are transfered. 
                new_tree - Either a DiscreteTree or a NumericTree instance, to which 
                            this object is converted 
            N.B. This function has already been provided and does not need to be modifie
        self.__class__ = new_tree.__class__ 
        self.__dict__ = new_tree.__dict__ 
     
    def create_subtrees(self): 
        """ Creates the different subsets of the current data and labels, and makes a 
            a new DecisionTree node for each such subset, based on the indices attribute 
            stored after the computed split. These new DecisionTrees are stored in the  
            branches attribute, a dictionary mapping the value of a variable from the 
            split to the new DecisionTree created by selecting that value for the split.
        for i, key in enumerate(self.feat_values): 
            subset_discrete = self.data_discrete[self.indices[i]] 
            subset_numeric = self.data_numeric[self.indices[i]] 
            subset_labels = self.labels[self.indices[i]] 
            subtree = DecisionTree(subset_discrete, subset_numeric, subset_labels, tree_t
            self.branches[key] = subtree 
         
    def classify(self, row_discrete, row_numeric): 
        """ Traverses the DecisionTree based on the values stored in the given row and 
            returns the most common label in the resulting leaf node. 
                row - The index of the row being classified""" 
        # Option 1: node is a leaf 
        if self.leaf: 
            return self.label 
         
        subtree = self.get_subtree(row_discrete, row_numeric) 
         
        # Option 2: no valid subtree 
        if subtree is None: 
            return self.label 
         
        # Option 3: there is a valid subtree 
        return subtree.classify(row_discrete, row_numeric) 
         
    def split(self): 
        """ Must be implemented by the subclass based on the specific type of split perfo
            The function here is only to ensure it is implemented, and should not be mod
        raise NotImplementedError 
     
    def get_subtree(self, instance): 
        """ Must be implemented by the subclass based on the specific type of split perfo
            The function here is only to ensure it is implemented, and should not be mod
        raise NotImplementedError 
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Discrete split

This function should, for every discrete variable in the data, try to create a split based on that
variable and compute the Information Gain of the resulting split.
For discrete splits, we split the set into subsets: one for each discrete label. For example, if
there are three possible labels for a certain feature, we should return three subsets.
The question is: which feature should we pick to split on? You can find out by performing the
following steps:

For each feature:
Split the set into subsets corresponding to each discrete label.
Compute the information gain for this split.

Split the dataset based on the feature with the highest information gain.
Once the best feature for the split has been determined, the results of the split need to be
stored in the instance, so they can be used to build the rest of the tree.
Let’s assume the algorithm decides to split on chest pain type (#9). The following attributes
should then be stored when splitting

The index of the chest feature we split on
A list of discrete options for this feature (e.g. [0, 1, 2, 3], indicating the type of chest pain)
A list of indices per option, so the first sublist contains the indices of all rows with chest
pain type = 0, etc. (e.g. [[0, 3, 4, 5, 7, 9, …], [8, …], [2, 6, …], [1, …]])
The information gain resulting from the split (e.g. 0.8)

These attributes can then be used to build the rest of the tree.

def create_indices_list(column): 
    """ Creates the indices list, containing for each possible value of the current feat
        the indices of corresponding rows (e.g. [[0, 2], [1, 3], ...] where the current 
        feature is 0 in rows 0 and 2). 
        Returns the list of indices for all feature values and as second output a list of
            column - The column of one feature from the data.""" 
    # START ANSWER 
    options = np.unique(column) 
    indices = [np.where(column == option)[0].tolist() for option in options] 
    return indices, options 
    # END ANSWER 
     
vals = np.array([0, 0, 1, 0, 1, 1, 2, 2]) 
indices_list, feat_values = create_indices_list(vals) 
 
# Verify the correctness of the create_indices_list function 
assert ([[*i] for i in indices_list] == [[0, 1, 3], [2, 4, 5], [6, 7]]) 
assert np.array_equal(feat_values, [0, 1, 2]) 

class DiscreteTree(DecisionTree): 
    def __init__(self, dtree): 
        """ Takes a DecisionTree as initialization parameter and copies all its 
            attributes. Then calls the split() function to determine the optimal 
            discrete variable to split this subset of the data on. 
                dtree - The DecisionTree instance whose attributes are copied to this 
                        DiscreteTree instance. 
            N.B. This function has already been provided and does not need to be 
            modified.""" 
        self.__dict__ = dtree.__dict__.copy() 
        self.split() 
 
    def split(self): 
        """ Determines the best discrete variable to split the current dataset on, 
            based on the IG resulting from the split. For this best split variable, the 
            function stores several resulting attributes from the split, using the 
            store_split_values function. See the documentation of store_split_values 
            for an overview of what should be stored.""" 
        max_feat = None 
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Creating subtrees

If we were to repeat this process of splitting each node, we end up with a tree structure
But we need to stop at a certain moment to avoid building infinite trees and to avoid
overfitting.
There are quite a few strategies to decide when to stop. The simplest of these is just to stop
splitting when the Information Gain of a split drops below a certain threshold.

