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Chapterl. Databases and Database Users

An app where operations with a database are central it’s called a database application. New platforms
have pushed the creation of databses that store nontraditional data (images, video, etc. instead of plain
text and numbers).

New types of database systems are often referred to as big data storage systems or NOSQL systems,
which have been created to manage data for social media applications, and are used by companies such
as Google, Amazon and Yahoo to manage the data requried in their web search engines as well as to
provide cloud storage.

OLAP = online analytical processing systems used to extract and analyze useful business information
from large databases to support decision making.

real-time active and active database technology = used to control industrial and manufacturing
processes

database search techniques = used by search engines.
database: collection of related data. Furthermore, a database has the following implicit properties:

1. It represents an aspect of the real world, and changes of the world are reflected in the
database.

2. Itis alogically coherent collection of data with some inherent meaning. Random assortment of
data cannot be referred to as a database

3. Itis designed, built and populated with data for a specific purpose. It has an intended group of
users and an application in which the users are interested.

A database can be of any size and complexity.
A database can be distributed over several servers and be acessed by millions of users.

A database can be manually mantained (such as a library card system) or computeried (the same thing
but digital).

A database management system (DBSM) is a computerized system that enables users to create and
mantain a database. It is a general purpose software system that facilitates the process of

defining: specifying data types, structures and constrains. This descriptive information is stored by the
DMS in the form of a “database catalog/dictionary” called meta-data (which can be accessed by queries
to skip things and be faster).

constructing: storing the data on some storage medium

manipulating: querying (SCRUD), and reports.

and sharing databses among users and applications.

a transaction is a type of query that makes a simultaneous read and write in different locations.

the DBMS also protects (crashes and security) and mantains (allow for updates and changes) the
database.



CSE1500 Databases Midterm

DBMS is often shortened as database system.

Design of a new application for an existing database or design of a brand new database starts off with a
phase called requirements specification and analysis. These requirements are documented in detail and
transformed into a conceptual design that can be represented and manipulated using some
computerized tools so that it can be easily maintained, modified, and transformed into a database
implementation.

The design is then translated to a logical design that can be expressed in a data model implemented in a
commercial DBMS. The final stage is physical design, during which further specifications are provided
for storing and accessing the database

Characteristics of the database approach

traditional file processing: each user defines and implements files needed for a specific software
application as part of programming the application (i.e. container classes in java). Different users may
required different data, that might be related in some sort of way. But you don’t want to constantly
merge data into new objects ad-hoc per query.

Instead, the database approach has a single repository that mantains the data, where it has been
defined once and then such data may be accesed by various users, repteadly, through queries,
transactions and application programs. A database approach has:

self-describing nature of the database system
Insulation between programs and data

Support of multiple views of the data

Sharing of data and multiuser transaction processing

PwNPR

Self-Describing Nature of a Database System (Meta-Data)

Database systems not only contain the database itself, but also a complete definition or description of
the database structure and constraints, called “meta-data” which is stored in the DBMS catalog, and
contains the structure of each file, type and storage format, and data constraints. Newer systems such
as NOSQL do not require meta-data because it is “self describing”.

DBMS software can access diverse databases by extracting the database definitions from the catalog
and using these definitions.
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RELATIONS Figure 1.3
Relation_name No of columns An example of a
database catalog for
STUDENT 4 the database in
COURSE 4 Figure 1.2.
SECTION 5
GRADE_REPORT 3
PREREQUISITE 2
COLUMNS
Column_name Data_type Belongs_to_relation
Name Character (30) STUDENT
Student_number Character (4) STUDENT
Class Integer (1) STUDENT
Major Major_type STUDENT
Course _name Character (10) COURSE
Course _number KXXXNNNN COURSE
Prerequisite_number KXXXNNNN PREREQUISITE

Note: Major_type is defined as an enumerated type with all known majors.
XHXXNNNN is used to define a type with four alphabetic characters followed by four numeric digits.

Data Abstraction

Program-data independence
We only need to change the description of a table in the catalog instead of rwriting an entire program:

In traditional file processing, the structure of data files is embedded in the application programs, so any
changes to the structure of a file may require changing all programs that access that file. By contrast,
DBMS access programs do not require such changes in most cases. The structure of data files is stored in
the DBMS catalog separately from the access programs.

Program-operation independence

An operation (also called a function or method) is specified in two parts. The interface (or signature) of
an operation includes the operation name and the data types of its arguments (or parameters). The
implementation (or method) of the operation is specified separately and can be changed without
affecting the interface. User application programs can operate on the data by invoking these
operations through their names and arguments, regardless of how the operations are implemented.
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Data ltem Name Starting Position in Record Length in Characters (bytes)
Name ! 30 Figure 1.4
Student_number 31 4 Internal storage format
Class 35 1 for a STUDENT record,
Major 36 2 based on thg database
catalog in Figure 1.3.
Data model

It is a very used term with different definitions, but in the context of data abstraction a data model is a
simplified visual representation of a data abstraction by using logic symbols and shapes to define
relationships and properties of objects (such as ER or UML models).

SQL is the standard data model and language for relational databases.
NOSQL is generally interpreted as Not Only SQL.

Views
A DBMS has support for views, a view is a read-only representation of database contents that is
originated from a set of SELECT statements often combined with JOIN.

Multiuser Transaction Processing

Online transaction processing (OLTP) applications: A multiuser DBMS, as its name implies, must allow
multiple users to access the database at the same time. This is essential if data for multiple applications
is to be integrated and maintained in a single database. The DBMS must include concurrency control
software to ensure that several users trying to update the same data do so in a controlled manner so
that the result of the updates is correct. For instance a DBMS should ensure that each flight seat can be
accessed by only one agent at a time for assignment to a passenger.

Transaction: A transaction is an executing program or process that includes one or more database
accesses, such as reading or updating of database records. It has the following properties:

1. Isolation: The isolation property ensures that each transaction appears to execute in isolation
from other transactions, even though hundreds of transactions may be executing concurrently

2. Atomicity: either all the database operations in a transaction are executed or none are. (i.e.
transfering money from one account to another can’t be allowed to be half finished, either
money leaves account A AND arrives account B or no money leaves A AND no money arrives B)

Database stakeholders

Database Administrators (DBA)
Administrates the database environment: the database itself (primary resource) and the DBMS and
related software (secondary resource).

The admin authorizes access to the database, coordinates and monitors its use, mantains the database
with software and hardware updates, responsible for security and response time.

Database Designer
Choose appropiate structures to represent and store the data, before the database is actually
implemented and populated. It coordinates the requirements and makes a design that meets them.
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End Users
They access the database for querying, updating, and generating reports.

e Casual end users: Use a sophisticated database query interface to specify their requests and a
typically middle or high level managers

e Naive/parametric end users: They make queries and update the database using standard types
of queries and updates (called canned transactions) that have been already programmed and
tested (so they use a GUI, they dont write the query themselves)

e Sophisticated end users: engineers, scientists, business analysts who directly use the DBMS for
their own uses.

e Standalone users: mantain personal databases by using ready-to-use packages with GUIs.

System analysts
Determien the requirement of end users and develop specifications for standard canned transactions to
meet these requirements.

Application programmers/Software developers/Software engineers
Implement these specifications as sprograms (test, debug, comment and mantain too) and are fully
familiar with the capabilities by the DBMS.

DBMS system designers and implementers
Design and implement the DBMS modules and interfaces as a software package.

Tool developers
design and implement tools—the software packages that facilitate database modeling and design,
database system design, and improved performance.

Operators and mantianence personal
(system administration personnel) are responsible for the actual running and maintenance of the
hardware and software environment for the database system.

Chapter 2. Database System concepts and Architecture

Modern DBMS packages are modular in design, with a client/server system architecture. Old ones where
a tightly integrated system.

The rapid growth of data has promoted the trends in computing where large centralized mainframe
computers are being replaced by hundreads of distributed workstations.

Cloud computing environments consist of thousand of large servers managing big data for users on the
Web.

In a basic client/server DBMS architecture, the system functionality is distributed between two types of
modaules. A client module is typically designed so that it will run on a mobile device, user workstation, or
personal computer (PC). Usuall include user-friendly interfaces such as apps for mobile devices, or
forms- or menubased GUIs (graphical user interfaces) for PCs. A server module typically handles data
storage, access, search, and other functions.



CSE1500 Databases Midterm

2.1 Data Models, Schemas and Instances
A data abstraction is a highlight of the essential features of the data of a database. A data model is a
mean to represent a data abstraction.

Data models show the structure of a database, which constitutes, among other things, the data types,
relationships, and constraints that apply to the data.

2.1.1 Categories of Data Models

e High level/Conceptural data models: define high level concepts perceived mostl at the front-
end experience of its users. Ubckyde cibceots such as entities (represent a real world-object or
concept i.e. ‘employee’, ‘supplier’), atributes (properties that describe an entity i.e. ‘name’,
‘salary’), relationships (i.e. ‘project’ and ‘consultant’).

e Low level/Physical data models: describe the details of how data is stored (on the disk) as files
in the computer by representing information such as record formats, record orderings, and
access paths, these details are not meant for the end users. acces path: is a search structure
that makes the search for particular database records efficient, such as indexing or hashing.

e Representational/implemention data models: mid-level description of how data is organized.
common in traditional commercial DBMS, include the relational data model, as well as legacy
data models (network and hirearchical models commonly used in the past). Representational
data models represent data by using record structures and sometimes are called record-based
data models.

e Object data model: new higher-level implmenation model closer to conceptual models, often
referred to as ODMG (Object Data Model Group)

e Self-describing data models: The data storage in systems based on these models combines the
description of the data with the data values themselves. In traditional DBMSs, the description
(schema) is separated from the data. These models include XML, as well as many of the key-
value stores and NOSQL systems that were recently created for managing big data.

2.1.1 Schemas, Instances, and Database State

Schema: description of a database. It is specified during database design adn it is not expected to
change very often. A schema diagram displays the structure of each record type but not the actual
instances of records. A schema diagram displays only some aspects of a schema, such as the names of
record types and data items, and some types of constraints

Each object in the schema (such as STUDENT or COURSE) is a schema construct.
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Figure 2.1 STUDENT

Schema diagram for ?
the database in [ Name ‘Student_number [ Class [ Major |

Figure 1.2.

COURSE

[ Course_name ‘ Course_numberl Credit_hours‘ Department

PREREQUISITE

‘ Course_number ‘ Prerequisite_number ‘

SECTION

[ Section_identifierl Course_number ‘ Semester ‘ Year | Instructor

GRADE_REPORT
‘ Student_number‘ Section_identifierl Grade ‘

8Schema changes are usually needed as the requirements of the database applications change. Most
database systems include operations for allowing schema changes.

"It is customary in database parlance to use schemas as the plural for schema, even though schemata is
the proper plural form. The word scheme is also sometimes used to refer to a schema.

The data in the database at a particular moment in time is called a database state or snapshot. It is also
called the current set of occurrences or instances in the database. Every time we insert or delete a
record or change the value of a data item in a record, we change one state of the database into another
state.

When we define a new database, we specify its database schema only to the DBMS. the corresponding
database state is the empty state with no data.

We get the initial state of the database when the database is first populated or loaded with the initial
data. From then on each new modification of the data represents a new database state.

The DBMS is partly responsible for ensuring that every state of the database is a valid state—that is, a
state that satisfies the structure and constraints specified in the schema.

The schema is sometimes called the intension, and a database state is called an extension of the
schema.

Making changes in let’s say STUDENT and adding another field suchas Email is known as schema
evolution.

2.2 Three-Schema Architecture and Data Independence
1. Use a catalog to store the database description (Schema) so as to make it self-desribing
The three schemas are only descriptions of data; the actual data is stored at the physical level
only. The processes of transforming requests and results between levels are called mappings.
2. Insulation of programs and data
3. Support of multiple user views
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Architecture, low/physical level:

1. The internal level has an internal schema, which describes the physical
storage structure of the database. The internal schema uses a physical data
model and describes the complete details of data storage and access paths for
the database.

Figure 2.2
The three-schema End Users
architecture.

External Level Extgrnal o External
View View
External/Conceptual
Mapping
Conceptual Level Conceptual Schema
A
Conceptual/Internal
Maboi
apping Y
Internal Level Internal Schema

688

Stored Database

9This is also known as the ANSI/SPARC (American National Standards Institute/ Standards Planning
And Requirements Committee) architecture, after the committee that proposed it (Tsichritzis & Klug, 1978).

Conceptual Level

The conceptual level has a conceptual schema, which describes the structure of the whole database for
a community of users. This implementation is often based on a conceptual schema design in a high-level
data model.

View Level

The external or view level includes a number of external schemas or user views. , each external schema
is typically implemented using a representational data model, possibly based on an external schema
design in a high-level conceptual data model

2.2.2 Data Independence
The capacity to change the schema at one level of a database system without having to change the
schema at the next higher level.

1. Logical data independence is the capacity to change the conceptual schema without having to
change external schemas or application programs.

2. Physical data independence is the capacity to change the internal schema without having to
change the conceptual schema.

10
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2.3 Database Languages and Interfaces

2.3.1 DBMS Langauges

One language, called the data definition language (DDL), is used by the DBA and by database designers
to define conceptual and internal schemas. The DBMS will have a DDL compiler whose function is to
process DDL statements in order to identify descriptions of the schema constructs and to store the
schema description in the DBMS catalog.

The DDL is used to specify the conceptual schema only. Another language, the storage definition
language (SDL), is used to specify the internal schema.

In most relational DBMSs today, there is no specific language that performs the role of SDL. Instead, the
internal schema is specified by a combination of functions, parameters, and specifications related to
storage of files.

View definition language (VDL): to specify user views and their mappings to the conceptual schema, but
in most DBMSs the DDL is used to define both conceptual and external schemas.

Once the database schemas are compiled and the database is populated with data, users must have
some means to manipulate the database, The most common “SCRUD” select, create, read, update,
delete are supported by the data manipulation language (DML). SQL is the most common relational
database language, which represents a combination of DDL, VDL and DML. The SDL was a component in
early versions of SQL but has been removed from the language to keep it at the conceptual and external
levels only.

A query in a high-level DML often specifies which data to retrieve rather than how to retrieve it;
therefore, such languages are also called declarative.

A high-level DML used in a standalone interactive manner is called a query language.

2.3.2 DBMS Interfaces
User-friendly interfaces provided by a DBMS may include the following:

Menu-based Interfaces for Web Clients or Browsing.

Apps for Mobile Devices

Forms-based Interfaces

Graphical User Interfaces

Natural Language Interfaces

Keyword-based Database Search

Speech Input and Output

Interfaces for Parametric Users (small commands to minimize data entry time)
Interfaces for the DBA (that support his exclusive admin rights activites)

LN REWNPRE

11



2.4 Database System Environment
2.4.1 DBMS Component Modules

DBA Staff
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l
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Interactive
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Programs
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Parametric Users

Y Y
DDL Y Host
Query ; Language

Compiler Compiler Precompiler Compiler

T
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: Query DML Compiled

| Optimizer Compiler Transactions

| 4 7

| .7

1 ’ -

1 . o @_‘, -

| p e -
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[ ¢ s DBA Commands,
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' s 7 s - .

p - Runtime Stored
s - __#| Database = Data
Catalog/ - == : Procclassor Concurrency Control/ Manager
Data L= ittt Backup/Recovery
Dictionary Subsystems
Stored Database Input/Qutput

Query and Transaction
Execution:

Figure 2.3

Component modules of a DBMS and their interactions.

2.4.2 Database System Utilities

from Database

1. Loading: A loading utility is used to load existing data files—such as text files or sequential

files—into the database.

2. Backup: A backup utility creates a backup copy of the database, usually by dumping the entire

database onto tape or other mass storage medium.

3. Database storage reorganization: This utility can be used to reorganize a set of database files
into different file organizations and create new access paths to improve performance.

12
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4. Performance monitoring: monitors database usage and provides statistics to the DBA.

2.5 Centralized and Client/Server Architectures for DBMSs

Centralized architecture

At the beginning the DBMS itself was centralized where the DBMS functionality, application program
execution, and user interface processing were carried out on one machine. Allocating all of the
processing power at the DBMS side (people did not have resourceful PCs back then and connected to
the DBMS via terminals so mostly Display operations were carried at the user side).

Display Display o Display
Monitor Monitor Monitor
Network |

Terminals

Application Terminal Text
Programs Display Control Editors

Operating System

Software

System Bus
I [ |
‘ Controller ‘ ‘ Controller ‘ ‘ Controller

CPU [ ‘ I/0 Devices
‘ Memory ‘ ‘ Disk ‘ (Printers,

Tape Drives, . . .)

Figure 2.4
A physical centralized
/ architecture.

Hardware/Firmware

Client/Server architecture

The client/server architecture was developed to deal with computing environments in which a large
number of PCs, workstations, file servers, printers, database servers, Web servers, e-mail servers, and
other software and equipment are connected via a network.

The idea is to define specialized servers with specific functionalities. For example, it is possible to
connect a number of PCs or small workstations as clients to a file server that maintains the files of the
client machines. Another machine can be designated as a printer server by being connected to various
printers; all print requests by the clients are forwarded to this machine. Web servers or e-mail servers
also fall into the specialized server category. The resources provided by specialized servers can be
accessed by many client machines. The client machines provide the user with the appropriate interfaces
to utilize these servers, as well as with local processing power to run local applications.

‘ Client ‘ | Client ‘ ‘ Client ‘
‘ ‘ Network ‘
Figure 2.5 [ | l
Logical two-tier
client/server Print File DBMS
architecture. Server Server Server

13
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Two-tier architectures (use APIs)

A standard called Open Database Connectivity (ODBC) provides an application programming interface
(API1), which allows client-side programs to call the DBMS, as long as both client and server machines
have the necessary software installed.

A related standard for the Java programming language, called JDBC, has also been defined. This allows
Java client programs to access one or more DBMSs through a standard interface.

Three-tier acrchitectures
Adds an intermediate layer between the client and the database server.

Client [ GUI, Presentation

Web Interface Layer

:

Application Server Application Business
or Programs, Loaic Laver }
Web Server Web Pages g y

Figure 2.7 I I
Logical three-tier Database Database Database
client/server Server Management Services
architecture, with a System Layer
couple of commonly
used nomenclatures. (@ (b)

2.6 Categories of DBMS
We can categorize DBMSs based on the data model: relational, object, object-relational, NOSQL, key-
value, hierarchical, network, and other (such as tree-structured XML data model).

The second criterion used to classify DBMSs is the number of users supported by the system. Single-user
systems support only one user at a time and are mostly used with PCs. Multiuser systems, which include
the majority of DBMSs, support concurrent multiple users.

The third criterion is the number of sites over which the database is distributed. A DBMS is centralized if
the data is stored at a single computer site. A centralized DBMS can support multiple users, but the
DBMS and the database reside totally at a single computer site. A distributed DBMS (DDBMS) can have
the actual database and DBMS software distributed over many sites connected by a computer network.
Big data systems are often massively distributed, with hundreds of sites. The data is often replicated on
multiple sites so that failure of a site will not make some data unavailable.

The fourth criterion is cost. It is difficult to propose a classification of DBMSs based on cost. Today we
have open source (free) DBMS products like MySQL and PostgreSQL that are supported by third-party
vendors with additional services.

14
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We can also classify a DBMS on the basis of the types of access path options for storing files. One well-
known family of DBMSs is based on inverted file structures.

Finally, a DBMS can be general purpose or special purpose. When performance is a primary
consideration, a special-purpose DBMS can be designed and built for a specific application; such a
system cannot be used for other applications without major changes. Many airline reservations and
telephone directory systems developed in the past are special-purpose DBMSs. These fall into the
category of online transaction processing (OLTP) systems, which must support a large number of
concurrent transactions without imposing excessive delays.

Chapter 5. The Relational Data Model and Relational Database
Constraints

5.1 Relational Model Concepts
The relational model represents the database as a collection of relations.

Each relation resembles a table of values or, to some extent, a flat file of records.

When a relation is thought of as a table of values, each row in the table represents a record, which
multiple attributes (columns).

5.1.1 Domains, Attributes, Tuples, and Relations

A domain D is a set of atomic values. By atomic we mean that each value in the domain is indivisible as
far as the formal relational model is concerned. A common method of specifying a domain is to specify a
data type from which the data values forming the domain are drawn. For example, the column with
header Usa_phone_number, has a domain of the set of ten-digit phone numbers valid in the United
States. This is a logical defintion of a domain. A data type or format is also specified for each domain. For
example, the data type for the domain Usa_phone_numbers can be declared as a character string of the
form (ddd)ddd-dddd, where each d is a numeric (decimal) digit and the first three digits form a valid
telephone area code. A domain is thus given a name, data type, and format.

A relation schema’ R, denoted by R(A}, Ay, ... , A,), is made up of a relation name
R and a list of attributes, A;, A, ... , A,. Each attribute A; is the name of a role
played by some domain D in the relation schema R. D is called the domain of A;
and is denoted by dom(A;). A relation schema is used to describe a relation; R is
called the name of this relation. The degree (or arity) of a relation is the number of
attributes n of its relation schema.

A relation of degree seven, which stores information about university students,
would contain seven attributes describing each student as follows:

STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

So this relations mean that all the attributes belong to (and define) the same “relation schema” student,
aka student entity.
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Name Home _phone Address Offlce _phone |Age | Gpa

Benjamin Bayer | 305-61-2435 | (817)373-1616 | 2918 Bluebonnet Lane | NULL 19 |3.21

/ Chung-cha Kim |381-62-1245 | (817)375-4409 | 125 Kirby Road NULL 18 |2.89

Tuples é Dick Davidson |422-11-2320 | NULL 3452 Elgin Road (817)749-1253 | 25 |3.563
\ Rohan Panchal |489-22-1100 | (817)376-9821 | 265 Lark Lane (817)749-6492 | 28 |3.93
Barbara Benson | 5633-69-1238 | (817)839-8461 | 7384 Fontana Lane NULL 19 [3.25

Figure 5.1
The attributes and tuples of a relation STUDENT.

Tuples = records

5.1.2 Characteristics of Relations
Tuples in a relation do not have any particular order. That is, records in a table for student entity don’t
have a particular order. In a file records are physicall stored on disk so the have an intrinsic order.

The definition of a relation does not specify any order. When a relation is implemented as a file or
displayed as a table, a particular ordering may be specified on the records of the file or the rows of the
table.

A mapping from R to D is the union of these 2 sets. a tuple can be considered as a set of (<attribute>,
<value>) pairs, where each pair gives the value of the mapping from an attribute Ai to a value vi from
dom(Ai) The ordering of attributes is not important, because the attribute name appears with its value

The first normal form assumption, the so called “flat relational model” implies that all records are
composed of the exact same attributes, if for any reason a student doesn’t have an office phone, the
record still has the Office_phone attribute and the NULL value is used to denote what ‘null’ means in
any other programming language.

5.1.3 Relational Model Notation
e Arelation schema (for an entity, such as student) R of degree n is denoted by R(A, A, ...
is the attribute/field/column).
e The uppercase letters Q, R, S denote relation names
e The lowercase letters q, r, s denote relation states.
e The letters t, u, v denote tuples.

’ An) (A

5.2 Relational Model Constraints and Relational Database Schemas
Constraints on databases can generally be divided into three main categories:

1. Constraints that are inherent in the data model. We call these inherent model-based
constraints or implicit constraints.

2. Constraints that can be directly expressed in the schemas of the data model, typically by
specifying them in the DDL (data definition language, see Section 2.3.1). We call these schema-
based constraints or explicit constraints.

16



CSE1500 Databases Midterm

3. Constraints that cannot be directly expressed in the schemas of the data model, and hence
must be expressed and enforced by the application programs or in some other way. We call
these application-based or semantic constraints or business rules.

5.2.15.2.2 Key Constraints and Constraints on NULL Values
See 5.1.1 for normal attributes constraints (mostly data type, size, and format).

By definition, all elements of a set are distinct; hence, all tuples in a relation must also be distinct. No
two tuples can have the same combination of values for all their attributes. You can also ensure that a
specific (set of) attribute(s) (instead of the combination of the whole record) within an entity must be
unique (i.e. social security number, order id, etc). Any such set of attributes is called a super key. A
superkey SK specifies a uniqueness constraint that no two distinct tuples in any state r of R can have the
same value for SK (however, some of the fields can have repeated values):

super key {social security number, name, age} (name and age can exist already, the set of these 3 fields
is still unique)

Every relation has at least one default superkey— the set of all its attributes.
A more handy tool is to provide a key:

1. Two distinct tuples in any state of the relation cannot have identical values for (all) the
attributes in the key. This uniqueness property also applies to a superkey.

2. Itis a minimal super key that is, if you remove (part of) it, you could potentially lose uniqueness,
whereas in a superkey you dont need to be minimal (that is, you can have reduncancy).

A key is a superkey but not vice versa.

Any superkey formed from a single attribute is also a key.

A key with multiple attributes must require all its attributes together to have the uniqueness property
A key is time-invariant It must continue to hold when we insert new tuples in the relation.

More than one unique fields in a relation can be unique, we would could have then primary key and
candidate key, the choice can be arbitrary but both have the “uniqueness” constraint. Usually the
primary key has a smaller and easier to sort set of attributes.]

NOT NULL is a common constrain, especially among keys, who must be unique.

5.2.3 Relational Databases and Relational Database Schemas

A relational database schema S is a set of relation schemas S = {Ry, Ry, ..., Rm} and a set of integrity
constraints IC. That is a set of Tables (that often represent an entity) related with each other under a
“schema” S. l.e (shopping cart (id, time, quantity, customer), product properties(description, price,
product, isAvaiable))
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EMPLOYEE

| Fname l Minit ‘ Lname l Ssn ‘ Bdate l Address l Sex ‘ Salary ‘ Super_ssnl Dno |

DEPARTMENT
| Dname ‘ Dnumber | Mgr_ssnl Mgr_start_datel

DEPT_LOCATIONS

| Dnumber ‘ Dlocation }

PROJECT

| Pname [ Pnumber [ Plocation ‘ Dnum

WORKS_ON

| Essn l Pno ‘ Hours |

DEPENDENT

| Essn ‘ Dependent_name ‘ Sex ‘ Bdate ‘ Relationship

5.2.4 Entity Integrity, Referential Integrity, and Foreign Keys

Figure 5.5

Schema diagram for the
COMPANY relational
database schema.

Underline fields are primary keys, when there are 2 underlined fields is because one of them is a foreign
key that is, a pointer to a primary key at another table that contains the attributes assigned to such id.

The entity integrity constraint states that no primary key value can be NULL.

The referential integrity constraints means that a foregin key must match an existing primary key

somewhere.
Figure 5.7
Referential integrity constraints displayed on the COMPANY relational database schema.

EMPLOYEE

| Fname | Minit | Lname | Ssn | Bdate | Address | Sex | Salary ‘ Super_ssn | Dno |
[

DEPARTMENT
| Dname | Dnumber | Mgr_ssn | Mgr_staﬂ_date|

DEPT_LOCATIONS
| Dnumber | Diocation |

I —
PROJECT
| Pname | Pnumber | Plocation Dnum
A [

WORKS_ON
Essn Pno | Hours

| I —
DEPEMDENT

| Essn | Dependent name | Sex | Bdate | Relationship |
L
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Figure 5.6
One possible database state for the COMPANY relational database schema.
EMPLOYEE
Fname |Minit | Lname Ssn Bdate Address Sex |Salary | Super_ssn | Dno
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston, TX| M | 30000 |333445555 | 5
Franklin | T Wong | 333445555 | 1955-12-08 | 638 Vioss, Houston, TX M |40000 |88BEGS555 | 5
Alicia J Zelaya | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX | F | 25000 |987654321 | 4
Jennifer | S Wallace | 987654321 | 1941-06-20 | 281 Berry, Bellaire, TX F |43000 |88BE65555 | 4
Ramesh | K Marayan | 6668584444 | 1962-09-15 | 975 Fire Oak, Humble, TX | M |38000 |333445555 5
Joyce A | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX | F |25000 |333445555 | 5
Ahmad v Jabbar | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX | M [ 25000 |987854321 4
lames E Borg 888665555 | 1937-11-10 | 450 Stone, Houston, TX M 55000 |NULL 1
DEPARTMENT DEPT_LOCATIONS
Dname Dnumber Mgr_ssn Mgr_start_date Drnumber Dlocation
Research 5 333445585 1988-05-22 1 Houston
Administration 4 987654321 1995-01-01 4 Stafford
Headguarters 1 B8BB665555 1981-06-19 ] Bellaire
5 Sugarland
5 Houston
WORKS_ON PROJECT
Essn Pno Hours Pname Pnumber | Plocation Dnum
123456789 1 325 ProductX 1 Bellaire 5
123456789 2 7.5 Product 2 Sugarland 5
BE6884444 3 40.0 ProductZ 3 Houston 5
453453453 1 20.0 Computerization 10 Stafford 4
453453453 2 20.0 Reorganization 20 Houston 1
333445555 2 10.0 Newbenefits 30 Stafford 4
333445555 3 10.0
333445655 10 10.0 DEPENDENT
333445555 20 10.0 Essn Dependent_name | Sex Bdate Relationship
999887777 30 30.0 333445555 Alice F | 1986-04-06 | Daughter
999887777 10 | 100 333445555 | Theodore M | 1983-10-25 | Seon
987987987 10 35.0 333445555 Joy F | 1958-05-03 | Spouse
987987987 30 5.0 087654321 Abner M | 1942-02-28 | Spouse
HE/ DI 3u U 123456789 Michael M 1988-01-04 | Son
987654321 20 15.0 123456789 Alice F 1988-12-30 | Daughter
BBBE65555 20 MULL 123456789 Elizabeth F 1967-05-05 | Spouse

In SQL, the CREATE TABLE statement of the SQL DDL allows the definition of primary key, unique key,
NOT NULL, entity integrity, and referential integrity constraints, among other constraints.
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5.3 Insert, Delete, and Update Operations dealing with constraints

If an insertion violates one or more constraints, the default option is to reject the insertion.

The Delete operation can violate only referential integrity. This occurs if the tuple being deleted
is referenced by foreign keys from other tuples in the database. Several options are available if a
deletion operation causes a violation. The first option, called restrict, is to reject the deletion.
The second option, called cascade, is to attempt to cascade (or propagate) the deletion by
deleting tuples that reference the tuple that is being deleted. For example, in operation 2, the
DBMS could automatically delete the offending tuples from WORKS_ON with Essn =
‘999887777’. A third option, called set null or set default, is to modify the referencing attribute
values that cause the violation; each such value is either set to NULL or changed to a reference
value. The default option can be specifed by the DDL of the DBMS

Updating an attribute that is neither part of a primary key nor part of a foreign key usually
causes no problems; the DBMS need only check to confirm that the new value is of the correct
data type and domain. Just make sure that PK remains unique and check out for dependencies
with foreign keys. The same options as with delete apply, most commonly reject or cascade.

5.4 The Transaction Concept

A transaction is an executing program that includes some database operations that form together an
atomic unit of work against the database. Their either completed as a whole or rejected all. A large
number of commercial applications running against relational databases in online transaction
processing (OLTP) systems are executing transactions at rates that reach several hundred per second.

Lecture 1 Introduction to Database Systems

Focus of the course:

— Modelling Data
— Relational Modelling

Modelling * Internals of Relational Databases

— Traditional Implementation
— Physical Storage & Physical Models

— Query Processing & Query Optimization
» Conceptual Models - Logical Models

» Normalization & Keys

— Transaction Processing
* NoSQL Systems

Querying — Conceptual Difference
— SQL DML/ DDL — Usage Scenarios
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Databases in a slide

* Relational DBs alone: Industry of > $30 Billion a year
* DBs store & manage all (most) transactions in the world
 Simplify the life of application programmers

- i hip ORACLE e
ELPHANA S karse o SQlsenver

[ s5aL ] ‘ Relations | [ RDBMS |

g e S

Declarative Data Processing

An effective, formal foundation based on relational algebra and calculus (Edgar Codd '71).
A simple, high-level language for querying data (Don Chamberlin '74).

An efficient, low-level execution environment tailored towards the data (Patricia Selinger "79).

The need for Data Management

* Managing large amounts of data is an integral part of most
nowadays business and governmental activities

* Databases developed successfully since the 1960s
— One of the most successful technologies in computers science!

* Databases are used to manage that vast amount
of data

* A database (DB) is a collection of related data
— data represents some aspects of the real world

* universe of discourse
— data is logically coherent

— is provided for an intended group of users
and applications
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Database Management Systems (DBMS)

* Databases are maintained by software called a
database management system (DBMS)

A DBMS a"OWS/enab'es: %
— definition of data and structure
— physical construction . g ORACLE

— data manipulation
— sharing/protecting i

MySQL

— persistence/recovery

 Databases can have different underlying data models
— Most popular: Relational Data Model
— Earlier alternatives: Network/Hierarchical/Object-Oriented, etc.

* Relational Databases since 1970

— Huge commercial success!
— Core contributions: | ' @
* Relational Data Model =

* Declarative Query Language SQL PostgreSQL
* ACID Transactions

© oaa ey ORACLE

* Relational Databases established a set of valuable
features
— Strict data modelling
— Controlled redundancy
— Data normalization
— Data consistency & integrity constraints
— SQL: simple & powerful query language
— Effective and secure data sharing
— Backup and recovery
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(relational)

* Databases are well-structured (e.g. ER-Model)
— Catalog (data dictionary) contains all meta-data
— Defines the structure of the data in the database

* Example: ER-Model
— Simple banking system (Conceptual Model)

P

id T T accNo
. M N ~ beian
i (1 1 has account —_ ce
T T ~ I
k_/' | )
lastname m\jress ) type

* Resulting tables (logical “model”)

Customer
0 |festnamo | lastnamo | address |
1 Aard Vark 123AB Customer2Account
2 Ear N i [0 [eee
3 Cham Eleon 12dXX 1 10
Account 1 11
(accNo | type | balance | 2 12
10 Check 0
11 Saving 232
12 Check  -232

Characteristics of Relational Databases

* Databases aim at efficient manipulation of data
— Physical tuning allows for good data allocation
— Indexes speed up search and access

— Query plans are optimized for improved performance
Data File

* Example: Simple Index [AccNo __type | balance |
1278945 saving €312.10
Index File 2437954 saving €1324.82
4543032 checking €-4303
Acho 78 = e
12 7809849 checking € 7643.89
= 8942214 checking €-345.17
B s e e
9543252 saving €524.89
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Data Independence

* Independence of applications and data
— Databases employ data abstraction by providing data models
— Applications work only on the conceptual representation of
data
* Data is strictly typed (Integer, Timestamp, VarChar,...)
* Details on where data is actually stored and how it is accessed is
hidden by the DBMS

* Applications can access and manipulate data by invoking declarative
operations (e.g. SQL Select statements)

— DBMS-controlled parts of the file system are strongly
protected against outside manipulation

* Example: Schema is changed and table-space
moved without an application noticing

Application * Example: Schema is changed and table-space
@ SELEC T AccNo FROM account WHERE balance>0 moved without an app"cation noticing
DBMS | ‘ Application |

@ SELECT AccNo FROM account WHERE balance>0

Disk 2
DBMS

Disk 1

2437 132482

5 €

Views on the data

* Supports multiple views of the data

— Views provide a different perspective
of the DB

* A user’s conceptual understanding or
task-based excerpt of all data (e.g. aggregations)
* Security considerations and access control (e.g. projections)

— For the application, a view does not differ from a table

— Views may contain subsets of a DB and/or contain virtual

data
* Virtual data is derived from the DB (mostly by simple SQL statements,
e.g. joins over several tables)
* (Can either be computed at query time or materialized upfront

24



CSE1500 Databases Midterm

Transactions: concurrently accessing data

* Sharing of data and support for atomic multi-user
transactions

— Multiple user and applications may access the DB at the
same time

— Concurrency control is necessary for maintaining
consistency

* A transaction is a unit of work, possibly containing multiple

data accesses and updates, that must commit or abort as a
single unit, and follows the ACID principles

* e.g, transfer $100 from account A to account B
* Transactions introduce two problems:

— Recovery: What if the system fails in the middle of execution?

— Concurrency: What happens when two transactions try to access
the same object?

read(A, t);

t =t - 100;

write(t, A);

read(B, t); —
t :=t + 100;

write(t, B)

Atomicity

— A transaction is either executed completely (commit)
or not at all (abort)

Consistency

— A transation transforms a consistent database state into
a (possibly different) consistent database state

Isolation

— A transaction is executed in isolation (i.e., does not see any effect of
other concurrently running (,uncommitted”) transactions).

Durability

— A successfully completed (,,committed”) transaction has a
permanent effect on the database
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Data Models

* A Data Model describes data objects,
operations and their effects
 Data Definition Language (DDL)
— Create Table, Create View, Constraint/Check, etc.
* Data Manipulation Language (DML)
— Select, Insert, Delete, Update, etc.

— DML and DDL are usually clearly separated, since they
handle data and meta-data, respectively

Schemas and Instances

* Schemas

— Careful: Often, when people say “data model” they
actually mean schema....

— Describe a part of the structure of the stored data as
tables, attributes, views, constraints, relationships, etc.
(Meta-Data)

* System Catalogs
— A collection of schemas
— Contain special schemas describing the schema collection

(Schema example: all the relationships between tables, views and table properties of my food app)

Schemas and Instances

* Schemas describe the structure of part of the DB data
(intensional database)

— Entity Types (a real world concept) as tables and their
attributes (a property of an entity)

— Types of attributes and integrity constraints
— Relationships between entity types as tables
— Schemas are intended to be stable and not change often

— Basic operations
* Operations for selections, insertions and updates

— Optionally user defined operations (User Defined Functions
(UDFs), stored procedures) and types (UDTs)
* May be used for more complex computations on data

* The actually stored data is called an instance of a schema
(extensional database)
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Schemas and Instances

* Remember:

— DBs should be well structured and efficient

— Programs and data should be isolated

— Different views for different user groups are necessary
* Thus, DBs are organized using 3 layers of schemas

— Internal Schema (physical layer)
* Describes the physical storage and access paths
Uses physical models

— Conceptual Schema (logical layer)

Describes structure of the whole DB, hiding physical details
Uses logical data models

— External Schema (presentation layer)
* Describes parts of the DB structure for a certain user group as views
Hides the conceptual details

Schemas and Instances

* Data Independence: Ability to change schema of
one level without changing the others

* Logical Data Independence

— Change of conceptual schema without change of
external schemas (and thus applications)

— Examples: adding attributes, changing constraints,...