Classifying patients
With this structure built, classifying a new patient record is done by traversing the tree given
a patient record.
At each DecisionTree node, we have three options, based on the type of node:

The node is a leaf node, in which case the classification will be the most common label of
that node
The node does not have a valid subtree for the splitted value, so the classification will
also be the node label
The node has a subtree for the splitted value, in which case you can recursively continue
classifying on the subtree

Validating patient records
a validate() function which takes as input a trained decision tree, a validation set of patient
records and corresponding labels, and returns the percentage that is classified correctly.

        max_feat_values = None 
        max_split = None 
        max_ig = 0 
         
        for feat in range(self.data_discrete.shape[1]): 
            # 1. Call create_indices_list() for the feature column. 
            # 2. Compute the IG of the split 
            # 3. If IG > max IG, update max values 
             
            # START ANSWER 
            indices, feat_values = create_indices_list(self.data_discrete[:,feat]) 
            IG = information_gain(self.labels, indices) 
            if IG > max_ig: 
                max_feat = feat 
                max_feat_values = feat_values 
                max_split = indices 
                max_ig = IG 
            # END ANSWER 
             
        self.store_split_values(max_feat, max_feat_values, max_split, max_ig) 
             
    def get_subtree(self, row_discrete, row_numeric): 
        """ Returns the subtree one branch down. 
            Returns None if the value was not present at the split. 
                row_discrete - array of the discrete values 
                row_numeric - array of the numeric values""" 
        value = row_discrete[self.feat_index] 
        return self.branches.get(value, None) 

def validate(decision_tree, data_discrete, data_numeric, labels): 
    """ Classifies all patient records and compares the outcome to  
        the provided labels. Returns the percentage of elements that was classified 
        correctly. 
            data_discrete - A 2D array of ints, each row containing the discrete feature
            data_numeric - A 2D array of floats, each row containing the numeric feature
            labels - List of boolean labels each belonging to a patient record""" 
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Optimizing splits
The numeric split is based on a split boundary, where all values smaller than the boundary
are placed in one branch, and those greater or equal in the other branch.
Implementing the find_best_split function. This function tries every possible split boundary
for every feature and uses the split with the best IG overall.

    # START ANSWER 
    result = 0 
    for i in range(len(data_discrete)): 
        subtree = decision_tree.get_subtree(data_discrete[i], data_numeric[i]) 
        if subtree != None: 
            if subtree.classify(data_discrete[i], data_numeric[i]) == labels[i]: 
                result += 1 
    return result / len(data_discrete) 
    # END ANSWER 

def find_best_split(data, labels): 
    max_feat = None 
    max_split = None 
    max_ig = 0 
    max_boundary = None 
 
    for feat in range(data.shape[1]): 
        col = data[:, feat] 
        for curr_boundary in col: 
            # START ANSWER 
            indices = [] 
            indices.append(np.where(col < curr_boundary)[0].tolist()) 
            indices.append(np.where(col >= curr_boundary)[0].tolist()) 
            IG = information_gain(labels, indices) 
            if IG > max_ig: 
                max_feat = feat 
                max_split = indices 
                max_ig = IG 
                max_boundary = curr_boundary 
            # END ANSWER 
    return max_feat, max_split, max_ig, max_boundary 
 
max_feat, max_split, max_ig, max_boundary = find_best_split(x_train_num[:10,:], y_train[
print(max_split, max_feat, max_ig, max_boundary) 
 
# Verify the correctness of the find_best_split function 
assert ([[*i] for i in max_split] == [[1, 3, 5, 6, 7], [0, 2, 4, 8, 9]]) 
assert np.array_equal(feat_values, [0, 1, 2]) 
assert max_feat == 3 
assert np.isclose(max_ig, 0.27807)   
assert max_boundary == 159.0   

class NumericTree(DecisionTree): 
    def __init__(self, dtree): 
        """ Takes a DecisionTree as initialization parameter and copies all its 
            attributes. Then calls the split() function to determine the optimal 
            numeric variable to split this subset of the data on. 
                dtree - The DecisionTree instance whose attributes are copied to this 
                        NumericTree instance. 
            N.B. This function has already been provided and does not need to be modifie
        self.__dict__ = dtree.__dict__.copy() 
        self.split() 
 
    def split(self): 
        """ Determines the best boundary for any numeric variable to split the 
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Threshold
Different threshold (to decide when to stop splitting) when creating a DecisionTree yield
different accuracies
First let’s define accuracy

Then let’s plot the different accuracies for different threshold values

threshold_values = np.linspace(0.00, 0.3, 10) 
 
accuracies_hybrid = [] 
accuracies_discrete = [] 
accuracies_numeric = [] 

            current dataset on, based on the IG resulting from the split. For this 
            best split boundary, the function stores several resulting attributes 
            from the split, using the store_split_values function. See the 
            documentation of store_split_values for an overview of what should 
            be stored. In addition, one more attribute is stored in the numeric 
            case, namely the boundary value used for the split.""" 
        max_feat, max_split, max_ig, boundary = find_best_split(self.data_numeric, self.
        self.boundary = boundary 
         
        max_feat_values = [False, True] 
        self.store_split_values(max_feat, max_feat_values, max_split, max_ig) 
         
    def get_subtree(self, row_discrete, row_numeric): 
        """ Returns the subtree one branch down. 
                row_discrete - array of the discrete values 
                row_numeric - array of the numeric values""" 
        value = row_numeric[self.feat_index] >= self.boundary 
        return self.branches.get(value, None) 

def get_accuracy(threshold = 0.1, n_iterations = 50, standarization=False): 
    hybrid_accuracy = 0 
    discrete_accuracy = 0 
    numeric_accuracy = 0 
     