— But: for example dropping an attribute used in some
user’s/application’s view will violate independence

Schemas and Instances

* Physical Data Independence

— Changes of the internal schema do not affect the conceptual
schema
* Important for reorganizing data on the disk (moving or splitting
tablespaces)
* Adding or changing access paths (new indices, etc.)
— Physical tuning is one of the most important maintenance
tasks of DB administrators
— Physical independence is also supported by having a
declarative query language in relational databases
* What to access vs. how to access
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Databases: High-Level Architecture

* Database characteristics lead to ﬁ
layered architecture :I:
Applications /Queries
* Query Processor
— Query Optimization DBMS
— Query Planning Query Processor
* Storage Manager
— Access Paths
— Physical sets, pages, buffers

— Accesses disks through OS

+ May be avoided using ‘raw devices’ for direct
data access (also, see Open-Channel 55D)

Storage Manager

& MIm slrms

Dmmur ]

=
===

High-Level Architecture

* The storage manager provides the interface between
the data stored in the database and the application
programs and queries submitted to the system

* The storage manager is responsible for

— Interaction with the file manager

— Efficient storing, retrieving and updating of data
* Tasks:

— Storage access

— File organization

— Indexing and hashing
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High-Level Architecture

* The query processor parses queries, optimizes query plans and
evaluates the query

— Alternative ways of evaluating a given
query due to equivalent expressions

— Different algorithms for each operation
— Cost difference between good and bad
ways of evaluating a query can be enormous
* Needs to estimate the cost of operations

— Depends critically on statistical information about relations which the DBMS
maintains

— Need to estimate statistics for intermediate results to compute cost of
complex expressions (join order, etc.)

High-Level Architecture

* A transaction is a collection of operations that
performs a single logical function in a database
application

* The transaction manager

— Ensures that the database remains in a correct state
despite system failures (like power failures, operating
system crashes, or transaction failures)

— Controls the interaction among concurrent transactions
to ensure the database consistency

Summary

Modelling of Data
— Data Models for describing what kind of schemas are possible
— Schemas for describing what data can be stored in a given database
* DataIndependence and Declarative Queries
— Independence of how data is stored, logically organized, and queried by
users
* Transactions

— Making sure that data stays consistent when faced with multiple
concurrent users and system failures

DBMS Architecture
— The DBMS takes care of you! Lean back be just be a (competent) user!

— Manages all aspects of query processing, indexing, transaction
management, schema management, etc.

.

.
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Chapter 3. Data Modeling with Entity-Relationship (ER) Model

The entity-relationship model is a popular high-level conceptual data model used for the conceptual
design of database applications.

Unified Modeling Language is an object modeling methodology that go beyond tabase design to specify
detailed design of software modules and their interactions using various types of diagrams. UML’s class
diagrams are very similar to ER diagrams.

3.1 Using High-Level Conceptual Data Models for Database Design

REQUIREMENTS

COLLECTION AND

Functional Requirements Data Requirements

FUNGTIDNJ.L ANALYSIS CGNCEFTJAL DESIGN
HigtheveI!I'ranaactinn G:}nceptuil Schema

Specification (In a high-level data model)
T DBEMS-independent LDGICAL*D ESIGN

l DBMS-specific

(DATA MODEL MAPPING)

;

Logical (Conceptual) Schema
(In the data model of a specific DBMS)

Y
APPLICATION PROGRAM

DESIGN +
PHYSICAL DESIGN
v +
TRANSACTION - Internal Schema
IMPLEMENTATION

'

Application Programs

Figure 3.1
A simplified diagram to illustrate the main phases of database design.
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e Mini world: the part of the real world that will be represented in the database.

e Requirements collections and analysis: The database designers interview prospective database
users to understand and document their data requirements

¢ Functional requirements: User defined operations (or transactions) that will be applied to the
database, including both retrievals and updates. This is part of Software Engineering.

e Conceptual schema: is a concise description of the data requirements of the users and includes
detailed descriptions of the entity types, relationships, and constraints.

o logical design or data model mapping: implementation of the database, using a commercial
DBMS. Most current commercial DBMSs use an implementation data model—such as the
relational (SQL) model—so the conceptual schema is transformed from the high-level data
model into the implementation data model.

e physical design: internal storage structures, file organizations, indexes, access paths, and
physical design parameters for the database files are specified.

Conceptual Design (Schema)

@%

:

EMPLOYEE Stan date Number of employees —{ DEPARTMENT |
E 1
CHous D> g
N

——— PROJECT |

Supervisor Supervisee
~

@

DEPENDENTS_OF

N
DEPENDENT |
B|r1h _date

Figure 3.2
An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout
this chapter and is summarized in Figure 3.14.
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3.3 Entity Types, Entity Sets, Attributes and Keys

The basic concept that the ER model represents is an entity, which is a thing or object in the real world
with an independent existence. Entities ‘i.e. employee x has attributes (ssn, bank account, email, name,
phone number, position, works_for, manages)

Name = John Smith Name = Sunco Oil

Address = 2311 Kirby
Houston, Texas 77001

e C1 Headquarters = Houston
Figure 3.3
Age =155 Two entities,
EMPLOYEE ey, and
COMPANY ¢, and
Home_phone = 713-749-2630 President = John Smith their attributes.

Composite attributes can be divided into smaller subparts, which represent more basic attributes with
independent meanings. For example, the Address attribute of the EMPLOYEE entity shown in Figure 3.3
can be subdivided into Street_address, City, State, and Zip, 3 with the values ‘2311 Kirby’, ‘Houston’,
‘Texas’, and ‘77001’. Attributes that are not divisible are called simple or atomic attributes.

The value of a composite attribute is the concatenation of the values of its component simple attributes.

Address Figure 3.4
A hierarchy of

composite attributes.

Street_address City State Zip

Number Street Apartment_number

Single-value vs multivalued: Some attributes can also have an optional number of values such as
“college degree”, where the acceptable values would consist of NULL, degree 1, degree 2..., degree n.
There can be an upperbound and lowerbound for n.

Stored vs derived: Some values you store, such as Birth_date, others are computed automatically, such
as Age, these are derived.

Complex attributes: combination of composite (‘{ for taxonomy) , and multivalued (comma separated).:

{Address_phone( {Phone(Area_code,Phone_number)}, Address(Street_address Figure 3.5

(Number,Street, Apartment_number),City,State, Zip) )} A complex attribute:
Address_phone.
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Entity type

Entity Type is Like a Class, i.e. ‘Student’, where entities are like objects, i.e. var s = new Student(); where
s is an instance of Student. The Entity Type and the Entity Type Set are two separate concepts, but they
same word i.e. EMPLOYEE may be used to refeer to both these concept. While the Entity Type is like a
Java class and defines the properties of its Set in the DBMS schema, tbe Entity (Type) Set refers to the
collection (set) of all the records that are instance of (entities) of such Enitity Type.

Entity Type Name: EMPLOYEE COMPANY Figure 3.6
, Two entity types,
Name, Age, Salary Name, Headquarters, President EMPLOYEE and
4 N ™ COMPANY, and some
- E member entities of
1Te 1e
each.
{John Smith, 55, 80k) (Sunco Qil, Houston, John Smith)
€2 o Co o
Entity Set: _
(Extension) (Fred Brown, 40, 30K) (Fast Computer, Dallas, Bob King)
€3 e .
(Judy Clark, 25, 20K) .
- AN S

An entity type is represented in ER diagrams5 (see Figure 3.2) as a rectangular box enclosing the entity
type name. Attribute names are enclosed in ovals and are attached to their entity type by straight lines.
Composite attributes are attached to their component attributes by straight lines. Multivalued
attributes are displayed in double ovals.

(foreign) key and/or uniqueness constraint are underlined. An entity type without a key is called a
weak entity type. It still has a parial key if an attribute happens to be unique, or in the worst case
scenario it still has a partial key if you take all of the attributes combined.

CAR

An entity type describes the schema or intension for a set of entities that share the same structure. The
collection of entities of a particular entity type is grouped into an entity set, which is also called the
extension of the entity type.
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Example

1. An entity type DEPARTMENT with attributes Name, Number, Locations,
Manager, and Manager_start_date. Locations is the only multivalued attribute.
We can specify that both Name and Number are (separate) key attributes
because each was specified to be unique.

2. An entity type PROJECT with attributes Name, Number, Location, and
Controlling_department. Both Name and Number are (separate) key attributes.

3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary,
Birth_date, Department, and Supervisor. Both Name and Address may be
composite attributes; however, this was not specified in the requirements.
We must go back to the users to see if any of them will refer to the individual
components of Name—First_name, Middle_initial, Last_name—or of Address. In

our example, Name is modeled as a composite attribute, whereas Address is
not, presumably after consultation with the users.

4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex,
Birth_date, and Relationship (to the employee).

DEPARTMENT

I

Figure 3.8

Preliminary design of
entity types for the
COMPANY database.
Some of the shown
attributes will be refined
into relationships.
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3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints
EMPLOYEE WORKS_FOR DEPARTMENT

n

ey 0— / >
€9 o— "2 /

—

es rs /
» d3
€4
.
€5 o .
.
€e
. Figure 3.9
e Some instances in

the WORKS_FOR

. relationship set,

. which represents a
relationship type
WORKS_FOR

between EMPLOYEE
and DEPARTMENT.

EMPLOYEE SUPERVISION Figure 3.11

A recursive relationship
SUPERVISION
between EMPLOYEE
in the supervisor role
(1) and EMPLOYEE in
the subordinate role (2).
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Figure 3.12 EMPLOYEE MANAGES DEPARTMENT
A 1:1 relationship,
MANAGES.
[N )
Er e rq
€3
ra
Eeq @
35 'r3
€g
E? L] :
EMPLOYEE WORKS_ON PROJECT

Figure 3.13
An M:N relationship,
WORKS_ON.
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3.7 ER Diagram Naming Conventions

Symbol Meaning Figure 3.14
Summary of the
notation for ER

Entity diagrams.

Weak Entity

Relationship

Wizt

Indentifying Relationship
Attribute

Key Attnbute

Multivalued Attnbute

Composite Attribute
Derived Attribute

Total Participation of E; in R

Cardinality Ratio 1: N for E;: E,in R

(min, max)

Structural Constraint (min, max)
on Participation of Ein R
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CEname 3 C_Mini > (" Lname

CName ( Salary >
Cesn ) (Sex >
WORKS_FOR 4N)

(1,1)
Employee Department @
Number of emplo{véés

“~| DEPARTMENT

@

EMPLOYEE

0,1) Department (O,N) Controllmg
Manager Managed .~"(1,1) Department
CONTROLS
(1,N)
ON) ©.1) Worker Controlled
Supe '3:3 51 ) (1,1) | Project
upervisor upervisee Project
PROJECT
(1,N) |
(O,N)

Employee @

Location

!

DEPENDENTS_OF

(1,1)|| Dependent

DEPENDENT |

Figure 3.15

ER diagrams for the company schema, with structural constraints specified using
(min, max) notation and role names.

Relationship

In our example, we specify the following relationship types:

® MANAGES, which is a 1:1(one-to-one) relationship type between EMPLOYEE
and DEPARTMENT. EMPLOYEE participation is partial. DEPARTMENT
participation is not clear from the requirements. We question the users, who
say that a department must have a manager at all times, which implies total
participation.'® The attribute Start_date is assigned to this relationship type.

® WORKS_FOR, a I:N (one-to-many) relationship type between

DEPARTMENT and EMPLOYEE. Both participations are total.

® CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT.
The participation of PROJECT is total, whereas that of DEPARTMENT is deter-
mined to be partial, after consultation with the users indicates that some

departments may control no projects.

® SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-
sor role) and EMPLOYEE (in the supervisee role). Both participations are
determined to be partial, after the users indicate that not every employee is a

supervisor and not every employee has a supervisor.

® WORKS_ON, determined to be an M:N (many-to-many) relationship type
with attribute Hours, after the users indicate that a project can have several
38 employees working on it. Both participations are determined to be total.

® DEPENDENTS_OF, a L:N relationship type between EMPLOYEE and

DEPENDENT, which is also the identifying relationship for the weak entity
type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of

DEPENDENT is total.
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Lecture 2. Introduction to Modelling

Data Models

* A data model is an abstract model that describes how
data is represented, accessed, and reasoned about

— e.g. network model, relational model, object-oriented model,
document-centric model

— warning: The term “data model” is ambiguous

* A word of warning:

— When data modelling is concerned, nomenclature is one
of your core enemies!

Data Models / Theory

* A data model (theory) consists of three parts
— Structure

— Integrity

— Manipulation
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* Generic data model (schemas) are generalizations
of conventional data models

— definition of standardized general relation types,
together with the kinds of things that may be related by
such a relation type

— Think of: “Pseudocode data model” or “Natural
Language Data Model”

Towards Schema Design

* Planning and developing application programs
traditionally is a software engineering problem
— Requirements Engineering
— Conceptual Design
(__— Application Design

* Software engineers and data engineers cooperate
tightly in planning the need, use and flow of data
— Data Modeling
— Database Design

* DB Design models a miniworld (also called
universe of discourse) into a formal representation
— restricted view on the real world with respect to the

problems that the current application should solve
* Modeling the data involves three design phases
— result of one phase is input of the next phase

— often, automatic transition is possible with some
additional designer feedback
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é ; REQUIREMENTS

COLLECTION AND
/ ANALYSIS o
NS

Functional Requirements Data Requirements

) '

| FUNCTIOMNAL ANALYSIS | Ul CONCEPTUAL DESIGN | 8{,‘)5
High-Level Transaction Conceptual Schema
Specification

/@In a high-level data maodel)

____________________ LOGICAL DESIGN
(DATA MODEL MAPPING)

‘ DBMS-independent

l DBMS-specific

C

Logical (Conceptual) Schema
(In the dgta model of a specific DBMS)

APPLICATION PROGRAM

DESIGN +
D PHYSICAL DESIGN |
TRANSACTION -+ |nternal Schema
IMPLEMENTATION

Application Programs

* Conceptual Design
— transforms Data Requirements to conceptual model
— describes high-level data entities, relationships, constraints, etc.

@ Logical Design

— maps the conceptual data model to the logical data model used by the DBMS

* Physical Design
— creates internal structures needed to efficiently store/manage data

Q * Requirements Analysis

— database designers interview prospective users and
stakeholders

— Data Requirements describe what kind of data is needed

— Functional Requirements describe the operations performed
on the data

@ * Functional Analysis

— concentrates on describing high-level user operations and
transactions

B,C,D are software engineering
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Ontologies

* In computer science ontologies are formal
specifications of a shared conceptualization

— Basically an ontology provides a shared
vocabulary and descriptions of the real world

— But this definition is far too narrow — ontologies are so much more...
— See ontologies in philosophy.
— Domain ontologies model the real world with respect to a specific
domain

* Taxonomies (TAELG : arrangement,
vouog: law) are part of ontology
— Groups things with similar properties into taxa
— Taxa are put into a hierarchical structure

Summary ER Modelling

* Traditional approach to Conceptual Modeling
— Entity-Relationship Models (ER-Models)

* Top-Down-Approach for modeling
— entities and attributes
— relationships
— constraints
* Some derivates became popular
— ER Crow’s Foot Notation (Bachman Notation)
— ER Baker Notation
— later: Unified Modeling Language (UML)
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The Entity-Relationship Diagrams

* The most used conceptual data diagramming style

* Provides a series of constructs capable of describing
the data requirements of an application:
— in a way that is easy to understand
— using a graphical formalisms
— independently from the database system of choice

* For every construct, there is a corresponding
graphical representation

— This representation allows us to define an E-R schema
diagrammatically

Summary ER Modelling

* ER Models “entities” and their “relationships”
*  Entities:
— Well, this is a bad name. It represents entity types

— Alogical record type:

— A relation

— The data stored according the logical record type:

— Areal world entity type:

— In the following, we will call these boxes entity types!
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person | > address

Construct Graphical Representation
Entity
Entity
Weak Entity
Weak Entity

Relationship 'H

Identifying Relationship |

Attribute @

Key Attribute

Multi Valued Attribute

Derived Attribute

Composite Attribute

Entity 1 Entity 2
Total Partecipation

Entity 1 1 @ .. Entity 2
1:N Cardinality
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Entity Types

City

* Classes of objects (e.g. facts, things, people)
— common properties Department

— autonomous existence
* Examples: Employee
— Commercial organization:
CITY, DEPARTMENT, EMPLOYEE, PURCHASE and SA
— University: STUDENT, COURSE
* An occurrence of an entity type is an object
(or an entity) of the class that the entity type
represents. Course

Student

Relationship Types

» Logical links between two or more entity types
— Defines a set of associations among occurrences from these entity types
— An entity type is said to participate in a relationship

*  Examples:

— RESIDENCE is an example of a relationship that can exist between the entity types CITY and
EMPLOYEE

— EXAM is an example of a relationship that can exist between the entity types STUDENT and
COURSE o = N

= o c

Relationship types in the E-R model

\ Fatztinnchip Tyme ‘ Entiity Tyt ‘
Eniiy Tywe | / i
Student A Course
Has examined \/ Takes exam for

)

WorkPlace

Is workplace of Works in

Employee Residence City
Is Resﬁ:‘!{ ‘//Ft‘fg'des in

Eiglhziiwnzhi Fislks

<
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About Relationship Types

* An occurrence of a relationship type is an n-tuple
made up of occurrences of entity types, one for each
of the entity types involved

* Degree of a relationship type

— Number of participating entity types (Binary, Ternary,
Recursive)

* No identical occurrences!

Structural Constraints

* Cardinality: describes the maximum and minimum
number of relationship occurrences in which an entity
occurrence can participate

— Specified for each entity participating in a relationship

*  maximum (cardinality ratio) can be

— 1: each occurrence of the entity is associated at most with a single
occurrence of the relationship

— N: each occurrence of the entity is associated with an arbitrary
number of occurrences of the relationship

* minimum (participation constraint) can be
— 0: the participation in the relationship is optional or partial
— 1: the participation is mandatory or total (existence dependency)
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Example of 1:1 relationship type

A professor may be the dean of a single university

P A o ™

Prof T Dean —————— University

Partial Participation

Professor University

A university must have one professor acting as a dean

Prof: o

Double line: (must be mapped) All the entities in the university set are mapped to at least 1 professor.
All University records must have a Professor Foreign Key (this case 1, but cardinality couuld also be N)

Single line: (optional). Professor records have the Dean_at attribute but can be null

Example of ternary relationship

* A student can repeat the same
exam in multiple sessions
* Example:
— ST1C1SE1
— ST1C1SE2
— ST1C2 SE1

Session "
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Example of 1:N relationship type
An employee must reside in a city. A city must be the
residence of at least one employee
N 1
Employee City
Is Residence of Resides in

JaN

Relationship Role

X
P
e

Employee City

Example of N:N relationship type
A student can take exams for many courses. A course
might examine several students.
N N
Student Course
Has examined @ Takes exam for

r1

S
|
s

Student Course

Student takes the same exam in multiple sessions:

Example of ternary relationship type

Course

Student Examination

Has examined Takes exam for

Takes Place in

Session

* Maximum cardinalities in an n-ary relationships are almost
always N

* If an entity E participates with maximum cardinality 1, it is
possible to remove the n-ary relationship and relate E with
one of the other entities with a binary relationship
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Recursive Relationship Types

* Relationship where the same entity participates
with different roles

President

Marketing
Sales R&D Manager
Man%)\minager
o O O

EMEA us Asia Employee
Manager Manager Manager

Managed By

Recursive Relationships Types

N N
Colleague

Employee
Predecessor 1 ‘w 1 Successor
Sovreign

Simple Attributes

Different notations possible

* Describe the elementary properties of entities or
relationships

— Surname, Salary and Age are possible attributes of the
EMPLOYEE entity

— Score is possible attributes for the relationship EXAMINATION
between STUDENT and COURSE

* Each attribute is characterized by a domain (not
visually represented)

——0 Attribute Name
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Attribute Cardinality
——(O Attribute Name (0O,N)

* Describes the minimum and maximum number of values of the attribute
associated with each occurrence of an entity or a relationship
— Typically, cardinality is equal to (1,1) and is omitted

*  Minimum cardinality 0 means that the value can be NULL

* Maximum cardinality N means that the attribute may assume more than
one value in the same instance

— In this case we talk about multi-valued attributes and they can be represented as
follows

——© Attribute Name

Example

* Beware of multivalued attributes!

— They might represent situations that could be modelled
with additional entity and relationship types

— E.g. Job as multivalued attribute vs. entity

N
ame O— Employee —© Phone
Surname O—

o 0

BSN Job (0,1)

Composite Attributes
/—/O Attribute 1 Name
O Attribute 2 Name
Composite Attribute 3 Name
Attribute Name

* Achieved by concatenating simpler attribute types
* Pictured by trees of atomic attributes

/—/O Street
O House Number
)\W@sl\o ZipCode

* Composite attributes can form hierarchies
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Derived Attributes —(D

* Attributes having values are
generated from other attributes Birth

_ _ Date Age
— calculations, algorithms or Name O, T oo
S E I one
procedures “'”;;";8} mpioyee o uob (0,1)

1

* Examples

— Age from BirthDate @@

— Number of Employee in
a department

N

Name O— L N Number
rt t| B
Cods Departmen Employees

Attributes of Relationship Types

* Attributes of 1:1 relationship types can be migrated to
one entity type

* Attributes of 1:N relationship type can be migrated
only to entity type on N-side of relationship

* In N:N relationship types, some attributes may be
determined by combination of participating entities
— Must be specified as relationship attributes
— E.g. Grade for STUDENT and EXAMINATION

Identifiers

* Describe the concepts of the schema that allow
the unambiguous identification of the entity
instances
— Attributes and/or entities

* They are specified for each entity of a model

* Relationships have no identifier!
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Internal Identifiers

* Anidentifier is often formed by one or more
attributes of the entity itself

. . Name (O— —©) Phone
* In this case we talk about an internal Sumame O— E‘é"""’"‘é
|de|nt|fk|er k o
— Also known as a ke .
i . _Y Phone G- Demogrphic
An identifier can involve one or more Job(o1) ] EmPloyee —% Name
. ' Sumame
attributes DateOfBirn
— Each of them has (1,1) cardinality
— A new composite attribute becomes key Demographic

L

Each entity must have one identifier, but ooy o] Employee ‘% o
can have o DateCfBirth
more than one Bsn

= Then each distinct underlined attribute is a key

— There is no primary key in ER (only keys)

weak Entities Partial Key

Weak Entity
*  Sometimes the attributes of an \‘

entity are not sufficient to identi

. yare . fy Name O—

its occurrences unambiguously Student
— Weak Entities Surname O—
— Entities may not have internal

identifiers Total

— Or partial identifiers (Partial keys) Identifying Participation

Relationship N

University

* Other entities need to be involved
in the identification
— This is called an external identifier

* The relationship that relates a :
weak entity to its owner is called *“eE[“*[fj{'”g
identifying relationship i
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Enhanced Entity-Relationship Diagrams

(EER)

* Created to design more accurate database schemas reflecting the
data properties and constraints more precisely

= More complex requirements than traditional applications

* EER model includes all modelling concepts of the ER model.

* In addition, EER includes:
—Subclasses and superclasses

—Specialisationand-generalisation-(not covered)
—Categery-oruniontype-(not covered)
—Attribute-and relationship-inheritance-(not covered)

Class / Subclass (Type / Subtype)

= An entity type is used to represent a type of instance (attribute and relationships)
— EMPLOYEE (name, BSN, BirthDate, etc)

* But also the collection of entities (entity set) of that type that exist in the

database
— E.g. entities that represent specific types of employees
— SECRETARY, TECHNICIANSs, MA ERSs, etc.

* The relationship that exists between a type of entity and its entity set is called a
class/ subclass relationship

— EMPLOYEE is the super type or super class
— SECRETARY, TECHNICIAN etc. are subtypes or subclasses of EMPLOYEE

Example Class-Subclass /1

SECRETARY

EMPLOYEE EMPLOYEE

TECHNICIAN

NOT a 1:1 relationship type, but a relationship
between OCCURRENCES
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Class/ Subclass relationship

* Also called generalisation or specialisation relationship

* Represent logical links between an entity E, known as parent entity, and one or
more entities E1, . . ., Ex called child entities, of which E is more general, in the
sense that it comprises them as a particular case.

* In this situation we say that E is a generalisation of €., =, £, and that the
entities E1, . . ., E are specialisation of the E entity

* The subset symbol indicates the direction of the
specialisation

* The circle defines the entities involved in the
specialisation

SECRETARY is a
subclass of EMPLOYEE
EMPLOYEE qu
\1;[3 T J
SECRETARY TECHNICIAN MANAGER

Properties of Specialisation

* Every occurrence of a child entity is also an occurrence of the parent
entity
* Inheritance

— Every property of the parent entity (attributes, identifiers, relationships and other
generalisations) is also a property of a child entity.

* Specialisation can define specific attributes and/or specific relationship

types
yp SSN
e 00 EMPLOYEE
Surname O
W m W
Typing Speed
RN SO SECRETARY TECHNICIAN MANAGER
Graded)
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Subset
* Special class of specialisation with a single child
entity
Grade O recHNICIAN
W
StartDat
arbal® O\ ppRENTICE
EndDate O—

Constraints: Membership%ﬂ

JabType
* In some specialisation we can determine sumame o | FMPLOYEE
exactly the
entities that will become members of each [ sType - ‘secroay | |
subclass
— Predicate-defined (or condition-defined) subclasses & & G

« All the subclasses in a specialisation have secremany | | Techmcian || manacen
their membership
condition on the same attribute

d)T)'WQ Speed OGrade

— Attribute-defined specialisation i’g’ﬂ Jub‘ir’m
(Defining attribute of the specialisation) o 5™ O ewpoves
* No specific condition - E?Dm]
— User-defined subclass
— specialisation defined by the database user, Lseorwan  [moomicany) [ Manager' [}
instance by instance A U W

SECRETARY TECHMICIAM MAMAGER

OTyping Spesd DGrade BE
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Week 2. The Relational Model

Chapter 4. The Extended EER Model

The ER modeling concepts discussed in Chapter 3 are sufficient for representing many database schemas
for traditional database applications, which include many data-processing applications in business and
industry. However more complex models exist and in this chapter, we describe features that have been
proposed for semantic data models and show how the ER model can be enhanced to include these
concepts, which leads to the enhanced ER (EER) model.

4.1 Subclasses, Superclasses, and Inheritance

Subtype/subclass entity type

The entities that are members of the EMPLOYEE entity type may be distinguished further into
SECRETARY, ENGINEER, MANAGER, TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so on.
The set or collection of entities in each of the latter groupings is a subset of the entities that belong to
the EMPLOYEE entity set, meaning that every entity that is a member of one of these subgroupings is
also an employee. We call each of these subgroupings a subclass or subtype of the EMPLOYEE entity
type, and the EMPLOYEE entity type is called the superclass or supertype for each of these subclasses.

We call the relationship between a superclass and any one of its subclasses a superclass/subclass or
supertype/subtype or simply class/subclass relationship.

The subclass member is the same as the entity in the superclass, but in a distinct specific role

When we implement a superclass/subclass relationship in the database system, however, we may
represent a member of the subclass as a distinct database object—say, a distinct record that is related
via the key attribute to its superclass entity.

An entity cannot exist in the database merely by being a member of a subclass; it must also be a
member of the superclass. Such an entity can be included optionally, as a member of any number of
subclasses. Because an entity in the subclass represents the same real-world entity from the superclass, it
should possess values for its specific attributes as well as values of its attributes as a member of the
superclass. We say that an entity that is a member of a subclass inherits all the attributes of the entity as a
member of the superclass. The entity also inherits all the relationships in which the superclass participates.

Figure 4.1 Observe how the subclass
EER diagram )

notation o represent - Ml@anager is a subset of super
subclasses and

specialization. class Em p|0yee

Manager € Employee

And see how the letter d
(disjoint/at most) expresses that
an employ can be secretary xor

Typing_speed

HOURLY_EMPLOYEE

| SALARIED_EMPLOYEE |

BELONGS_TO

TRADE_UNION

| SECRETARY |[ TECHNICIAN || ENGINEER |[ MANAGER |

technician xor engineer xor
none; and on top of that it can
be or not be a manager.The

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}

{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} double ”ne means totaI
participation. So all employees

PROJECT
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registered as secretary,

technicitan or engineer, that is, there are some positions in the company that do not have an entity type

of their own.

The diamonds are relationships. In Chen notation (this one, the one from the book), relations and
cardinalities are represented in active voice. “Many employees have 1 mentor”.

4.2 Specialization and Generalization
4.2.1 Specialization

Specialization is the process of defining a set of subclasses of an entity type. The set of subclasses that
forms a specialization is defined on the basis of some distinguishing characteristic of the entities in the
superclass. Attributes that apply only to entities of a particular subclass—such as TypingSpeed of
SECRETARY—are attached to the rectangle representing that subclass. These are called specific (or local)

attributes of the subclass.

4.2.2 Generalization

we suppress the differences among several entity types, identify their common features, and generalize
them into a single superclass of which the original entity types are special subclasses.

Figure 4.3
Generalization. (a) Two entity types, CAR and TRUCK.
(b) Generalizing CAR and TRUCK into the superclass VEHICLE.

(a) [ -

1 N ? of passengers > C No of axles,
\( _ax p__cq:I:) \Tonnage/
——— ) Prlce ( Pr|ce TRU CK
(V ehicle_ |d “ N\ T/Vehlcle |d\
/ Llcense Elate nos QLlcense plate no\
(b) Vehlcle |d“\ \ Prlce> /Llcense plate no\

g No _of passengers/ )‘ —~ -f;l%lo_ot_axle;;j-

— T e
QMaxspeed) e ™~ (Tonnage)
TRUCK |

4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies

4.3.1 Constraints on Specialization and Generalization
In some specializations we can determine exactly the entities that will b

ecome members of each

subclass by placing a condition on the value of some attribute of the superclass. Such subclasses are

called predicate-defined (or condition-defined) subclasses.
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For example, if the EMPLOYEE entity type has an attribute Job_type we can specify the condition of membership
in the SECRETARY subclass by the condition (Job_type = ‘Secretary’), which we call the defining predicate of the
subclass. This condition is a constraint.

When we do not have a condition for determining membership in a subclass, the subclass is called user-
defined. membership is specified individually for each entity by the user, not by any condition

that may be evaluated automatically.

The d notation also applies to user-defined subclasses of a specialization that must be disjoint.

Subclasses can also be overlapping ( 0 ) that is, the same (real-world) entity may be a member of more
than one subclass of the specialization.

(Partno > (Description
-Q:@:;;ufacture:&i§> PART
T [

T T
Batch_no ‘ e
i ) 'xf’)‘._ (Supplier_name> Figure 4.5
o /'«/// \x s _’.‘-) EER diagram notation
(_Drawing_no 2%_ - ~ ’&Lls_t:p_rlce for an overlapping

(nondisjoint)

[ MANUFACTURED_PART | | PURCHASED_PART | specialization.

The second constraint on specialization is called the completeness (or totalness) constraint, which may
be total or partial. A total specialization constraint specifies that every entity in the superclass must be a
member of at least one subclass in the specialization. For example, if every EMPLOYEE must be either an
HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the specialization {HOURLY_EMPLOYEE,
SALARIED_EMPLOYEE} in Figure 4.1 is a total specialization of EMPLOYEE. This is shown in EER diagrams
by using a double line to connect the superclass to the circle. A single line is used to display a partial
specialization, which allows an entity not to belong to any of the subclasses.

4.3.2 Specialization and Generalization Hierarchies and Lattices

A specialization hierarchy (single inheritance) has the constraint that every subclass participates as a
subclass in only one class/subclass relationship; that is, each subclass has only one parent, which results
in a tree structure or strict hierarchy.

For a specialization lattice (mulitple inheritance), a subclass can be a subclass in more than one
class/subclass relationship. That is a shared subclass. if no shared subclasses existed, we would have a
hierarchy rather than a lattice and only single inheritance would exist.

4.7 Ontology

The main difference between an ontology and, say, a database schema, is that the schema is usually
limited to describing a small subset of a miniworld from reality in order to store and manage data. An
ontology is usually considered to be more general in that it attempts to describe a part of reality or a
domain of interest (for example, medical terms, electronic-commerce applications, sports, and so on) as
completely as possible.
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Lecture 3. The Relational Model

The relational model is based on set theory, which is the foundation of mathematics.

Sets

* Asetis a mathematical primitive,
and thus has no formal definition

* Asetis a collection of objects
(called members or elements of the set)

— objects (or entities) have to be understood in a
very broad sense, can be anything from physical objects,
people, abstract concepts, other sets, ...

* Objects belong (or do not belong) to a set
(alternatively, are or are not in the set)

* A set consists of all its elements

+ Sets can be specified extensionally
— list all its elements
— e.g. A={delft, 42, lofi, Count von Count}
* Sets can be specified intensionally
— provide a criterion deciding whether an object belongs to the set or not
(membership criterion)
— examples:
* A={x|x>4 and x€ T}
B={x€N|x<7}
+ C={all facts about databases you should store}
* Sets can be either finite or infinite
— set of all super villains is finite
— set of all numbers is infinite

« Sets are different, iff they have different members
—{a,b,c}={b,ca}
— duplicates are not supported
in standard set theory
* {a,a,b,c}={ab,c}

+ Sets can be empty (written as {} or 0) + Defining a set by ts intension

* Notations for set membership — intension must be well-defined and unambiguous
—a€f{ab,c} — there is always is a clear membership criterion
T to determine whether an object belongs to the set
—e&{ab,c} (or not)

+ Still, the set’s extension might be unknown
(however, there is one)

* Example
— All students in this room who are older than 22.
— well-defined, but not known to me ...
— but (at least in principle) we can find out!

* Why should we care? Because:
— Intensional set ~ database query
— Extensional set = result of a query, table
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= Sets have a cardinality (i.e., number of elements)

— denoted by | 4| ACB
— |{a,b,c}| =3 N

* Set Ais a subset of set B, denoted by A C B,
iff every member of A is also a member of B

* Bis asupersetof A, denotedby B2 A, iff ACB

{(AHd1s(@,d,)
Tuples

* Atuple (or vector) is a sequence of objects
— length 1: Singleton
— length 2: Pair
— length 3: Triple
— length n: n-tuple

* |n contrast to sets...
— tuples can contain an object more than once
— the objects appear in a certain order
— the length of the tuple is finite

* Writtenas{a,b,c)or (a, b, c)

* Hence

—(a, b, c) #(c, b, a), whereas {a, b, c} = {c, b, a}
—(a,, a,) =(by, b,) iff a,=b,and a,=b,

n-tuples (77> 1) can also be defined as
a cascade of ordered pairs:
—{a,b,c,d) =(a, (b, {(c,d)))

Set Operations

* Four binary set operations
— union, intersection, difference and cartesian product
* Union: U
— creates a new set containing all elements
that are contained in (at least) one of two sets

—{a,b}u{b,c}={ab,c}
* |ntersection: N

— creates a new set containing all elements
that are contained in both sets An ()
— {a, b} N {b, c} = {b}
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A\B

« Difference: \
— creates a set containing all elements @

of the first set without those
also being in the second set

—{a bj\ {b,c}={a}

+ (Cartesian Product: x

— the cartesian product is an operation between
two sets, creating a new set of pairs such that:

AxB={(a,b)|acAandbe B}

— named after René Descartes
*  Example
— {a, b} x {b, c}={(a, b), (a, c), (b, b}, (b, c}}

Relations

* Avrelation R over some sets D, ..., D, is
a subset of their cartesian product
—RED, x...xD,
— the elements of a relation are tuples
— the D, are called domains
— each D, corresponds to an attribute of a tuple
* n=1: Unary relation or property
* n=2: Binary relation

* n=3: Ternary relation

.

* Some important properties

— relations are sets (of tuples) in the mathematical sense,
thus no duplicate tuples are allowed

— the set of tuples is unordered

— the list of domains is ordered
* And so are the values of each tuple
— relations can be modified by...
* inserting new tuples,
+ deleting existing tuples, and
+ updating (that is, modifying) existing tuples.

* A special case: Binary relations
— R€D;xD,
+ D, is called domain, D, is called co-domain (range, target)
— relates objects of two different sets to each other
— Ris just a set of ordered pairs
— R={(a1), (c,1}), (d.4),
(e5). (e6)}
+ can also be written as aR1, cR1, dR4, ...
— imagine Likes € Person x Beverage
Asterios Likes Coffee, Christoph Likes Tea, ...
— For example, binary relations can naively be used to implement n:m
relationship types in a logical data model
— Functions are a special case of binary relations
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Functions

* Functions are special case of binary relations

— partial function:
each element of the domain is related to
at most one element in the co-domain

— total function:
each element in the domain is related to

exactly one element in the co-domain ‘ /
\ 34
-] L] o L) o L] Q L o
L] -] o @———»0 L] Q L] Q
\\*o -/’:o e—»0 -/f,:o a&u
L o o L L Q
NOT a General Injective Surjective Bijective
Function Function (not surjective) (not injective) (injective, surjective)
A has many B B caon have many A B can't have many A Every Bhassome A A to B, perfectly

Partial function = injective

Total function = bijective

* Functions can be used to abstract from
the exact order of domains in a relation

— alternative definition of relations:
a relation is a set of functions

— every tuple in the relation is considered as a function of
thetype{A,,..,A }>D,U..UD,

» that means, every tuple maps each attribute to some value

* Example
— Color = {pink, black}
— Material = {silk, armor plates}
— Accessory = {spikes, butterfly helmet}

— to be independent of the domain order, the tuple

§p'|nk, silk, butterfly helmet) can also be represented as the
ollowing function t

t{Color) = pink
t(Material) = silk
t{Accessory) = butterfly helmet
— Usually, one writes t[color] instead of t(color)
— This can be used to change the order of domains for tuples
t[Material, Accessory, Color] = (silk, butterfly helmet, pink)
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— a database schema is a description
in terms of relations and attribute domains
* Description of all possible instances
* ..butalso intensional set of tuples

— a database instance is a set of tuples
having certain attribute values
* An extensional set of tuples

Relational Model

* Database schemas are described by relation schemas
R(Ay -0 Ay)

* Domains are assigned by the dom function

— dom(A,) =D,, dom(A,) =D,, ...

— Also written as: R(A;:D,, ... A:D,)
* The actual database instance is given by

a set of matching relations
+ Example

— relation schema: _
Cat(name: string, age: number)

— A matching relation:
{ (Blackie, 2), (Kitty, 1), (Fluffy, 4) }

Relational Model

relatior@’ne /:u:tributes

Clark Joseph Kent m

Louise Lane f

/ Lex Luther m
/ Charles Kavier m

tupl Erik Magnus m .
P Jeanne é“.,, f le—"domain values

Ororo Munroe f

Tony Edward Stark m

Matt Murdock m

Raven Wagner f

Robert Bruce Banner m

* Arelational database schema consists of
— a set of relation schemas
— a set of integrity constraints

* Arelational database instance (or state) is

— a set of relations adhering to the respective schemas and

respecting all integrity constraints o
‘ | Schemas

Integrity

CEEE | constrains

x 6

¥ | 58—
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* Every relational DBMS needs a language to define its
relation schemas (and integrity constraints)
— Data Definition Language (DDL)

— typically, it is difficult to formalize all possible integrity
constraints, since they tend to be complex and vague

* Arelational DBMS also needs a language to handle
and manipulate tuples
— Data Manipulation Language (DML)

* Today’s RDBMS use SQL as both DDL and DML
— Compare to XML: Here, DDL and DML are separated

Relational Model Concepts

* The relational model represents the database as a
collection of relations

* Each relation resembles a table of values

* When a relation is thought of as a table of values,
each row in the table represents a collection of
related data values

Formal Terminology

* Arow is called a tuple
* A column header is called an attribute

* The table is called relation

Relation Mame = ’g‘“‘":’”l‘”E;‘{_‘:{;__::—__h
= S
STUDENT " o s ey
MName San Home:_phaone Address Office_phone| Age | Gpa |
Benjamin Bayer | 305-61-243% | 373-1616 | 2918 Blueebonnet Lane | WULL 18 [3.21
/ Chung-cha Kim | 381-62-1245 | 375-4409 | 125 Kirby Road NULL 18 | 2.89
Tuples Ee| Dick Davideon | 420-11-2320 | NULL 3452 Elgin Road 740-1283 |26 | 353
Rohan Panchal | 489-22-1100 | 376-9821 | 285 Lark Lang 749-5402 |78 |3.893
Barbara Benson | 533-69-1238 | B39-8461 | 7384 Fontana Lane NULL 19 | 3.25

Figure 5.1
The atfributes and tuples of a relaticn STUDENT.
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Domain

* A Domain D is a set of atomic values.