    for i in range(n_iterations): 
 
        x_train_disc, x_train_num, x_validation_disc, x_validation_num, y_train, y_valid
         
        # START ANSWER
        hybrid_tree = DecisionTree(x_train_disc, x_train_num, y_train, tree_type = 0, th
        discrete_tree = DecisionTree(x_train_disc, x_train_num, y_train, tree_type = 1, t
        numeric_tree = DecisionTree(x_train_disc, x_train_num, y_train, tree_type = 2, t
        hybrid_accuracy += validate(hybrid_tree, x_validation_disc, x_validation_num, y_v
        discrete_accuracy += validate(discrete_tree, x_validation_disc, x_validation_num
        numeric_accuracy += validate(numeric_tree, x_validation_disc, x_validation_num, y
        # END ANSWER 
 
    hybrid_accuracy /= n_iterations 
    discrete_accuracy /= n_iterations 
    numeric_accuracy /= n_iterations 
     
    return hybrid_accuracy, discrete_accuracy, numeric_accuracy 
 
hybrid, discrete, numeric = get_accuracy(0.1, standarization=False) 
 
print('Hybrid tree accuracy:', hybrid) 
print('Discrete tree accuracy:', discrete) 
print('Numeric tree accuracy:', numeric) 
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for threshold in threshold_values: 
    hybrid, discrete, numeric = get_accuracy(threshold, n_iterations=10) 
    accuracies_hybrid.append(hybrid) 
    accuracies_discrete.append(discrete) 
    accuracies_numeric.append(numeric) 
     
_, axis = plt.subplots() 
axis.plot(threshold_values, accuracies_hybrid, label = 'hybrid') 
axis.plot(threshold_values, accuracies_discrete, label = 'discrete') 
axis.plot(threshold_values, accuracies_numeric, label = 'numeric') 
 
axis.legend() 
axis.set_xlabel('Threshold') 
axis.set_ylabel('Accuracy') 
plt.title('DecisionTree accuracy for different threshold values') 
plt.grid() 
plt.show() 

Unsupervised learning

Dimentinality reduction
We may be able to improve the “distinctiviness” of the classifier by using more features,
however some features are more useful than others, some being compeletely useless.
Reducing the dimension has multiple benefits:

Curse of dimensionality: more features require more data to classify the object
Speed
Size
2D/3D visual discovery of data structure (64 d is impossible for a human to grasp)
Removes redundancy features (i.e. that have strong correlation)
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Removes noisy features
Intrinsic dimensionality: A data set might be reduced to a lower dimension without loss
of information

Multiple factors come in to play when deciding which features to select. The statistical ones
include

Variance:
The farther away the points are from the mean, the less it is like a constant (with the
same value for both classes), which then it’d be rather useless. So the more variance
the better

Confidence (that it is a distinctive feature)
Other option: combine features together… leads to PCA

Principal component Analysys (PCA)
You make up a linear combination of n features (into a new feature in a smaller dimension),
thus giving a (different) weight to each feature that creates a new one, which reduces the
dimension of the dataset.

The choice for these weights is based on PCA:
Principal Components Analysis maps the data onto a lienar subspace, such that the
variance of the projected data is maximized.

Linear algebra re-cap
Variance vs covariance

Variance = the average squared difference of the data points against the mean
Covariance = the direction in wich two random variables change when they are compared to
each other

The covariance matrix contains all the covariances
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We can shift the data points to have 0 means to make computation easier:

Eigen vectors and eigen values

Eigen vector is a type of vector such that when transformed by multiplying it with a given
matrix, the vector outcome is in the same same direction as the inputted (eigen) vector.
That is, the outcome is a scaled version of the input. The scale is called eigen value
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Eigenpairs can be found with the characteristic equation:

Alternatively, you can use “power itereation”, which bruteforces the calculation below until it
converges:

Then calculate  as usual, by solving  or by doing 
And get the second eigen pair by using power iteration on the new Matrix M*:

 is also known as the outer product of v with itself
Eigen-decomposition is the factorization of a matrix into a principal form such that the
matrix is represented in terms of it’s eigen values and eigen vectors
Only diagonalizable matrices can be factorized in this way

Since we are using the covariance matrix, which is by definition diagonalizable, we will
always be able to decompose it.

det(A − λI) = 0

xk+1 :=
Mxk

||Mxk ||

λ1 Mx = λx $λ = v
⊺Mv

M ∗ = M − λ1xx
T

xxT
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Maximizing the variance

Principal components (of the factorized version of the covariance matrix) are given by the
eigen vectors of the covariance matrix
To maximize variance:

The first principal component is given by the eigen vector with the highest eigen value

PCA issues
Covariance is sensitive to large scaled values

Can be fixed by normalizing values (with 0 mean and 1 standard deviation): 
PCA assumes that underlying subspace is linear (1d = line, 2d = plane, 3d = cube? etc). If it
isn’t then PCA isn’t the best choice
PCA is unsupervised, hence:

maximizes overall variance of the data along a small set of directions
does not know anything about class labels
can pick direction that makes it hard to separate classes

too expensive for many applications

Clustering

x−μ

σ
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K-means clustering

Given k, the k-means algorithm works as follows:
Choose k (random) data points (seeds) to be the initial centroids, cluster centers
Assign each data point to the closest centroid
Re-compute the centroids using the current cluster memberships
If a convergence criterion is not met, repeat steps 2 and 3
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Convergence criterion include:
no (or minimum) re-assignments of data points to different clusters
no (or minimum) change of centroids
minimum decrease in the sum of squared errors (SSE)