* Atomic means that each value in the domain is
indivisible as far as the relational model is concerned

* It means that if we separate an atomic value, the
value itself become meaningless, for example:
— SSN

Local_phone_number

Names

Employee_ages

Relation Schema

Relation Schema R, denoted by R(Al, A2,..., An), is made up of
relation name R and a list of attributes A1, A2, ...,An

Each attribute Aiis the name of a role played by some domain D
in the relation schema R.

D is called the domain of Ai and is denoted by dom(Ai)
R is called the name of the relation

The degree of a relation is the number of attributes n of its
relation schema

Formal Definitions

* Formally,
— Given R(Al1, A2, .......... , An)
- r(R) © dom (A1) X dom (A2) X ....X dom(An)

« R(A1, A2, ..., An) is the schema of the relation
* Ris the name of the relation

* A1, A2, ..., An are the attributes of the relation
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Formal Definitions
* Let R(A1, A2) be a relation schema:

— Let dom(A1) ={0,1}
— Let dom(A2) = {a,b,c}

* Then: dom(A1) X dom(A2) is all possible
combinations:
— {<0,a>, <0,b>, <0,c>, <1,a>, <1,b>, <1,c> }

* The relation state r(R) — dom(A1) X dom(A2)

Definition Summary

Informal Terms Formal Terms

Table Relation

Column Header Attribute

All possible Column Values Domain

Row Tuple

Table Definition Schema of a Relation
Populated Table State of the Relation

Ordering

* Ordering of Tuples is a Relation
— a relation is defined as a set of tuples.

— Mathematically, elements of a set have NO order among
them

— The ordering indicates first, second, ith, and last records
in the file

— Hence, the following two relations are identical
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Identical Relations

Relation Mame e Altributes =
-~ T
__,,.»"”:;"f —
STUDENT  _ — & .y e
Mame Sen Hume_phnnel Addreze: Office_phone) Age Gp&|
Bergamn Bayer | 305-61-2435 | 373-16168 | 2918 Bluebonnet Lane | NLULL 189 | 5.21
; Chung-:h:l Kirn | 381-82-1245 | 375-4408 | 125 Kuby Road MULL 18 |x82
Tuples e Dick Davideon | 422-11-2320 | MULL 3452 Elgin Road 7491253 | 26 |3.53
Rohan Panchal | £8%-22-1100 | A76-9821 | 366 Lark Lane 745-5452 | 28 (392
Barbara Benson | $33-68-1236 | 830-8461 | 7384 Fontana Lane NLLL 19 |3.28
Figure 8.1
The attributes and tuples of a relation STUDENT.
Figure 8.2
The ralafion STUDENT from Figure 5.1 with & diffarent crder of fuples.
STUDENT
Meme | Sen Horme_phone Address Offica_phene | Age|Gpa |
Dick Davidson | 438112320 | NULL 3452 Elgin Road 401283 25 [958
Barbera Bangon | 533-68-1230 | 839-8461 | 7364 Fontana Lane MULL 19 | 225
Rohan Panchal | 488-22-1100 | 376-8621 | 265 Lack Lane 749-6482 | 28 | 383
Chung-cha Kim | 381-62-1245 | 375-4408 126 Kirby Road MLULL 18 | 289
Benjamin Bayer | 306-61-2435 | 373-1818 | 2918 Bluebonnet Lane | NULL 19 | 321

Values in the Tuples

* Each value in a tuple is an atomic value

* Hence, composite and multi-valued attributes are not
allowed

* This model is sometimes called the flat relational model

*  Much of the theory behind the relational model was
developed with this assumption, which is called first
normal form assumption

Null in tuples

* An important concept is that if NULL values, which
are used to represent the values of attributes that
may be unknown or may not apply to a tuple

Relational Model Notation

* An attribute A can be qualified with the relation
name R to which it belongs by using the dot
notation R.A

* For example, STUDENT.Name or STUDENT.Age
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Integrity Constraints

* Integrity constraints are difficult to model in ER

— basically annotations to the diagram,
especially for behavioral constraints
* e.g. The popularity rating of any super hero sidekick
should always be less than the respective super hero’s.

* But some structural constraints
can directly be expressed
— e.g., key constraints, functionalities

— Formally, they are not part of
the mathematical model, we still
integrate them for practical
purposes

Basic Constraints

* Primary Key Constraint

— Arelation is defined as a set of tuples

* alltuples have to be distinet, i.e., no two tuples can have the same
combinations of values for all attributes

* so-called uniqueness (unique key) constraint or primary key
constraint

— Therefore, we can define the key of a relation as a designated
subset of attributes for which no two tuples have the same
values (are unique)

* It's a little bit more complex than that...see later lecture

— Each relation will need a designated key

* We will write this as for example
Hero(alias, name, age, ...)

* NOT NULL Constraint
— Remember, a relation is defined as
R © D, x .. X D, withtuplest ER
— However, in a practical application its common that not always all
attribute values are known

+ Therefore, it is usually assumed that there is a special NULL value in each domain,
i.e. NULL € D;

— Sometimes, this is not desired for certain attributes
+ Introduces the NOT NULL constraint
— Primary Key must never be NULL
— e.g. Address(street: string NOT NULL,
number: numeric NOT NULL,
zip-code: numeric NOT NULL,
city: string NOT NULL
posthox : string)
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* Foreign Key Constraint

— Sometimes, we want to link tuples in different relations
* This will be integral for realizing ER relationships in a database

— A foreign key constraint can be defined between the key
attributes of one relation and some attributes of another one
* e.g., Herolid, first name, last name) «—————— References the key ‘id’ of hero

Aliases(alias, heroid=>Hero)

— Tuples of the referring relation can only have values for the
referencing attribute which are the key of an existing tuple in
the referenced relation

* This is called referential integrity

* Convention:

— If a composite key is references, we write this as, e.g.,
R1(a b c¢) R2(d, e f, (d, f)=R1)

— This is not a standard notation, but rather close to what
you find in SQL

Domain Constrains

e Each attribute A must be an atomic value from the
dom(A)

* The data types associated with domains typically
include standard numeric data type for integers,
real numbers, Characters, Booleans, fix-length
strings, time, date, money or some special data

types

Key Constrains

* Arelation is defined as a set of tuples
* By definition, all elements of a set are distinct

* This means that no two tuples can have the same
combination of values for all their attributes

* Superkey: a set of attributes that no two distinct
tuples in any state r of R have the same value

* Every relation has at least one default superkey —
the set of all its attributes
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Key Constrains

* A superkey can have redundant attributes, so a
more useful concept is that of a KEY which has no
redundancy

* Key satisfied two constrains:

— Two distinct tuple in any state of the relation cannot have
identical values for the attributes in the key

— Itis a minimal superkey

* In general, a relation schema may have more than one key,
in this case, each of the key is called a candidate key

CAR table with two candidate keys -
LicenseNumber chosen as Primary Key

CAR

License_number | Engine_serial_number Make Madel | Year

Texazs ABC-730 AB9352 Ford Mustang | 02

Florida TVP-347 B43696 Oldsmobile | Cutlass 0B

Figure 5.4 New York MPO-22 XB83554 Oldsmobile | Delta 01
The CAR relation, with California 432-TFY C43742 Mercedes 190-D a9
fwo candidate keys: Calfornia RSK-829 Y82035 Toyota Camnry 04
e e by | Teras RSK628 U028365 Jaguar | XIS___| 04

Key Constrains

* If a relation has several candidate keys, one is chosen arbitrarily to be the
primary key.

* Example: Consider the CAR relation schema:
— CAR(State, Reg#, SerialNo, Make, Model, Year)
— We chose SerialNo as the primary key

*  The primary key value is used to uniquely identify each tuple in a relation
— Provides the tuple identity

* Also used to reference the tuple from another tuple

— General rule: Choose as primary key the smallest of the candidate keys (in terms of size)
— Not always applicable — choice is sometimes subjective

70



CSE1500 Databases Midterm

Relational Database Schema

* Relational Database Schema:
— AsetSofrelation schemas that belong to the same database.
— Sis the name of the whole database schema
— S={R1,R2,..,Rn}
— R1,R2, .., Rnare the names of the individual relation schemas within the
database S

EMPLOYEE
[ Fname | Minit | Lname | Ssn | Bdate | Address | Sex | Salay | Super_ssn| Dno |

DEPARTMENT
| Dname | Cnumber | Mg_aﬂnl Mgr_atsu't_dﬂtal

DEPT _LOGATIONS
| Dhumber | Dlecation |

PROJECT
| Prame | Poumber | Plocation | Dnum

WORKS_ON
Essn | Pno | Hours Figure 5.5
Schema diagram for
DEPEMDENT tha COMPAMNY
- ; relational database
Essn | Dependentname | Sex | Bdate | Relationship | schata

Entity Integrity

* Entity Integrity:
— The primary key attributes (PK) of each relation schema R in S cannot
have null values in any tuple of r(R).
* This is because primary key values are used to identify the individual tuples.
* t[PK] = null for any tuple t in r(R)
* If PK has several attributes, null is not allowed in any of these attributes

— MNote: Other attributes of R may be constrained to disallow null values, even
though they are not members of the primary key.
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Referential Integrity Constraint

* Referential Integrity Constraint is specified between two
relations and is used to maintain the consistency among
tuples in the two relations

* Informally define the constrain: a tuple in one relation
must refer to an existing tuple in that relation

* Tuples in the referencing relation R1 have
attributes FK (called foreign key attributes) that
reference the primary key attributes PK of the
referenced relation R2.

— Atuple t1 in R1 is said to reference a tuple t2 in R2 if
t1[FK] = t2[PK].

Displaying a relational database
schema and its constraints

* Each relation schema can be displayed as a row of attribute
names

* The name of the relation is written above the attribute names
*  The primary key attribute (or attributes) will be underlined

* A foreign key (referential integrity) constraints is displayed as a
directed arc (arrow) from the foreign key attributes to the
referenced table

— Can also point the the primary key of the referenced relation for clarity
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Referential Integrity Constraints
for COMPANY database

Pigure 5.7
Referential integrity constraints displayed on the COMPANY refational database schema
EMPLOYEE

[ Frame | Minit | Lname | Sen | Bdate | Address | Sex | Saley | Super ssn | Doo |
u* |

DEPARTMEMNT
[ Drame | Dnumber [ Mgr_san | Mor_start_date |

DEPT_LOCATIONS
| Dviurmiser [ Dlocatian ]

PROJIECT
Pname | Poumbaer | Plocation Dinurm I
1 3 [
WORKS_ON
Ezsn | Pro | Hours
[E—
DEFPENDENT

[ Essn | Depardent_name | Sex | Bdate | Relationship |

Referential Integrity Constraints
for COMPANY database

Figure 8.7
Reforcrtal integity conatraints displayed on the COMPANY reiational detatbase achoma

EMPLOYEE

Frame | Mint | Lname [ Sen | Bdate | Addoss [ Sox [ Sal Supor_ssn | Dna_|

e

[Drams | Drumber | Mgr_ssn | Mor_star_date |

DEPT_LOCATIONS

[ Do | Dcain |

PROJECT
Fname | Prumber | Piocation | Dnum

S =
e 7 Lsé

DEPENDENT
Esen | Dapandont nsme | Sex | Bdate | Relationship

Other Types of Constraints

«  Semantic Integrity Constraints:

— based on application semantics and cannot be expressed by the model per
se

— Example: “the max. no. of hours per employee for all projects he or she
works on is 56 hrs per week”

* A constraint specification language may have to be used to express these
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Modification and Updates

* Insert: insert new element with specify all related attributes

* Delete: delete an element by giving Relation name and key of the
tuple

*  Modify: modify a value by giving a relation name, Key of the target
tuple and attribute to modify

Possible violations

* INSERT may violate any of the constraints:

— Domain constraint:
* if one of the attribute values provided for the new tuple is not of the
specified attribute domain
— Key constraint:
« if the value of a key attribute in the new tuple already exists in
another tuple in the relation
— Referential integrity:
 if a foreign key value in the new tuple references a primary key value
that does not exist in the referenced relation
— Entity integrity:
* if the primary key value is null in the new tuple

* DELETE may violate only referential integrity:
— If the primary key value of the tuple being deleted is referenced from other

tuples in the database
* Can be remedied by several actions: RESTRICT, CASCADE, SET NULL
— RESTRICT option: reject the deletion
— CASCADE option: propagate the new primary key value into the foreign keys of the
referencing tuples
—  SET NULL option: set the foreign keys of the referancing tuples to NULL

— One of the above options must be specified during database design for each
foreign key constraint

* UPDATE may violate domain constraint and NOT NULL
constraint on an attribute being modified

* Any of the other constraints may also be violated,
depending on the attribute being updated:
— Updating the primary key (PK):
* Similar to a DELETE followed by an INSERT

Need to specify similar options to DELETE
— Updating a foreign key (FK):

May violate referential integrity
— Updating an ordinary attribute (neither PK nor FK):

= (Can only violate domain constraints
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Lecture 4. More on Modelling

“data modelling”: Naming Confusion

* Careful with “Data Model” vs data model....!

— Data Models as in “real” Data Models

*+ “How can data be organized, stored, modified, and retrieved in systems from
general point of view”

* Relational Model
+  Network Model
+ Document Model
*+ Graph Model
+ efc.
— Data Models aka “schemas”
* How is data organized in this particular system/application
+ Conceptual Schemas
* Logical Schemas (which people sometimes call physical schemas)

+ Physical Schemas (which the same people who call logical schemas physical
schemas still call physical schemas...)

“data modelling”: Relational Model

* Arelational database schema consists of
— a set of relation schemas
— a set of integrity constraints

* Arelational database instance (or state) is

— a set of relations adhering to the respective schemas and
respecting all integrity constraints

relatiorq‘ue /ttri butes

Clark Joseph Kent

~ m
Louise Lane f
/ - : .
/ Charles Kavier m
tupl Erik Magnus m .
P Jearme ’g“n, t le—"domain values
Ororo Munroe f
Tony Edward Stark m
Matt Murdeck m
Raven Wagner f
Robert Bruce Banner m
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“data modelling”: Schema Design

* Modeling the data involves three design phases

— result of one phase is input of the next phase

— often, automatic transition is possible with some
additional designer feedback

Indanihing Relriassain
vyt
Koy Aot

W bmaiznn Afriaia

Compasia Aliisuls

[ESTRE T Y

Cardinalities:
One: 1,1, ||, ..
Multiple: *, N, M

Tntal Pavoiuais ol 0 8

Charchaaity Fiabas 1 M o Iy 0 7
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Conceptual Modelling: EER

Figure 4.1
EER diagram notation to represent
subclasses and specialization.

| SECRETARY || TECHNICIAN || ENGINEER || MANAGER |
| saLARIED_EMPLOYEE |

BELONGS_TO

TRADE_UNION

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGIMEER]

{MANAGER}
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE)

PROIECT

» EER: Extended Entity-Relationship Modeling
— Adds inheritance and union types

» Supertypes and Subtypes
— Overlapping and Disjoint

+ Entity can be of multiple subtypes, or of only one

— Total or Partial
* Total: Each entity must be of one of the subtypes

Cardinal Nightmare

F(_;E— o) N B2 &
&P3 :F'4 Eﬁﬁ_ﬁoirz 05535
Py ) — < B4
Person == Burrito
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“N™ and ™ means the same here

Cardinal Nightmare: UML style

— UML Style (our lecture’s default):
* Usually only distinguishes between 1, * or (0,1) or (1,*)

— Fine-granular cardinalities and higher arity relations not easily
possible

“One person eats multiple buritos®

*
“Person |- Burrto
eater eating victim

o +—F—01) —Q82 &

OP3 OF.::z — ___<>F2 _'Qé%f*
P {)FS 9 B4

Person =t Burrito

"One person eats multiple burmtos.”
{but there can be burmitos being left over, or people who don't eat anything, or just 1, or 10)

1 *

eater ‘ eating wchim

“Multiple persons share one bumito.”
(but there can be burmitos being left over, or people who don't eat amything)

Burrito

Person

* 1
Person ——— Burrito
eafer eafing wchim
“Pecple eat burritos.”
{Persons can share burritos, eat them by themsehes, leave some over, or not eat anything)
* *
Person ~——  Burrito
eater eating wchim

“One person eats multiple burmtos.”
{each burrito must be eaten, but some people can choose to not eat amything)

Burrito

Person
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* UML style can also provide min / max
— butonlyuses 0, 1, N/*
“1" stands for “(0,1)": up to one
— “N” stands for “(0,N)”: any number of
— “(1,1)": exactly 1
* which is the same as 1 with total participation...
— “(1,N)": at least 1

* Which is the same as N with total participation

“Each person eats exactly one burtito, and each burrito is being eaten”

“Person .1 [ Burrio |

eating vict

— UML Style (our lecture’s default):
* Usually only distinguishes between 0, 0..1,1, 0..* and *

— Fine-granular cardinalities and higher arity relations not easily
possible

USE THIS IN THE EXAM

Person = Burrito

ER - Crow’s Foot Notation

* Many derivates of Chen ER became popular

* Crow’s Foot Notation: Relationship Types

— relationship types are modeled by lines connecting the
entities (no explicit symbol for relationships)

— line is annotated with the name of the relationship which is a
verb

— cardinalities are represented graphically

* (0, 1): zero or one e
* (1, 1): exactly one —
* (0, *): zero or more -
* (1, *): one or more -
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ER - Crow’s Foot Notation

* Attention:

— Cardinalities are written on the opposite side of the
relationship (in contrast to Chen notation)

Q- 1,
L
owns -

ER - Crow’s Foot Notation

* Attention:

— Cardinalities are written on the opposite side of the
relationship (in contrast to Chen notation)

ER - Crow’s Foot Notation

* Problem

— N-ary relationship types are not supported by crow’s foot
notation, neither are relationship attributes

* Workaround solution:

— intermediate entities must be used

* N-ary relationships are broken down in a series of binary
relationship types anchoring on the intermediate entity

®d | B
B (8]

80



CSE1500 Databases Midterm

ER - Crow’s Foot Notation

Supplier provides Supplies is used Customer
I 4 number PO H

&

Icontains
Thig sc

. hﬂrna
Slighgy has
¥ diff,
Part | s""Tamfc:.?"t

ER - Crow’s Foot Notation

* Originally, ER diagrams were intended to be used
on a conceptual level
— model data in an abstract fashion independent of
implementation
* Crow’s foot notation sacrifices some conceptual
expressiveness

— model is closer to the logical model (i.e. the way the data
is later really stored in a system)

— this is not always desirable and may obfuscate the
intended semantics of the model

ER - Even more notations...

* Barker’s notation
— based on Crow’s Foot Notation

— developed by Richard Barker for Oracle’s CASE modeling
books and tools in1986

— cardinalities are represented differently

* (0, 1): zero or one +

* (1, 1): exactly one —

* (0, N): zero or more -
e

* (1, N): one or more
* cardinalities position similar to Crow’s Foot notation and opposite to
classic ER

— different notation of subtypes
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ER - Even more notations...

* Black Diamond Notation

— cardinalities are represented differently

* cardinality annotation per relationship, not per relationship end

* 1l Lo <>
.+ 1N N o> o P>
* N:M o <>

— also, N-ary relationships possible

1

* ternary N <> 1 _/ @
Common Mistakes in ER-Modelling

* Mistake: No Primary Key
— Just don’t do that outside of simple examples

— (same is true for cardinalities)

* Mistake: No Relation Symbol or Name

227
* Mistake: Modelling Functionality as Data

* Mistake: Model not suitable for the task
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*+  Mistake: Primary Key does not make sense
— Intuition: An attribute / set of attributes which uniquely identify an entity

— Additional soft constraints
«  Should feel “natural”
*  Should be minimal
= Should be easy to handle
— Example: Modeling a book in a book store
« Good: Book(name, author. year. jsbn, summary, price)

= Less good: Book(name, author vear, isbn, summary, price)
—  More natural, but more complex. Only valid if it is guaranteed that a given author writes only a single book with
the same name in a year. Depends on task if this makes sense .

= Not good or even invalid:
— Book(name, author, year, isbn, summary. price)
— Book(name, author, year, isbn, summary, price)

— Weak Entities always have composite key

= (One component is the primary key of the strong entity, the second component is with the weak entity
and is only unigue within the set of weak entities belonging to the same strong one

Limitations of EER

* There are many things (E)ER models can not
represent:
— Arrays
— Nested structures
— Reusable Composites

— Individual entities (i.e. instances)

* Example before: Christos is an instance of type person, Facebook
is an instance of type social media company, etc.

* Also, in the burrito examples, each individual burrito did have a
database record! (burrito_1, buritto_2, etc.)
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Week 3. Functional Dependencies and Normalization

Lecture 5. Functional Dependencies and Normalization

Introduction

* Which table design is better?

here i team id here name team name join_year

| 1 Thar The Avengers 1963
2 2 Mister Fantastic Fantastic Four 1961
A 3 1 Iren Man The Avengers 1963
4 | Black Widow The Avengers 1975
5 1 Captain America  The Avengers 1964
[] 2 Invisible Girl Fantastic Four 1961

here id hera name team id teamn name hero id team id join_year

1 Thar 1 The Avengers [ 1 1962
2 Mister Fantastic 2 Fantastic Four 2 2 1961
B 3 Iron Man 3 1 1963
4 Black Widow 4 | 1975
5 Captain America 5 1 1964
& Ivisible Girl & 2 1961

* What’s wrong with design A?

— redundancy: the team names are stored several times

— inferior expressiveness: we cannot nicely represent
heroes that currently have no team.

— modification anomalies: (see next slide)

*  There are three kinds of modification anomalies

— insertion anomalies
*  how do you add heroes that currently have no team?

* how do you (consistently!) add new tuples?
— deletion anomalies
= deleting Mister Fantastic and Invisible Girl also deletes

all information about the Fantastic Four
— update anomalies
= renaming a team requires updating several tuples {due to redundancy)
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* In general, good relational database designs
have the following properties
— redundancy is minimized
* i.e.noinformation is represented several times!
+ logically distinct information is placed in distinct relation schemes
— Do not misunderstand this as “never ever ever have any redundancy”
— modification anomalies are prevented by design
* i.e. by using keys and foreign keys, not by enforcing an excessive amount of (hard to check)
constraints!
— in practice, good designs should also match the characteristics of the used RDBMS
+ enable efficient query processing
* ...this, however, might in some cases mean that redundancy is beneficial
—  It's quite tricky to find the proper balance between different optimization goals
* It's all about splitting up tables ...

— remember design B

Towards Normalization

* The rules of thumb for good database design can be formalized
by the concept of relational database normalization

* But before going into details, let’s recap some definitions from
the relational model
— data is represented using a relation schema S(R,, ..., R,)
* each relation R(A,, ... A) contains attributes A, ... A
— arelational database schema consists of
* aset of relations
* aset of integrity constraints
(e.g. hero_id is unique and hero_id determines hero_name)
— arelational database instance (or extension) is

* aset of tuples adhering to the respective schemas and
respecting all integrity constraints

n

* For this lecture, let’s assume the following
— S(Ry, ..., R,) is a relation schema
— R(A,, ..., A,)is arelation in S
— Cis a set of constraints satisfied by all extensions of S

* OQur ultimate goal is to enhance the database design by
decomposing the relations in S into a set of smaller
relations, as we did in our example:

hero id team & bere name teamn name join_year

hers_id hers_name teamn id tearn name here_id teamn id join_year
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Normalization

* Definition (decomposition)
— letay, ..., a, € {A,, ..., A } be k subsets of R’s attributes

L]

note that these subsets may be overlapping
— then, for any «;, a new relation R; can be derived:

R;=1,(R)

- ay, ..., o is called a decomposition of R

* Good decompositions have to be reversible
— the decomposition a, ..., a, is called lossless
ifand only if R=R; M R, ™ --- ¥ R, for any
extension of R satisfying the constraints C

Hero
C = {*{hero_id, team_id} is unique”, herg i smam W her rame G name  join_ypear
“herc_id determines hero_name”, ! ! Thar Tha Avangarz 1963
“team_id determines team_name”, 2 2 Mister Famtastic  Famtastic Fowr 1961
“fhero_id, team_id} determines join_year''} 3 I Iron Man The Avengars 1963
4 1 Hulk Tha Avangurs 1963
5 1 Captain Amarica  The Avengars I&4
our example decomposition is lossless ¢ : roeleGr Pt for 1561
a, = {herolD, heroname}, .= {teamlID, teamName},
a5 = {herolD, teamlD, joinYear}
Ty (Hero) M, (Hero) Tgy(Hero)
hemo @ hero_name teamn il b naene hero i  team il join_year
1 Thor I Tha Avengers I I 15963
2 Mistar Fantastic 2 Famtastic Foar ] ] 1961
1 fran Man : [ 1963
4 alk 4 [ 1943
5 Captain Amarica 5 [ 1964
& imvisibs Girl £ 2 1941

* Normalizing a relation schema S means replacing
relations in S by lossless decompositions

* However, this raises some new questions

— under which conditions is there a (nontrivial)
lossless decomposition?

* decompositions involving a; = {A,, ..., A }ora; = 0
are called trivial

— if there is a lossless decomposition, how to find it?
— how to measure a relation schema’s design quality?

* We may abstain from further normalization if the quality is good
enough...
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Functional Dependencies

* Informally, functional dependencies can be described
as follows
— let X and Y be some sets of attributes

— if Y functionally depends on X, and two tuples agree on their
X values, then they also have to agree on their Y values
« the values of Y follow from the values of X"

* Examples
— {end_time} functionally depends on {start_time, duration}

— {duration} functionally depends on {start_time, end_time}
— {end_time} functionally depends on {end_time}

Formal definition
* Let Xand Y be subsets of R’s attributes
— Thatis, X, Y & {Al, v A}

* There is functional dependency (FD) between
X and Y (denoted as X =2 Y), ifand only if, ...

— ... for any two tuples t, and t, within any instance of R, the
following is true:

If Tyt = Ty f,, then Tyt = Ty,

(This means: if for two given tuples the attributes in X have the same value, then also the
attributes Y need to have the same value.)

* If X = Y, then one says that ...
— X functionally determines Y, and
— Y functionally depends on X.

* Xis called the determinant of the FDX > Y
* Yiscalled the dependent of the FDX =2 Y

* Functional dependencies are semantic properties
of the underlying domain and data model

— They depend on real world knowledge!
* FDs are NOT a property of a particular instance
(extension) of the relation schema!
— the designer is responsible for identifying FDs
— FDs are manually defined integrity constraints on S

— all extensions respecting S's functional dependencies are
called legal extensions of S
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* In fact, functional dependencies are
a generalization of key constraints

* To show this, we need a short recap of keys
— a set of attributes X is a (candidate) key for R
if and only if it has both of the following properties

* uniqueness: no legal instance of R ever contains
two distinct tuples with the same value for X

* irreducibility: no proper subset of X has the uniqueness property
— a superkey is a superset of a key
* i.e.only uniqueness is required

In practice, if there is more than one candidate
key, we usually choose one and call it the primary
key

— however, for normalization purposes, only candidate
keys are important — thus, we ignore primary keys today

The following is true

— Xis a superkey of R
if and only if
X—{A,, ..., A,}is a functional dependency in R

* Example

— a relation containing students

* semantics: student_nr is unique

* {student_nr} = {firstname, lastname, birthdate}
arrame | o
I

* Quick Summary on keys:
— Candidate Key (or simply key)

* Alirreducible set of attributes which uniquely identifies a tuple

— i.e.: all non-key attributes are functional dependent on the key, and no
attribute can be removed without loosing the key properties

- Jldentifier”
— Superkey is a superset of a candidate key
* i.e. only uniqueness is required
— Superkey also identifies a tuple, but is reducible
— Primary Key
* A primary key is one single key chosen from the set of candidate keys
by the database designer

— This choice impacts the way the DBMS manages relations and queries
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DISCUSS

* What are the functional dependencies in a Dutch
Mail Address?
* Mail Address
— City
— Postcode
— Street
— Apartment/House Number (a_number)

— Province

*  Some possible solutions:
— {postcode} — {city, province, street}

— {street, city, province} — {postcode}
* Asumming that there is only one city with a given name in a province

* Not super-sure if this is even correct — can a street have multiple
postcodes?

+  Typically, not all actual FDs are modeled explicitly / mentioned
— {postcode} — {city}
— {street} — {street}
— {province} — 0

* Obviously, some FDs are implied by others

— {postcode} — {city, province} implies {postcode} — {city}
* Moreover, some FDs are trivial

— {street} — {street}

— {province} — 0@

— definition: The FD X — Yis called trivial iff X2V

* What are good candidate keys?

— Candidate key: ¥“Minimal Subset of Attributes determining
all others”

— {city, street, province, a_number} ?

— {postcode, a_number}?
- .7
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Functional Dependencies

* Definition:
For any set F of FDs, the closure of F (denoted F*)
is the set of all FDs that are logically implied by F
— Abstract Definition: F implies X = Y, if and only if any

extension of R satisfying any FD in F, also satisfies the X
=Y

* Fortunately, the closure of F can easily be
computed using a small set of inference rules

* For any attribute sets X, Y, Z, the following is true
— reflexivity:
IfX=2Y,thenX—=>Y
— augmentation:
fX—=>Y thenXUZ—>YUZ
— transitivity:
fX—>YandY—>Z thenX—> 2

* These rules are called Armstrong’s axioms

— one can show that they are complete and sound
* completeness: every implied FD can be derived
* soundness: no non-implied FD can be derived

* To simplify the practical task of computing F*
from F, several additional rules can be derived
from Armstrong’s axioms:

— decomposition:
fX—>YUZthenX—> Yand X—>Z
— union:
fX=>YandX—>Z thenX=>YUZ
— composition:
fX—=>YandZ—=> W, thenXUZ=> YU W

* Example
— relational schema R(A, B, C, D, E, F)
—FDs: {A}=>1{B,C} {B}>{E} {C, D} {E F}
— then we can make the following derivation
1. {A}-> {B, C}

{A} > {C}

(given)

(
{A, D} = {C, D} (byaugmentation)

(

(

by decomposition)

{A, D} = {E, F} (by transitivity with given {C, D} = {E, F})
{A, D} > {F} by decomposition)

niopkc W
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* In principle, we can compute the closure F* of a given
set F of FDs by means of the following algorithm:
— Repeatedly apply the six inference rules until they stop
producing new FDs.
* In practice, this algorithm is hardly very efficient
— however, there usually is little need to compute the full

closure
— instead, it often suffices to compute a certain subset of the
closure: the subset consisting of all FDs with given left side
* This will later serve for finding proper keys or normalizing relations

+  Definition:
Given a set of attributes X and a set of FDs F,
the closure of X under F, written as (X, F),
consists of all attributes that functionally depend on X

— pe (X ) i={A | X = A is implied by F}
*  The following algorithm computes (X, F)*:

unused 1= F
closurse = X
do {
for(¥y — &2 € unusesd) {
if(¥ € closure) {

unused := unused \ {¥ - Z}
closure := clesurs U Z

}
}

} while (unused and clesure did net change)

return clesure )

* Quiz
{B} = {E}, {C,D} > {E, G}}

— What is the closure of {A, B} under f?

Intermediate Closure: {A, B}

Add C, because {A} — {B,C} {A,B,C}
Add E, because {B} — {E} {A,B,C,E}
Add F, because {E} — {C, G}

({A,B},F)* = {A,B,C,E, G}
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* Now, we can do the following
— given a set F of FDs, we can easily tell whether
a specific FD X — Y is contained in F*
* just check whether Y € (X, F)*
— in particular, we can find out whether a
set of attributes X is a superkey of R
* just check whether (X, F)* = {A,, ..., A.}

* What's still missing?
— given a set of FDs F, how to find a set of FDs G,
such that F* = G*, and G is as small as possible?
* Small: |G| minimal

— given sets of FDs F and G, does F* = G* hold?

Definition:
Two sets of FDs F and G are equivalent
iff F*=aG*
How can we find out whether two given sets of FDs F and G are
equivalent?
— theorem:
Fr=G* iff forany FD (X — Y] € (FU G), itholds (X, F)* = (X, G)*
— proof

letF={X—=(X,F) | Xx=¥ € FUG}
analogously, derive G’ from G
obviously, then F*=F*and G* = G*

moreover, every left side of an FD in F' occurs as a left side of an FD in G*
(and reverse)

if F and G" are different, then also F and G* must be different

*+ Example
- F={ {A,B}={C}, {C}—{B} }
- G={ {A}—={C}, {A,C}—{B} }
— are Fand G equivalent?

we must check (X, F)* = (X, G)* for the following X
* {AJ B}! {C}; {A}, and {A, C}

({A, B}, F)"={A,B,C}  ({A, B}, G)"=1{A, B, C}
({C}, Fy = {B, C} ({C}, G)* = {C}

therefore, Fand G are not equivalent!
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* Remember:
To have a small representation of F, we want to find a G, such that
— Fand G are equivalent
— G is as small as possible (we will call this property minimality)

» Definition:
A set of FDs F is minimal iff the following is true
— every FD X — Yin Fis in canonical form
i.e. ¥ consists of exactly one attribute
— every FD X — Yin Fis left-irreducible
* i.e. no attribute can be removed from X without changing F*
— every FD X — Yin Fis non-redundant

* i.e. X — Y cannot be removed from F without changing F*

* The following algorithm minimizes F, that is,
it transforms F into a minimal equivalent of F
1. Split up all right sides to get FDs in canonical form.

2. Remove all redundant attributes from the left sides (by
checking which attribute removals change F*).

3. Remove all redundant FDs from F
(by checking which FD removals change F¥).

* Example
— given F={
{A}—{B, C}, {B} = {C},
{A} - {B}, {A, B} - {C},
{A C}— {D}

1. Split up the right sides:
{A} - {B}, {A} - {C}, {B} = {C},
{A B} - {C}, {A,C}— {D}

2. Remove C from {A, C} - {D}:
*  {A}— {C}implies {A} — {A, C} (augmentation)

* {A}—={A, C}and {A, C} = {D}imply {A} — {D}
(transitivity)

Now we have:
{A} = {8}, {A} = {C}, {8} = {C},
{A,B}—{C}, {A}—{D}

W

Remove {A, B} = {C}:

*+ {A}— {C}implies {A, B} — {C}

4. Remove {A} = {C}:

{A} — {B} and {B} — {C} imply {A} — {C} (transitivity)

— Finally, we end up with a minimal equivalent of F:
{A}— {B}, {B}—{C}, {A} = {D}
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Functional dependencies are the perfect tool for performing
lossless decompositions

— Heath’s Theorem:
Let X — Y be an FD constraint of the relation schema
R(A,, ..., A,). Then, the following decomposition of R is lossless:
a;=XUY and a,={A,, .., A\ Y.
FDs=:
{hero_id} — {herc_name}

{team_id} — {team_name}
hero id team id hero name tearn name join year (hero_id, team_id} — {join_year}

— Example:

Decompose with respect to
— . {hero_id} — {hero_name}

here_id here name here id team &l t=am name join_year

Normal Forms

* Back to normalization

— remember:
normalization = finding lossless decompositions

— but only decompose, if the relation schema is of
bad quality
* How to measure the quality of a relation schema?
— claim: the quality depends on the constraints

— in our case:
quality depends on the FDs of the relation schema

— schemas can be classified into different quality levels,
which are called normal forms

» Part of a schema design process is to choose a desired normal form
and convert the schema into that form

* There are seven normal forms

— the higher the number, ...
* ... the stricter the requirements,
+ ... the less anomalies and redundancy, and

+ ... the better the design quality.

. 5
- y

[
;ﬂgsw‘mF BCNF 3NF | ONF | 1IN

e
L >

L - A ),
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ANE (o @@/_DQ@ @JFHN\Q,%@/\ fo adwne

* First normal form (1NF)

* has nothing to do with functional dependencies!
— restricts relations to being flat

— the value of any attribute must be atomic, that is,
it cannot be composed of several other attributes

+ if this property is met, the relation is often referred to as a being
in first normal form (1NF or minimal form)

* in particular, set-valued and
relation-valued attributes
(tables within tables) are prohibited

ANE frse_rame o C___-_._f‘_“—T""‘_‘f. B @

] person |
* Please note, it is possible to model composed
attributes in ER models...
* To transform such a model into the relational
model, a normalization step is needed

— this is not always trivial, e.g., what happens to keys?

Persen first, mame Last. name tele; hone no
Clark Joseph Kent 555.5678

Louise Lane 391-4533

Louise Lane 355-6576

Louise Lane 546-3456

Lex Luthor 454-3689

Charles Kavier Ta5-8736

Erik Magnus 1252345

Erik Magnus 876-6781

— multi-valued attributes must be normalized, e.g., by
a) introducing a new relation for the multi-valued attribute
— most common solution
b) replicating the tuple for each multi-value
— as e.g., often done for song list metadata (e.g., mp3 tags)

¢) introducing an own attribute for each multi-value
(if there is a small maximum number of values)
— as sometimes done in Big Data Database (e.g., Bigtable)
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* a) Introducing a new relation

— uses old key and multi-attribute as composite key

hero id hers_name powers
| Storm weather control, flight
2 Winlverine edtreme cellular regeneration
3 Phaosenis omnipotence, indestructibility, limitless energy manipulation
[ |
N here id power
hero_id hers_name [ weather control
I Storm | fight
2 Wolverine 2 ectrame cellular regeneration
3 Phoenix 3 ammipotence
3 indestructibility
3 lirnitless energy manipulation

* b) Replicating the tuple for each multi-value

— uses old key and multi-attribute as composite key

hereo _id hers_name powers
| Stormn weather control, flight
2 Winlverine exreme cellular regeneraton
3 Phecsenis: amnpipotence, indestructibility, limitless energy manipulation
| |
AV
hese id hero name powens
| Storm weather control
| Storm flight
1 Wioherine extreme cellular regeneration
3 Phoenix omnipotence
3 Phosnix indestructibility
3 Phoenix limitless energy manipulation

* ¢) Introducing an own attribute for
each multi-value

here_id here_name powers
| Srorm weather control, flight
2 Wiolvarine exreme cellular regeneration
3 Phaoenix oamnipotence, indestructibility, limitless energy manipulation
here id here name powerl powerl power3
1 Storm ‘weather control flight MULL
2 Wolverine cellular regeneration  MULL MNULL
3 Phoenis: OMmNipOtEnoe indestructibility  |imitless energy manipulation
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(Forign (cegq'm'&” 2NF }W@RJ (1 Q%Wﬁﬁw\ (@@Y %M @@%ﬁﬂ MJ

(oY

We
5 * The second normal form (2NF)

— the 2NF aims to avoid attributes that are
functionally dependent on proper subsets of keys

— remember
» aset of attributes X is a (candidate) key
if and only if X = {A,, .., A }is a valid FD
* an attribute A is a key (or prime) attribute if and only if
it is contained in some key; otherwise, it is a non-key (-prime) attribute
— definition (2NF):
A relation schema is in 2NF (wrt. a set of FDs) iff ...
e itisin INF and

no non-key attribute is functionally dependent on
a proper subset of any candidate key.