Hirearchical clustering
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Pros
Dendrogram gives overview of all possible clusterings
Linkage type allows to find clusters of varying shapes
Different dissimilarity measures can be used

Cons
Computationally intensive
Clustering limited to “hierarchical nestings”

Lab: Unsupervised learning
Learning without examples

When we want to learn from data without knowing the labels, we apply unsupervised
learning: different techniques to make sense of data from the data itself.
An example of a task where unsupervised learning can be successfully applied is
dimensionality reduction: trying to find the ‘essential’ features or combinations of features to
describe objects.

Finding the eigen pairs
The Power Iteration method is a relatively simple method for calculating eigenvectors for a
square  matrix . The process works as follows:

1. Construct a vector  of ones of length .
2. Until convergence, compute: 

 where  is the (L2) norm (length) of .

3. Output vector  as the principal eigenvector of .
4. Compute  as: 

 
5. If more eigenvectors are required, go to step 1 with  as input.

import numpy as np 
import numpy.linalg as la 

(D × D) M

v0 D × 1

vk+1 =
Mvk

||Mvk||
||Mvk|| Mvk

v M
M ∗

λ = v
⊺Mv M ∗ = M − λ × vv

⊺

M ∗
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you will need to read data from a file. Use the read_data function below to do this.

def read_data(file_name): 
    """ 
    This function loads a given matrix data file into a numpy matrix. 
    :param file_name: name of the file to be read 
    :return: the data as a numpy array 
    """ 
     
    lines = [line.rstrip('\n') for line in open(file_name)] 
 
    result = np.zeros((len(lines), len(lines[0].split(" ")))) 
 
    for (i, line) in enumerate(lines): 
        line = line.split(" ") 
        for (j, number) in enumerate(line): 
            result[i][j] = float(number) 
 
    return result 

# Read the data and call the power_iteration function for this exercise. 
 

 
def power_iteration(matrix, n_vectors, e): 
    """ 
    This function returns a list with `n_vectors` amount of eigenvectors (numpy vectors) 
    `matrix` and the convergence parameter `e`. 
    :param matrix: the square matrix 
    :param n_vectors: the number of eigenvectors 
    :param e: the convergence parameter 
    :return: the list of eigenvectors found 
    """ 
    assert (matrix.shape[0] == matrix.shape[1] & matrix.shape[1] >= n_vectors) 
 
    eigen_vectors = list() 
     
    # START ANSWER 
    v_0 = np.ones(matrix.shape[0]) 
    v_k1 = v_0 
    M_v0 = matrix @ v_0 
    i = e+1 
    j = 0 
     
    while e <= i: 
        M_v0 = matrix @ v_0 
        v_k1 = M_v0/la.norm(M_v0) 
         
        i = abs(la.norm(v_0) - la.norm(v_k1)) 
        v_0 = v_k1   
         
    principal = v_k1 
    principal_v = principal.T @ matrix @ principal 
    eigen_vectors.append(principal) 
     
    matrix_star = matrix  -(principal_v * np.outer(principal,principal)) 
     
    while n_vectors > 1: 
        eigen_vectors += power_iteration(matrix_star, n_vectors-1, e) 
        n_vectors -= 1   
     
    # END ANSWER 
     
    return eigen_vectors 
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# START ANSWER 
power_iteration(read_data("data/matrix.txt"),2,1.0e-100) 
# END ANSWER 

You will see that the subsequent calculated eigen pairs have smaller eigen values.

Principal component analysis
We will use Principal Component Analysis to find the principal components in a dataset.
Principal components can be seen as vectors along which most variance is found in the data
We will now create a matrix that reads data from data/gaussian.txt . The size of this matrix
is , where  is the number of points in the dataset. Then, we will use plot_data()  to
plot the data.

import matplotlib.pyplot as plt 
%matplotlib inline 
 
def plot_data(data, eigen_vectors = None): 
    """ 
    This function plots the data of the given `eigen_vectors` with a scatterplot of the m
    If no eigenvectors are available, it just plots the data 
    :param data: the data 
    :param eigen_vectors: the eigenvectors 
    """ 
    # Plot the features as a scatterplot 
    x = [[el[0]] for el in data] 
    y = [[el[1]] for el in data] 
    plt.scatter(x, y) 
     
    if eigen_vectors: 
        # Plot the two PCA lines 
        for vector in eigen_vectors: 
            line = _set_line(vector) 
            plt.plot(line[0], line[1], 'red') 
 
    plt.show()
     
def _set_line(vector): 
    # Fixed number for the line size of this plot 
    line_size = 6 
 
    # Set the coordinates for the PCA lines 
    axis = np.zeros((2, 2)) 
    axis[0][0] = vector[0] * line_size 
    axis[1][0] = vector[1] * line_size 
    axis[0][1] = vector[0] * -line_size
    axis[1][1] = vector[1] * -line_size
    return axis 
 
data = read_data("data/gaussian.txt") 
plt.title('The 2D data points') 
plt.xlabel('x') 
plt.ylabel('y') 
plot_data(data) 