* Functional dependence on key parts is only a problem
in relation schemas with composite keys

— a (candidate) key is called composite key if it consists of more
than one attribute

* Corollary:
Every 1NF-relation without constant attributes and
without composite keys is in 2NF.

— 2NF is violated, if there is a composite key and
some non-key attribute depends only on
a proper subset of this composite key

*  Normalization into 2NF is achieved by decomposition according to
the non-2NF FDs

— ifX—=Yisavalid FD and X is a proper subset of some key,
then decompose intoa, = XU Yand a, = {A,, ... A J\ Y

— according to Heath's Theorem, this decomposition is lossless

FDis:
| II 3 4 l {hero_id} -+ {hero_name}

I | - " . I " . {team_id} -+ {team_name}
id team id - - join_y {hero_id, team_id} + {join_year}

- -  Decompose with respect to
S /f’f {hero_id} = {hero_name}
. ey
"\_\x\ ’_f'
[ I —— i
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Repeat this decomposition step for every created
relation schema that is still not in 2NF

l | —— 1 FDs:
here id team id team name join_year {team_id} -+ {team_name}
{hero_id, team_id} =
{join_year}
— . Decompose with respect to
T .J,z"’.J {team_id} -+ {team_name}
here id team id join_year team jd tearn name

* Practical Implication of 2NF:

— Normalized tables tend to focus on a single topic
* Other topics are usually pulled in own tables
* Some topic mixes remain

3NF YAl @m\; jm@\ W;
m (3NF)

* The third normal fo
— Most relevant and practical normal form!

— A relation schema is in 3NF if and only if:
» itis 2NF and

* all non-key attribute are determined ONLY by the candidate key.

here_id  hero_name hemec sity id  home_city name

" Professor X 563 Mew York

12 Wolverine 782 Alberta

13 Cyclops 12 Anchorage
14 Phoenix 563 New York

{hero_id} — {hero_name} .
{hero_id} — {home_city_id} Not in 3NF
{home_city_id} — {home_city name}

— the 3NF relies on the concept of transitive FDs

+ Definition transitive FDs:
Given a set of FDs F, an FD X = Z € F* is transitive in F, if and only
if there is an attribute set ¥ such that:

- X2YEF,

— Y2 X&F, and

- Y>> ZeEF.
* No non-key attribute is transitively dependent on a key attribute

— Example bem i beorame  home il  home sty mme

= {hero_id} = {hero_name} n Frofessor X 563 New York

{hero_id} — {home_city_id} 1 Wolverine 2 Albera

{hero_id} — {home_city_name} 13 Cyciops "z Anchorage

{

- 14 Phoanix 563 NewYork
home_city_id} — {home_city_name}
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Chapter 14.

The implicit goals of the design activity are information preservation and minimum redundancy.

Information preservation in terms of maintaining all concepts, including attribute types, entity types,
and relationship types as well as generalization/specialization relationships, which are described using a
model such as the EER model. Thus, the relational design must preserve all of these concepts, which are
originally captured in the conceptual design after the conceptual to logical design mapping. Minimizing
redundancy implies minimizing redundant storage of the same information and reducing the need for
multiple updates to maintain consistency across multiple copies of the same information in response to
real-world events that require making an update.

Successive normal forms are defined to meet a set of desirable constraints expressed using primary keys and
functional dependencies. The normalization procedure consists of applying a series of tests to relations to
meet these increasingly stringent requirements and decompose the relations when necessary.

14.1 Informal Design Guidelines for Relation Schemas
Before discussing the formal theory of relational database design, we discuss four informal guidelines that
may be used as measures to determine the quality of relation schema design:
e Making sure that the semantics of the attributes is clear in the schema
e Reducing the redundant information in tuples
e Reducing the NULL values in tuples
o Disallowing the possibility of generating spurious tuples
These measures are not always independent of one another.

Figure 14.1 EMPLOYEE FK. . . . .
A simplified COMPANY relationa E Guideline 1. Design a relation schema so that
database schema. name| Ssn | Bdate | Address | Dnumber | o 2 :
PK. it is easy to explain its meaning. Do not
DEPARTMENT FK. combine attributes from multiple entity types
| Dname | Dnumber | Dmgr_ssn |

and relationship types into a single relation.
Intuitively, if a relation schema corresponds

PK.

DEPT_LOCATIONS

FK. to one entity type or one relationship type, it
is straightforward to explain its meaning.
PK. Otherwise, if the relation corresponds to a
mixture of multiple entities and relationships,
PROJECT FK.
| Pname | Pnumber | Plocation | Dnum | Semant|c ambIgUItles W|” reSU|t and the
PK relation cannot be easily explained.
W°|E§5-°" i Guideline 2. Design the base relation schemas
Sen | Prumbar | Hous so that no insertion, deletion, or modification
B e— anomalies are present in the relations. If any

FK. .
anomalies are present, note them clearly and

make sure that the programs that update the database will operate correctly.

Guideline 3. As far as possible, avoid placing attributes in a base relation whose values may frequently
be NULL. If NULLs are unavoidable, make sure that they apply in exceptional cases only and do not apply
to a majority of tuples in the relation.

Guideline 4. Design relation schemas so that they can be joined with equality conditions on attributes
that are appropriately related (primary key, foreign key) pairs in a way that guarantees that no spurious
tuples are generated. Avoid relations that contain matching attributes that are not (foreign key, primary
key) combinations because joining on such attributes may produce spurious tuples.
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14.2 Functional Dependencies

Any relational database schema can be expressed as a single universal Relation Schema R with n

R: {Al'l .‘131 aee g A

1
Attributes 1 Such table will have a lot of rows and a lot of null values.

In that huge table, we can identify ask the owner for patterns, called “functional dependencies”.

That is attribute X implies attribute Y. X->Y. This combination of attributes are a proper subset of R. They
also specify a constraint on the possible tuples that can be accepted in a valid state for R.

The constraint is that, for any two tuples t1and t2in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].
That is also called Y is functionally dependent on X. X is called teh left-hand side of the FD and y the right
That also means that X is a candidate key of R. Then X < R.

Relation extensions r(R) that satisfy the functional dependency constraints are called legal relation
states (or legal extensions) of R. Hence, the main use of functional dependencies is to describe further a
relation schema R by specifying constraints on its attributes that must hold at all times.

A functional dependency is a property of the relation schema R, not of a particular legal relation state r
of R. Therefore, an FD cannot be inferred automatically from a given relation extension r but must be
defined explicitly by someone who knows the semantics of the attributes of R.

We can hower use counter examples to prove that certain FD do not hold.

EMP_PROIJ These FD indicate that Hours and Ename are

| Ssn | Prnumber | Hours | Ename | Pname | Plocation attributes of an entity that has ssn as

FO1| | A A primary key, and Pname and Plocation are

FD2| attributes of an entity that has Pnumber has
rimary key.

FD3 | ‘ P y ey

This table violates 3NF, only attributes of the
primary key should be in a table. Attributes of the foreign key should be kept at its own table.

Lecture notation for FD constraints

Examples of FD constraints (1)

* Social security number determines employee
name
— SSN = ENAME

* Project number determines project name and
location

— PNUMBER = {PNAME, PLOCATION}

* Employee ssn and project number determines the
hours per week that the employee works on the
project

— {SSN, PNUMBER} = HOURS

BTW a relation is a table that explicty has foreign keys. A (composite) “key” can be redundant (scrapping
things will keep it unique), a superkey is atomic (scrapping thigns will not keep it unique). Single value
keys are superkeys by default (what else is left to remove? ;P )
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14.3 Normal Forms Based on Primary keys
Prime attributes are attributes belonging to a candidate key.

Most practical relational design projects take one of the following two approaches:

e Perform a conceptual schema design using a conceptual model such as ER or EER and map the
conceptual design into a set of relations.

e Design the relations based on external knowledge derived from an existing implementation of
files or forms or reports.
Stack Overflow:

INF

1INF is the most basic of normal forms - each cell in a table must contain only one piece of
information, and there can be no duplicate rows.

2NF and 3NF are all about being dependent on the primary key. Recall that a primary key
can be made up of multiple columns. As Chris said in his response:

The data depends on the key [INF], the whole key [2NF] and nothing but the key [SNF] (so
help me Codd).

2NF

Say you have a table containing courses that are taken in a certain semester, and you have
the following data:

|----- Primary Key----| uh oh |

\"
CourseID | SemesterID | #Places | Course Name |
________________________________________________ |
IT101 | 2009-1 | 100 | Programming |
IT101 | 2009-2 | 100 | Programming |
17102 | 2009-1 | 200 | Databases |
17102 | 2010-1 | 15@ | Databases |
IT103 | 2009-2 | 120 | Web Design |

This is not in 2NF, because the fourth column does not rely upon the entire key - but only a
part of it. The course name is dependent on the Course's ID, but has nothing to do with
which semester it's taken in. Thus, as you can see, we have duplicate information - several
rows telling us that IT101 is programming, and 1T102 is Databases. So we fix that by
moving the course name into another table, where CourselD is the ENTIRE key.

Primary Key |

CourselID | Course Name |
___________________________ |
IT101 | Programming |
1T102 | Databases |
1T103 | Web Design |

No redundancy!
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3NF

Okay, so let's say we also add the name of the teacher of the course, and some details
about them, into the RDBMS:

|----- Primary Key----| uh oh |

%
Course | Semester | #Places | TeacherID | TeacherName |
_______________________________________________________________ |
ITie1 | 2009-1 | 10@ | 332 | Mr Jones |
ITie1 | 2009-2 | 100 | 332 | Mr Jones |
IT102 | 2009-1 | 200 | 495 | Mr Bentley |
IT1e2 | 2010-1 | 150 | 332 | Mr Jones |
IT103 | 2009-2 | 120 | 242 | Mrs Smith

Now hopefully it should be obvious that TeacherName is dependent on TeacherID - so this
is not in 3NF. To fix this, we do much the same as we did in 2NF - take the TeacherName
field out of this table, and put it in its own, which has TeacherID as the key.

Primary Key |

TeacherID | TeacherName |
___________________________ |
332 | Mr Jones |
495 | Mr Bentley |
242 | Mrs Smith |

No redundancy!!
One important thing to remember is that if something is not in 1NF, it is not in 2NF or 3NF

either. So each additional Normal Form requires everything that the lower normal forms had,
plus some extra conditions, which must all be fulfilled.
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Lecture 6
Conceptual to Logical

* Conceptual Schema {E’WTD\{

— ,Which entities should be stored, what are their properties,
and how are they related?”

* (Relational) Logical Schema Q(mﬁ_fc)o\*‘f’uﬁ@ﬁ \'\

— “Which relations should exist, which attributes do they have,
what are the domains (data types) of the attributes, and
constraints should hold?”

* Physical Schema = &

— “Where and how to store relations, what to index, what
meta-data / statistics to collect, etc.?”

* Converting a simple Entity Type into a relation

schema:
4\/
D Wil Geslas
~N. \ S
Hero

Hero(id, name, alias)

* Converting an n:m [elationship type into a relation
schema:
scheme

— Relationship type becomes a separate relation schema

* Links entities of the respective types by using their foreign keys

id name alias id name alias

~

Hero(id, name, alias)
hero_fights_villain(hero — Hero, villain—Villain)
Villain(id, name, alias)
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* Converting an 1:m relationship type a relation schema:
— Entity Type at 1-side can only participate once at the
relationship type
=> Push relationship type to the 1-side

id name _ alias coordinates
~ 7/ 7 ' N

1 *
Villain ¢ Lair

Villain(id, name, alias)
Lair(coordinates, awesomeness, owner—Villain)

awesome-ness

* Converting a 1:1 relationship type a relation schema:
— Alittle bit tricky...

* Cannot be expressed just by the relation schemas...

* Just choose one side as the 1-side and implement it just like a 1:m
relationship type

id 1 name alias id __hame i alias
=y mr el
e o @D sidekick
Hero(id, name, alias) Sidekick(id, name, alias, bigBuddy — Hero)

* How to deal with attributes attached to a
relationship type
— For, n:m, just put

#lab coats name hours Q :::lee

, N/ N y ~N /
id_~Jscisntist @ Invention

Scientist(id, name, #lab_coats) Invention(id, code_name)

scientist_works_on_invention(
scientist — Scientist,
invention — Invention,
hours
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* What about n-ary relationship types? (n>2)
— Just apply the exact same approaches:

Lab -

#ab " name » < _hours
__coats . 2 H2AZLR
- A
id Scientist invention { ooy
name.

sc_wrk_on_inv_in_lab(
scientist — Scientist,
invention — Invention,
lab — Lab
hours)

* Converting a weak entity into a relation schema:
— Weak entities are only unique together with the entity at
the identifying relationship

=> Follow identifying relationship and inherit respective
foreign keys

chance of
success

code name
e s done?

il

*

(0,
Evil Plan \mﬁ Todo Item

Evil_Plan(code name, chance_of_success)
todo_item(priority_order, evil_plan — Evil_Plan, done)

* How to deal with multi-attributes and composite
attributes
— composition: just flatten it
— multi-attribute: treat it like a weak entity

- city

(" names )
id N address ——. Street
ST
Secret Base »\Iltﬂ)ir/-

Version 1:
Secret_Base(id, addr_city, addr_street, addr_number)
base_name (hideout — Secret_Base, name)

(own relation for names, adress attributes flattened into Secet_Base)
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Version 1:
Secret_Base(id, addr_city, addr_street, addr_number)
base_name (hideout — Secret_Base, name)

(own relation for names, adress attributes flattened into Secet_Base)

Version 2:

Secret_Base(id)

base_name (hideout — Secret_Base, name)
adresses(city, street, number, base — Secret_Base )

(own relation for names and address; this basically represents now a 1:m relationship between bases and
addresses so likely not as good as version 1?)

Version 3:
Secret_Base(id. addr_city, addr_street, addr_number, name1, name2, name3, name4, name5, name6, name7)

(mhh....®@ Maybe. Depends. In most cases this is probably a very bad solution....- could even argue that it's
wrong because what happens if something has 8 names? Still people do this.)

* Converting types with inherited attributes/
relations into a relation schema:

— Can be implemented in many ways
* more than 3...

Gadget(id, name) o
Weapon(gadget — Gadget, range)
ig ) _name Util_gadget(gadget — Gadget, weight)

a - Gadget(id, name, range, weight)
Gadget(id, name)

range weight Weapon(id. name, range)

]
1 e Y Utility(id, name, weight)
[ Weapon ] [ Utility Gadget ‘

Version 3:

id __name
Inheritance Version 2: 4
(now total disjoint)
range “,’Eigh,t

d
Weapon(id name, range) \ e Y
Utility(id, name, weight) \ Weapon ] Utility Gadget ‘

telephone no

firstname
Person

lastname

Person(firstname: string,
lastname: string,

telephone_no: string)

Hero

Hero(firstname: string,
alias lastname: string,
lias: strin
weaknes alias: string, ‘
weakness: string,
—S— (firstname, lastname) — Person
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Week 4. SQL

Lecture 7 —SQL

SQL is a high-level declarative language, that means the user defines what result he expects and know
how it is executed. The exeuction of the relational algebra is left to the optimizer by the DBMS.

SQL is a comprehensive database language: It has statements for data definitions,

queries, and updates. Hence, it is both a DDL (data definition language, used by the DBA and by database
designers to define conceptual and internal schemas.) and a DML (data manipulation language i.e.
SCRUD). This course uses postgreSQL https://www.postgresgl.org/docs/11/index.html

6.1 SQL Data Definition and Data Types
SQL uses the terms table, row, and column for the formal relational model terms relation, tuple, and
attribute, respectively.

SQL command for data definition is the CREATE statement, which can be used to create databases
(schemas), tables (relations), types, and domains, as well as other constructs such as views, assertions,
and triggers.

An SQL schema (database) is identified by a schema name and includes an authorization identifier to
indicate the user or account who owns the schema, as well as descriptors for each element in the
schema. Schema elements include tables, types, constraints, views, domains, and other constructs (such
as authorization grants) that describe the schema.

A schema is created via the CREATE SCHEMA statement, which can include all the schema elements’
definitions. Although these can be changed later.

the following statement creates a schema called COMPANY owned by the user with authorization
identifier ‘Jsmith’.

CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;

The privilege to create schemas, tables, and other constructs must be explicitly granted to the relevant
user accounts by the system administrator or DBA.

A catalog is a collection of schemas. A catalog always contains a special schema called
INFORMATION_SCHEMA, which provides information on all the schemas in the catalog and all the
element descriptors in these schemas. Integrity constraints such as referential integrity can be defined
between relations only if they exist in schemas within the same catalog. Schemas within the same
catalog can also share certain elements, such as type and domain definitions.

The CREATE TABLE command is used to specify a new relation by giving it a name and specifying its
attributes and initial constraints. The key, entity integrity, and referential integrity constraints can be
specified within the CREATE TABLE statement after the attributes are declared, or they can be added
later using ALTER TABLE.

Typically, the SQL schema in which the relations are declared is implicitly specified in the environment in
which the CREATE TABLE statements are executed. Alternatively, we can explicitly attach the schema
name to the relation name, separated by a period. For example, by writing:
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CREATE TABLE COMPANY.EMPLOYEE
rather than

CREATE TABLE EMPLOYEE
In PostgreSQL we are always connected to a particular database/schema. So appending is not needed.
Example of table creation with constraints and keys:

CREATE TABLE DEPARTMENT

( Dname VARCHAR(15) NOT NULL,
Dnumber INT NOT NULL,
Mgr_ssn CHAR(9) NOT NULL,
Mgr_start_date DATE,

PRIMARY KEY (Dnumber),
UNIQUE (Dname),
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn) );

The relations declared through CREATE TABLE statements are called base tables (or base relations); this
means that the table and its rows are actually created and stored as a file by the DBMS. Base relations
are distinguished from virtual relations, created through the CREATE VIEW statement which do not
correspond to a phyisical phile but a query. (It may correspond to a physical phile that contains the
query script).

Declaring dependencies before the other tables have been created can lead to errors. Therefore it is
often prefered to create all the tables without keys and constraints and later alter them to apply the
dependencies and constraints.

Data types

The basic data types available for attributes include numeric, character string, bit string, Boolean, date,
and time. For numeric the most common are INT and DOUBLE

When specifying a literal string value, it is placed between single quotation marks (apostrophes), and it is
case sensitive. String values are stored in n/char(length) or n/varchar(length), the first being of a fixed length
and the second specifying the max length.