N × 2 N
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The principal components of a dataset can also be seen as the eigenvectors of the
covariance matrix. Compute the covariance matrix of the Gaussian dataset as follows:

where  is the mean row of  dimensional data matrix . Next, compute the
eigenvectors of this covariance matrix and plot the vectors accordingly.

def covariance(data): 
    """ 
    This function computes the computes the covariance matrix of a given `data`. 
    :param data: the starting data 
    :return: the covariance matrix  
    """ 
    # START ANSWER 
    mean = np.mean(data, axis=0) 
    matrix = np.array([0,0]) 
     
    for i in range(data.shape[0]): 
        matrix = matrix + 1/data.shape[0] * np.outer(data[i]-mean,data[i]-mean) 
         
    # END ANSWER 
    return matrix 

# Now let's check your implementation with the numpy built-in cov function.  
data = read_data("data/gaussian.txt") 
your_cov_matrix = covariance(data) 
np_cov_matrix = np.cov(np.transpose(data)) 
 
# Your value might differ slightly as the numpy built-in cov function is a bit more prec
err_msg = "Your covariance matrix is allowed to differ from the numpy matrix, but no mor
np.testing.assert_allclose(np_cov_matrix, your_cov_matrix, atol=0.025, err_msg=err_msg) 

# Use power iteration method to compute the eigenvectors using your covariance matrix and
# The plot should contain both the dataset (like in the above plot) and the eigenvectors
# START ANSWER 
V = power_iteration(your_cov_matrix, your_cov_matrix.shape[0], 1.0e-100) 
v_1 = V[0].T @ your_cov_matrix @ V[0] 
v_2 = V[1].T @ your_cov_matrix @ V[1] 
 
 
V = np.array([v_1 * V[0], v_2 * V[1]]) 
origin = np.array([[0, 0],[0, 0]]) # origin point 
 
plt.quiver(*origin, V[:,0], V[:,1], angles='xy', scale_units='xy', color=['r','b','g'], 
plt.xlim(-3, 3) 

cov(X) =∑ (X − x̄)⊺(X − x̄)
1
N

x̄ N × D X
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PCA of faces
you will need to use the create_image  function presented below. 
Note: If you have trouble installing PIL, try pip install Pillow

import math 
from PIL import Image 
 
def create_image(fv): 
    """ 
    This function creates a grey image based on the given feature vector `fv`. 
    :param fv: the feature vector 
    :param title: the title of the image 
    """ 
    width = height = int(math.sqrt(len(fv))) 
 
    # Filter label and threshold from data 
    img = Image.new('L', (width, height), "black") 
    pixels = img.load() 
    min_v = min(fv) 
    max_v = max(fv) 
 
    # Iterate over each pixel and set p value 
    j = 0 
    for (idx, p) in enumerate(fv): 
        i = idx % width 
        pixel = int(((p - min_v) / (max_v - min_v) * 255)) 
        pixels[i, j] = pixel 
        if i == (width - 1): 
            j += 1 
 
    # Resize image to make it better visible 
    img = img.resize((256, 256), Image.ANTIALIAS) 
    return img

Create a matrix object and let it read in data/faces.txt . This matrix is of size , where
N is the number of images in the dataset and D is the number of pixels per image (in this
case 32 × 32, so D = 1024). Similar as before, compute the covariance matrix. Use this
covariance matrix to compute the first 10 principal components and visualize them using the
given create_image()  function. 
Note: create_image()  only accepts rows of the dataset ( lists ), use the transpose
function of numpy  to convert columns to rows.

plt.ylim(-3, 3) 
plt.show() 
 
# END ANSWER 

N × D
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from IPython.display import display # To display images, usage: display(image) 
 
data = read_data("data/faces.txt") 
 
# Display image of the mean 
mean = np.mean(data, axis=0) 
print("Mean image") 
mean_image = create_image(mean) 
display(mean_image) 
 
# Now plot the image of each of the eigenvectors of the given dataset 
# START ANSWER 
cov_matrix = np.cov(np.transpose(data)) 
V = power_iteration(cov_matrix, 10, 1.0e-100) 
 
for i in range(10): 
    mean_image = create_image(V[i]) 
    display(mean_image) 
 
# END ANSWER 

mean face:

(principal) eigen vector face (other 9 vector faces are skipped here):

You can see how the eigen vector highlights the mouth, the eyes, the nostrils and the top of
the forehead as the regions of the face with most variance

K-means for the most varied features (audio of digits)
In this assignment, you will work with the TIDIGITS dataset. This dataset was created by Texas
Instruments (hence, TI) and is a set of voice recordings of digits. You can go ahead and give
the audio files a listen in the data folder: data/tidigits/... .
Before we can use any clustering algorithms on this data, we need a way to describe our
audio files in a way that a computer can understand. An audio file is read as an array, where
each value in the array is the amplitude of the audio at a the corresponding time. We refer to
this data as raw waveforms. It’s infeasible to use the raw data for clustering. We need to
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extract a limited number of features to describe each audiofile: we perform feature
extraction.
We will extract MFCC features, which are often used for speech processing. To extract these,
we split the audio file in frames of 25 ms each. Next, we apply a number of complicated
operations to retrieve 13 features per frame. If a file is split into, for example, 100 frames, this
means we have 13 * 100 = 1300$ features! To bring this number down, we sample 5 frames
from regular intervals (the size of the interval is dependent on the length of the audio file)
and flatten this to an array of $5 ∗ 13 = 65$ features (this number is thus independent of the
length of the audio file).
Run the code below to extract MFCC features for the 150 files provided. This will give you a
dataset with 50 ‘one’ audiofiles, 50 ‘two’ audiofiles and 50 ‘three’ audiofiles.

Before doing this, you need to have python_speech_features  and soundfile  installed. These
can be installed with the command:

pip install python_speech_features SoundFile 

If this fails, you can use the backup dataset that is provided down below.

import numpy as np 
import python_speech_features as features 
import soundfile as sf 
import numpy as np 
import matplotlib.pyplot as plt 
 
%matplotlib inline 
 
def extract_mfcc(sound, sample = 5): 
    # Read in the flac file 
    data, samplerate = sf.read(sound) 
     
    # Extract MFCC features. 
    # For each frame (25ms segment of audio) in the file, we get 13 MFCC features, 
    # giving us a [n x 5] matrix of features 
    mfcc_feat = np.asarray(features.mfcc(data,samplerate), dtype='float32') 
     
    # We sample 5 frames and flatten the feature vectors into one large 'supervector'. 
    idx = np.floor(np.linspace(0, mfcc_feat.shape[0] - 1, sample)).astype(int) 
    mfcc_sampled = mfcc_feat[idx] 
    mfcc_feat_vector = mfcc_sampled.flatten() 
     
    return mfcc_feat_vector 
 
# Read audiofiles and extract MFCC feature vectors 
one = [] 
for i in range(50): 
    feat = extract_mfcc("data/tidigits/1/{:d}.flac".format(i)) 
    one.append(feat) 
two = [] 
for i in range(50): 
    feat = extract_mfcc("data/tidigits/2/{:d}.flac".format(i)) 
    two.append(feat) 
three = []
for i in range(50): 
    feat = extract_mfcc("data/tidigits/3/{:d}.flac".format(i)) 
    three.append(feat) 
 
# Concatenate into one large dataset 
X_train = np.concatenate((one, two, three)) 
ones = np.ones(50) 
y_train = np.concatenate((ones, ones * 2, ones * 3)).astype(int) 
np.savetxt("data/tidigits_features.txt", X_train) 
np.savetxt("data/tidigits_targets.txt", y_train) 
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Feature reduction

Now we have 150 data points (i.e. 150 audio files) and each data point consists of 65
features describing the audio file. Let’s plot the the first two features.

plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train) 
plt.title('The first two features of the data') 
plt.xlabel('Feature 1') 
plt.ylabel('Feature 2') 
plt.show() 

Obviousy these (arbitrarily selected) features are not useful for making up distinct groups.
But we can use PCA to get the eigen vectors of the features with most variance (and hence
easier to group into distinct groups)
We’ll go for 4 features, this involves:

compute the covariance matrix of the dataset
compute the first four eigenvectors (i.e. principal components) of the covariance matrix
reorient the data points from the original axes to the ones represented by these principal
components (this is done using the dot product).

import numpy.linalg as la 
# First compute the covariance matrix of the dataset 
 
# START ANSWER 
cov_X = np.cov(np.transpose(X_train)) 
# END ANSWER 
 
# Next, retrieve four eigenvectors of the covariance matrix 
# CHALLENGE: you can use your own implementation of power iteration from part I of the la
 
# START ANSWER 
def normalize(v): 
    return v / la.norm(v) 
 
 
def eigen_value(matrix, v): 
    return np.matmul(np.matmul(v.T, matrix), v)[0][0] 
 
 
def power_iteration(matrix, n_vectors, e): 
    """ 
    This function returns a list with `n_vectors` amount of eigenvectors (numpy vectors) 
    `matrix` and the convergence parameter `e`. 
    :param matrix: the square matrix 
    :param n_vectors: the number of eigenvectors 
    :param e: the convergence parameter 
    :return: the list of eigenvectors found 
    """ 
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Clustering algorithm

We will now implement the (original) k-means clustering algorithm. This algorithm works as
follows: we start with $k$ clusters and pick some random centre (mean) for each cluster.
Next, we assign points to each cluster based on the distance to the centres and we update
the centre to be the mean of all points in that cluster. This is repeated until the centres have
converged.
Pointwise, the steps of the k-means clustering algorithm approach are as follows:

initialize k cluster centers at random locations
assign each point to a cluster
update the cluster centers
go to step 2 unless converged or a certain number of iterations has been reached.

    assert (matrix.shape[0] == matrix.shape[1] & matrix.shape[1] >= n_vectors) 
 
    eigen_vectors = [] 
    for i in range(n_vectors): 
        # 1. Create vector consisting of ones 
        v = np.ones((matrix.shape[0], 1)) 
        v_ = normalize(np.matmul(matrix, v)) 
         
        # 2. Compute until convergence -> L2 norm of the difference between v_ and v < e 
        while la.norm(v - v_) >= e: 
            v = v_ 
            v_ = normalize(np.matmul(matrix, v)) 
         
        # 3. Output vector v as the principal eigenvector of M 
        eigen_vectors.append(v_) 
         
        # 4. Compute M* 
        matrix = matrix - eigen_value(matrix, v_) * np.matmul(v_, v_.T) 
     
    return eigen_vectors 
             
eigenvectors = power_iteration(cov_X, 4, 10 ** -5) 
# END ANSWER 
 
# Finally, we project our points onto the eigenvectors (principal components) using matr
X_train_reduced = np.zeros((X_train.shape[0], 4)) 
for i in range(len(X_train)): 
    X_train_reduced[i, :] = np.matmul(X_train[i, :].T, eigenvectors).T 
         
# And plot the points with the new data 
plt.scatter(X_train_reduced[:, 0], X_train_reduced[:, 1], c=y_train) 
plt.title('The data represented by the principal components') 
plt.xlabel('First principal component') 
plt.ylabel('Second principal component') 
plt.show() 
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First, we will create a Cluster  class.

Step 1: initalize k cluster centrers at random locations

import numpy as np 
 
# This object is used to store the clusters. A Cluster object consists of a numpy matrix 
# containing all feature vectors in the cluster and the centroid of all the vectors. 
# The object also contains a boolean for speedup purposes. 
class Cluster(object): 
 
    def __init__(self, array=np.array([])): 
        self.changed = True 
        self.data = np.array(array) 
        self.cd = self.data 
         
    def reset_cluster(self): 
        self.data = np.array([]) 
     
    def is_changed(self): 
        return self.changed 
     
    def set_changed(self, changed): 
        self.changed = changed 
     
    def set_centroid(self, vector): 
        self.cd = vector 
     
    def append(self, other): 
        # Set changed flag to true (the cluster has changed) 
        self.set_changed(True) 
         
        self.data = np.vstack((self.data, other)) 
 
    def centroid(self): 
        # If the matrix consists of 1 vector, no need to compute centroid. 
        if len(np.shape(self.data)) == 1: 
            return self.data 
        # Check whether the cluster has changed since last computation (for speedup) 
        # and update the changed flag. 
        # START ANSWER
        if(self.changed): 
            self.changed = False 
            self.cd = np.mean(self.data, axis = 0) 
        # END ANSWER 
        return self.cd 
     
# Test case for the Cluster class 
c = Cluster(np.array([[0, 1], [2, 0]])) 
 
# Verifies that the centroid is calculated correctly 
np.testing.assert_array_equal(c.centroid(), np.array([1.0, 0.5])) 
 
# Verifies that the centroid is calculated correctly after a new data point has been add
c.append(np.array([1, 2])) 
np.testing.assert_array_equal(c.centroid(), np.array([1.0, 1.0])) 

from random import sample 
 
# This function selects random k points from the dataset. For each random point it initia
# and adds the cluster to the list of clusters. 
def add_init_points(points, clusters, k): 
    # START ANSWER 
    centroids = sample(range(0, len(points) - 1), k) 
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Step 2: Assign each point to a cluster based on their distance to each centroid

def distance(p1, p2): 
    # Euclidian distance between 2 points (in any space) 
    # START ANSWER 
    return np.linalg.norm(p1-p2) 
    # END ANSWER 
 
# Verifies that the distance metric is correct 
np.testing.assert_array_equal(distance(np.zeros([1, 2]), np.ones([1, 2])), np.sqrt(2)) 

Step 3: we perform an iteration of the k-means clustering algorithm. This consists of the
following steps:

calculate the centroids of each cluster and save them
remove all points from all clusters
add each point to the closest cluster centroid (the centroids that you saved earlier).

import sys 
 
# This function updates the list of k clusters 
def update_k_means(points, clusters, k): 
    # Reset clusters    
    centroids = [] 
  
    # Add initial points 
    # If add_clusters is true, initialise clusters with add_init_points 
    # Then add the cluster centroids to the centroids list 
    add_clusters = len(clusters) == 0 
    # START ANSWER 
    if (add_clusters): 
        clusters = add_init_points(points, clusters, k)
    #print(clusters) 
    for c in clusters: 
        centroids.append(c.centroid()) 
    # END ANSWER 
 
    # Reset clusters from last iteration, 
    # so the clustering can be performed with new centroids 
    for cluster in clusters: 
        cluster.reset_cluster() 
         
    clusters = [None for el in range(k)] 
    for p in points: 
        # Calculate the min distance to one of the centroids 
        # START ANSWER
        min_dist = sys.float_info.max 
        label = 1 
        for c in range(len(centroids)): 
            temp_min = distance(p, centroids[c]) 
            if (temp_min < min_dist): 

    #centroids = sample(list(points), k) 
    for c in centroids: 
        cluster = Cluster(points[c]) 
        #cluster.set_centroid(c) 
        clusters.append(cluster) 
    # END ANSWER 
    return clusters 
 
# Verifies that a cluster has been added as a init point 
init_points = add_init_points(np.array([[0, 0], [0, 0]]), [], 1) 
assert len(init_points) == 1 
np.testing.assert_array_equal(init_points[0].centroid(), np.array([0.0, 0.0])) 
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                min_dist = temp_min 
                label = c 
        # END ANSWER  
     
        # Add the data point to the cluster with min_distance to centroid 
        if label >= 0: 
            if clusters[label] is None: 
                clusters[label] = Cluster(p) 
            else: 
                clusters[label].append(p) 
          
    return clusters 

Step 4: plot the clustered data and have it analyse the TIDIGITS dataset with k set to 3.

import copy 
import random 
 
random.seed(42) 
points = X_train_reduced # Ex 1.5a 
# points = X_train # Ex 1.5b (optional) 
clusters = [] 
clusters_prev = [] 
centroids = [] 
k = 3 
centroids_prev = [np.zeros((points.shape[1])) for x in range(0,k)] 
 
# Run here the update_k_means function with k=3 using the clusters list.  
# Keep updating until there is no change in centroids in consecutive iterations  

import matplotlib.cm as cm 
     
def plot_k_means_data( clusters, k, itr): 
    colors = cm.brg(np.linspace(0,1,k))
    for (i,cl) in enumerate(colors): 
        x = [[el[0]] for el in clusters[i].data] 
        y = [[el[1]] for el in clusters[i].data]  
        plt.scatter(x, y, c=[cl]) 
        plt.scatter(clusters[i].centroid()[0], clusters[i].centroid()[1], c='black') 
        plt.title("Clusters at update " + str(itr)) 
    plt.show()
     
def plot_k_means_data_update(clusters_prev, clusters, k): 
    if(clusters_prev == []): 
        return 
    colors = cm.brg(np.linspace(0,1,k))
    for (i,cl) in enumerate(colors): 
         
        x = [[el[0]] for el in clusters[i].data] 
        y = [[el[1]] for el in clusters[i].data]  
        plt.scatter(x, y, c=[cl], marker = '*') 
 
        plt.scatter(clusters[i].centroid()[0], clusters[i].centroid()[1], c='black') 
         
        x_prev = [[el[0]] for el in clusters_prev[i].data] 
        y_prev = [[el[1]] for el in clusters_prev[i].data] 
         
        plt.scatter(x_prev, y_prev, c=[cl], alpha=0.2, s=100) 
         
        plt.scatter(clusters_prev[i].centroid()[0], clusters_prev[i].centroid()[1], c='g
        plt.legend(['New clusters', 'New centroids', 'Previous clusters', 'Previous cent
                   loc='center left', bbox_to_anchor=(1, 0.5)) 
        plt.title('Difference between updates') 
    plt.show()
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# or a maximum number of iterations (e.g. 10) is reached. 
 
# START ANSWER 
i = 0 
clusters_prev = update_k_means(points, clusters_prev, k) 
cluster = copy.deepcopy(clusters_prev) 
while i <= 9 and any(c is not None and c.is_changed() for c in cluster):
    temp = copy.deepcopy(clusters_prev) 
    clusters_prev = copy.deepcopy(cluster) 
    clusters = update_k_means(points, temp, k) 
    plot_k_means_data_update(clusters_prev, clusters, k) 
    i+= 1 
# END ANSWER 
         
# Ground truth 
plt.scatter(points[:, 0], points[:, 1], c=y_train) 
plt.title('True labels') 
plt.show() 

…
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Step 5: Now that we have a cluster, we would like to find out how good our clustering is. We
will also do this using an unsupervised approach: without knowing the correct labels for each
cluster, we can say something about the spread of each cluster.
For this purpose you will compute the sum of residual squares (SRS) of the cluster. This is
computed as follows: sum over the squared euclidean distances between each point and
their corresponding centroid and divide by the total number of points. In math notation:

With N the number of points, C the cluster containing point i and centroid c, and  the
feature vector for point i.

# This function calculates the average sum of residual squares of the given cluster 
def calculate_average_sum_rs(cluster): 
    if len(cluster.data) == 0: 
        return None 
    # START ANSWER 
    sum = 0 
    for c in cluster.data: 
        sum += distance(c, cluster.centroid()) 
    return sum / len(cluster.data) 
    # END ANSWER 

Step 6: we will use this metric to try and automatically determine how many clusters we
should use

Implement the tune_k  method. This method should test out several values for k in
range from 1 to 15. Then, for each k, run the k-means algorithm on data/cluster.txt
with 10 update iterations. After the algorithm is done, calculate the average SRS of all
clusters and print them.

random.seed(42) 
 
# This function tries a number of k's for the update_k_means function (which is our kMean
# and calculates the SRS for each k.  
# For each k, n_updates iterations of the update_k_means function are performed. 
def tune_k(min_k, max_k, n_updates): 
    assert 0 < min_k < max_k 
    assert n_updates > 1 
    srss = [] 
     
    # START ANSWER 
    for i in range(max_k): 
        clusters = [] 
        clusters_prev = [] 
        i = 0 
        clusters_prev = update_k_means(points, clusters_prev, k) 
        cluster = copy.deepcopy(clusters_prev) 
        while i <= n_updates and any(c is not None and c.is_changed() for c in cluster): 
            temp = copy.deepcopy(clusters_prev) 
            clusters_prev = copy.deepcopy(cluster) 
            clusters = update_k_means(points, temp, k) 
            i+= 1 
        avg_sum = 0 
        for c in clusters: 
            avg_sum += calculate_average_sum_rs(c) 
        avg_sum /= 3 
        srss.append(avg_sum) 
    # END ANSWER 
     
    plt.plot(list(range(min_k, (max_k+1))), srss, marker='o') 
    plt.xlabel('k') 

srs = ∑
i∈C

(pi − c)21
N

pi
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    plt.ylabel('Sum of Residual Squares') 
    plt.grid(linestyle='-', linewidth=1) 
    plt.show()
     
min_k=1 
max_k=15 
n_updates=10 
tune_k(min_k, max_k, n_updates) 