Difference between nvarchar and varchar (also for nchar and char): The n prefix stands for "national
character set". An nvarchar column can store multi-byte characters such as Unicode data. A varchar
column is restricted to an 8-bit codepage. Some people think that varchar should be used because it
takes up less space. | believe this is not the correct answer. Codepage incompatabilities are a pain, and
Unicode is the cure for codepage problems. With cheap disk and memory nowadays, there is really no
reason to waste time mucking around with code pages anymore [source].

For example, if the value ‘Smith’ is for an attribute of type CHAR(10), it is padded with five blank
characters to become ‘Smith’ if needed. Padded blanks are generally ignored when strings are
compared. For comparison purposes, strings are considered ordered in alphabetic (or lexicographic)
order; if a string strl appears before another string str2 in alphabetic order, then strl is considered to be
less than str2. There is also a concatenation operator denoted by || (double vertical bar) that can
concatenate two strings.
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A Boolean data type has the traditional values of TRUE or FALSE. In SQL, because of the presence of
NULL values, a three-valued logic is used, so a third possible value for a Boolean data type is UNKNOWN.

Bit-string data types are either of fixed length n—BIT(n)—or varying length— BIT VARYING(n), where n is
the maximum number of bits. Another variable-length bitstring data type called BINARY LARGE OBJECT
or BLOB is also available to specify columns that have large binary values, such as images. As for CLOB,
the maximum length of a BLOB can be specified in kilobits (K), megabits (M), or gigabits (G). For
example, BLOB(30G) specifies a maximum length of 30 gigabits.

The DATE data type has ten positions, and its components are YEAR, MONTH, and DAY in the form YYYY-
MM-DD. The TIME data type has at least eight positions, with the components HOUR, MINUTE, and
SECOND in the form HH:MM:SS. Only valid dates and times should be allowed by the SQL
implementation. This implies that months should be between 1 and 12 and days must be between 01
and 31; furthermore, a day should be a valid day for the corresponding month. The < (less than)
comparison can be used with dates or times—an earlier date is considered to be smaller than a later
date, and similarly with time. Literal values are represented by single-quoted strings preceded by the
keyword DATE or TIME; for example, DATE ‘2014-09-27’ or TIME ‘09:12:47’.

A timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus a minimum of six positions
for decimal fractions of seconds and an optional WITH TIME ZONE qualifier.

Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data type. This specifies an
interval—a relative value that can be used to increment or decrement an absolute value of a date, time,
or timestamp. Intervals are qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

The format of DATE, TIME, and TIMESTAMP can be considered as a special type of string. Hence, they
can generally be used in string comparisons by being cast (or coerced or converted) into the equivalent
strings.

It is possible to specify the data type of each attribute directly, alternatively, a domain can be declared,
and the domain name can be used with the attribute specification. This makes it easier to change the
data type for a domain that is used by numerous attributes in a schema, and improves schema
readability. For example, we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

Constraints
If a primary key has a single attribute, the clause can follow the attribute directly. For example:

KvkNummer INT PRIMARY KEY,
Same goes for UNIQUE, NOT NULL (which is already implied for primary keys) DEFAULT value
To declare a composite primary key:
PRIMARY KEY(coulmn1, column2, ...)

Same goes for composite (and single) FOREIGN KEY.
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Referential integrity constraint can be violated when tuples are inserted or deleted, or when a foreign
key or primary key attribute value is updated. The default action that SQL takes for an integrity violation
is to reject the update operation that will cause a violation, which is known as the RESTRICT option.

However, the schema designer can specify an alternative action to be taken by attaching a referential
triggered action clause to any foreign key constraint. The options include SET NULL, CASCADE, and SET
DEFAULT. An example with multiple constraints below:

CREATE TABLE DEPARTMENT

(...,
Mgr_ssn CHAR(9) NOT NULL DEFAULT ‘888665555,

CONSTRAINT DEPTPK
PRIMARY KEY(Dnumber),
CONSTRAINT DEPTSK
UNIQUE (Dname),
CONSTRAINT DEPTMGRFK
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn)
ON DELETE SET DEFAULT ON UPDATE CASCADE);

You can see that a constraint may be given a constraint name, following the keyword CONSTRAINT. The
names of all constraints within a particular schema must be unique. A constraint name is used to
identify a particular constraint in case the constraint must be dropped later and replaced with another
constraint. Giving names to constraints is optional. It is also possible to temporarily defer a constraint
until the end of a transaction.

CHECK (Column >0 AND Column < 21); or CHECK (StartDate < EndDate); so you check for a boolean expression that
returns 1 or 0. In that sense, it is possible to create a user-defined function that returns 1 or 0 by passing
parameters from different tables as input. Here's an example check constraint using a function:

ALTER TABLE YourTable
ADD CONSTRAINT chk_CheckFunction
CHECK (dbo.CheckFunction() = 1)
Where you can define the function like:
CREATE FUNCTION dbo.CheckFunction()
RETURNS INT
AS BEGIN
RETURN (SELECT 1 /* Query with different table inputs that either returns 1 or 0*/)

END
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6.3 Basic Retrieval Queries in SQL
The basic form of the SELECT statement, sometimes called a mapping or a select-from-where block, is
formed of the three clauses SELECT, FROM, and WHERE and has the following form:

SELECT <attribute list>
FROM <table list>
WHERE <condition>;

By the way !=in SQL is <>, && is AND || is OR (because || in SQL is the concatenate operator).
SQL will iterate through the whole set of tuples and evaluate them against the boolean condition

A query that involves only selection and join conditions plus projection attributes is known as a select-
project-join query. The next example is a select-project-join query with two join conditions.

In SQL, the same name can be used for two (or more) attributes as long as the attributes are in different
tables. If this is the case, and a multitable query refers to two or more attributes with the same name, we
must qualify the attribute name with the relation name to prevent ambiguity. This is done by prefixing the
relation name to the attribute name and separating the two by a period.

SELECT Fname, EMPLOYEE.Name, Address
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.Name = ‘Research’” AND

DEPARTMENT Dnumber = EMPLOYEE.Dnumber:
—_— T T —— T T~

The ambiguity of attribute names also arises in the case of queries that refer to the same table twice, as in
the following example. But we can use AS newName to define the new name of a table and a column as well.

SELECT E.Fname, E.Lname, S.Fname, S.Lname
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn = S.Ssn;

If more than one relation is specified in the FROM clause and there is no WHERE clause, then the CROSS
PRODUCT—all possible tuple combinations—of these relations is selected. This will often result in incorrect
and very large relations.

To retrieve all the attribute values of the selected tuples, we do not have to list the attribute names explicitly

in SQL; we just specify an asterisk (*), which stands for all the attributes. The * can also be prefixed by the
relation name or alias; for example, EMPLOYEE.* refers to all attributes of the EMPLOYEE table.
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Duplicates

As we mentioned earlier, SQL usually treats a table not as a set but rather as a multiset; duplicate tuples
can appear more than once in a table, and in the result of a query. SQL does not automatically eliminate
duplicate tuples in the results of queries, for the following reasons:

m Duplicate elimination is an expensive operation. One way to implement it is to sort the tuples first and
then eliminate duplicates.

m The user may want to see duplicate tuples in the result of a query.

m When an aggregate function is applied to tuples, in most cases we do not want to eliminate
duplicates.

Duplicates are not possible if you have a primary key.
Anyway the DISTINCT keyword after SELECT will display unique tuples.

SELECT ALL is already implied when only writing SELECT

Set Operators

It is possible to use the set operations from mathematical set theory, set union (UNION), set difference
(EXCEPT), and set intersection (INTERSECT). These set operations apply only to typecompatible relations,
so we must make sure that the two relations on which we apply the operation have the same attributes
and that the attributes appear in the same order in both relations.

(SELECT  DISTINCT Pnumber
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum = Dnumber AND Mgr_ssn = Ssn
AND Lname = ‘Smith’)
UNION
(SELECT  DISTINCT Pnumber
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE Prnumber = Pno AND Essn = Ssn
AND Lname = ‘Smith’ ):

Substring Pattern Matching

The first feature allows comparison conditions on only parts of a character string, using the LIKE
comparison operator. This can be used for string pattern matching. Partial strings are specified using
two reserved characters: % replaces an arbitrary number of zero or more characters, and the
underscore (_) replaces a single character.

SELECT Fname, Lname
FROM EMPLOYEE
WHERE Address LIKE ‘%Houston, TX%;

Query 12A. Find all employees who were born during the 1950s.

Qiz: SELECT Fname, Lname
FROM EMPLOYEE
WHERE Bdate LKE1G% 3
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Query 14. Retrieve all employees in department 5 whose salary is between
$30,000 and $40,000.

Qi4:  SELECT *
FROM EMPLOYEE
WHERE (Salary BETWEEN 30000 AND 40000) AND Dno = 5;

The condition (Salary BETWEEN 30000 AND 40000) in Q14 is equivalent to the con-
dition ((Salary >= 30000) AND (Salary <= 40000)).

Ordering

The default order is in ascending order of values. We can specify the keyword DESC if we want to see
the result in a descending order of values. The keyword ASC can be used to specify ascending order
explicitly. Order by goes after where.

SELECT <attribute list>
FROM <table list>
[ WHERE <condition> ]

[ ORDER BY <attribute list> ];

INSERT, DELETE and UPDATE
In SQL, three commands can be used to modify the database: INSERT, DELETE, and UPDATE.

In its simplest form, INSERT is used to add a single tuple (row) to a relation (table). We must specify the
relation name and a list of values for the tuple. The values should be listed in the same order in which
the corresponding attributes were specified in the CREATE TABLE command

INSERT INTO EMPLOYEE
VALUES ( ‘Richard’, ‘K, ‘Marini’, ‘653298653’ ‘1962-12-30’, ‘98
Oak Forest, Katy, TX', ‘M’, 37000, ‘653298653", 4 );

If you don’t know the order or if you only want to add partial elements then you can explicitly list these
attributes and then it’s values, in the same order.

INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)
VALUES (‘Richard’, ‘Marini’, 4, ‘653298653’);

Just be sure that the missing attributes don’t have NOT NULL constraint. It is also possible to insert into
a relation multiple tuples separated by commas in a single INSERT command. The attribute values
forming each tuple are enclosed in parentheses.

The DELETE command removes tuples from a relation. It includes a WHERE clause, similar to that used in
an SQL query, to select the tuples to be deleted. Tuples are explicitly deleted from only one table at a
time. However, the deletion may propagate to tuples in other relations if referential triggered actions
are specified in the referential integrity constraints of the DDL. Depending on the number of tuples
selected by the condition in the WHERE clause, zero, one, or several tuples can be deleted by a single
DELETE command. A missing WHERE clause specifies that all tuples in the relation are to be deleted,;
however, the table remains in the database as an empty table. We must use the DROP TABLE command

to remove the table definition. DROP TABLE EMPLOYEE;
DELETE FROM EMPLOYEE
WHERE Lname = ‘Brown’; DELETE FROM EMPLOYEE;
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The UPDATE command is used to modify attribute values of one or more selected tuples. As in the
DELETE command, a WHERE clause in the UPDATE command selects the tuples to be modified from a
single relation. However, updating a primary key value may propagate to the foreign key values of tuples
in other relations if such a referential triggered action is specified in the referential integrity constraints
of the DDL. An additional SET clause in the UPDATE command specifies the attributes to be modified and
their new values:

UPDATE PROJECT
SET Plocation = ‘Bellaire’, Dnum =5
WHERE Prnumber = 10;

UPDATE EMPLOYEE
SET Salary = Salary * 1.1
WHERE Dno =5;

(10% raise to employee 5)
Notice that

Each UPDATE command explicitly refers to a single relation only. To modify multiple relations, we must
issue several UPDATE commands.

Comparison involving NULL and three-valued logic

SQL has various rules for dealing with NULL values. NULL is used to represent a missing value, but that it
usually has one of three different interpretations—value unknown (value exists but is not known, or it is
not known whether or not the value exists), value not available (value exists but is purposely withheld),
or value not applicable (the attribute does not apply to this tuple or is undefined for this tuple).

It is often not possible to determine which of the meanings is intended; for example, a NULL for the
home phone of a person can have any of the three meanings. Hence, SQL does not distinguish among
the different meanings of NULL.

Each individual NULL value is considered to be different from every other NULL value in the various
database records. When a record with NULL in one of its attributes is involved in a comparison
operation, the result is considered to be UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL
uses a three-valued logic with values TRUE, FALSE, and UNKNOWN instead of the standard two-valued
(Boolean) logic with values TRUE or FALSE.

Table 7.1 Logical Connectives in Three-Valued Logic

() AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
(b) OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
© NOT
TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN
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In select-project-join queries, the general rule is that only those combinations of tuples that evaluate the
logical expression in the WHERE clause of the query to TRUE are selected. Tuple combinations that
evaluate to FALSE or UNKNOWN are not selected (unless it is outer join).

SQL allows queries that check whether an attribute value is NULL. Rather than using = or <> to compare
an attribute value to NULL, SQL uses the comparison operators IS or IS NOT. This is because SQL
considers each NULL value as being distinct from every other NULL value, so equality comparison is
not appropriate.

SELECT Fname, Lname
FROM EMPLOYEE
WHERE Super_ssn IS NULL;

SQL allows the use of tuples of values in comparisons by placing them within
parentheses. To illustrate this, consider the following query:

SELECT DISTINCT Essn
FROM WORKS_ON
WHERE (Pno, Hours) IN ( SELECT Pno, Hours
FROM WORKS_ON
ﬂ_/gl © C) - WHERE Essn= ‘123456789 );

Q-W—C?

Nested Queries
IN can also refer to a list of values:

SELECT name, population FROM world WHERE name IN ('Brazil', 'Russia’, 'India’, 'China’);
= ANY and = SOME have the same effect as IN

Other operators that can be combined with ANY (or SOME) include >, >=, <, <=, and <>. The keyword ALL can
also be combined with each of these operators.

An example is the following query, which returns the names of employees whose
salary is greater than the salary of all the employees in department 5:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > ALL ( SELECT Salary
FROM EMPLOYEE
WHERE Dno=5);

EXISTS and NOT EXISTS in SQL is used to check whether the result of a nested query is empty (contains no
tuples) or not.
SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E
WHERE EXISTS ( SELECT *
FROM DEPENDENT AS D

WHERE E.Ssn=D.Essn AND E.Sex = D.Sex
AND E.Fname = D.Dependent_name);
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Lecture - Joins
CROSS PRODUCT /1

» All possible tuple combinations

» Find the name of all the suppliers of product "p2~

[ Supplier [ Supply ]
SELECT Mame$s LodeS | NemeS |Shareholders | 0ffice | fodeS | CodeP [ Amcunt
FROM Supplier, Supply 5L Jahn 2 Ansterdam| 51 Fl 308
51 Jakn 2 Ansterdan| 5L [7] 200
51 Jahn 2 Anstardam 51 P2 aae
51 Jahn 2 Amsterdan| 51 [ 200
51 Jahn 2 Ansterdan| 5L [H 1a0
51 | Jahn 2 Ansterdam | 81 PR 198
51 Jahn 2 Ansterdan(” 52 F1 308
s Victor 1 Den_Haag s | M 308
52 Victor 1 Den Hazg &2 [ 308
3 )| Ana 3 Oen Haag siY)[ P ELD)
53 hana 3 Den Hasg 53 P2 200

Figure 37: Slide 53 - Cross Product

When we need to formulate a query thatinvolves rows belonging to more than one table, the argument
of the FROM clause is given as a list of tables. The conditions in the WHERE clause are applied to the
cartesian product (or cross product) of these tables. Recall that a Cartesian product of two sets A and
B is the the set of all the possible pairs in which the first element belongs to A and the second to B. In
the PostgreSQL documentation, the cartesian product is referred to as CROSS JOTN.

For instance, in the figure, we can see how tuples from the SUPPLIER table are combined with tuples
from the SUPPLY table.

Some of the tuples (the ones highlighted in red) are not correct answers to our query.

SELECT NameS I Supplier [y Supply ]

FROM Supph'gr. Supply Codes Name5 | Shareholders | Office CodeS | CodeP | Amount

WHERE Supplier.Code$ = Supply.Code$ 51 John 2 Ansterdan o1 Pl 300
51 John 2 Ams terdam il P2 208
51 John 2 Amsterdam il P3 408
51 John ) Amsterdam 51 P4 2pe
51 John 2 Amsterdam S1 P5 108
51 John 2 Ams terdam 51 P& 0@
51 John 2 Amsterdam 52 P1 368
52 Victor 1 Den Haag 51 Pl el
52 Victor 1 Den Haag 52 Pl 308
53 Anna 3 Den Haag 51 P1 308
53 Anna 3 Den Haag 53 P2 208
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This is why a JOIN operation can be specified, by explicitly indicating comparisons between attributes
of different tables.

The JOIN operator is arguably the most important one in relational algebra, and, in general, in
databases. The JOIN allows us to establish connections among data contained in different relations,
comparing the values contained in them and thus using the fundamental characteristics of the model,
that of being value-based.

In the above query, we perform a JOIN by explicitly indicating a “connection” between attributes in the
two tables, in the WHERE clause. This means that, after the cartesian product between the two tables is
calculated, only those tuples having the same value for the CodeSs attributes are kept.

Mote the use of the dot operator to identify the tables from which attributes are extracted. For example,
Supplier.CodeS denotes the CodeS attribute of the table Supplier. This use is common in many
programming languages, to identify the fields of a structured variable.

It is necessary to use this notation when the tables listed in the FROM clause have attributes with the
same name, in order to distinguish among the references to the homonym attributes.

» Supplier.CodeS = Supply.CodeS isa JOIN CONDITION

| Supplier | Supply |
CodeS NameS |Shareholders| Office CodeS | CodeP | Amount
S1 John 2 Amsterdam 51 P1 300
51 John 2 Amsterdam 51 P2 200
S1 John 2 Amsterdam 51 P3 490
S1 John 2 Amsterdam 51 P4 209
51 John 2 Amsterdam 51 P5 188
51 John 2 Ams terdam 51 P& 108
52 Victor 1 Den Haag S52 P1 300
52 Victor 1 Den Haag S2 P2 400
53 Anna 3 Den Haag 53 P2 208
54 Angela 2 Amsterdam S4 P3 208
sS4 Angela 2 Amsterdam sS4 P4 300
54 Angela 2 Amsterdam 54 P5 408

Figure 40: Slide 56 - Simple JOIN

The content of the WHERE clause is what is called a JOIN condition, and in the slide we can appreciate
the result of its application to the result set.
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JOIN 57

OUR ORIGINAL QUERY

» Find the name of all the suppliers of product “p2*

SELECT NameS
FROM Supplier, Supply
WHERE Supplier.Code5 = Supply. Code5 AND CodeP = "P2"

[ Supplier I Supply ]
Codes || Mames |Eharenolders| 0ffice | CodeS | CodeP | Amount |
51 John 2 Amsterdam 51 P1 Ef
51 John 2 Amsterdam 51 Pz 2 |
51 John 2 Amstardam 51 P3 434
51 John 2 Amsterdam | 51 [ 200 Names
51 John 2 Ansterdam 51 P | 1ma John
51 John 2 Amsterdam 51 P& @4 Victar
52 Victor 1 Den _Haag a2 [T Anna
52 Victor 1 Den Haag 52 P2 | 488
53 Amng 3 Den Haag 53 P2 284
54 Angela 2 A0S T rdam 54 P2 288
54 Angela 2 Ans te rdam 54 P4 | 384
54 Angela 2 Ansterdam 54 PS | 484

Figure 41: Slide 57 - Our original query

With this new powerful condition in our toolkit, we are now able to express more complex queries. So,
in this examples, we can find the name of all suppliers of a given product P2, by joining the Supplier
and Aupply table, and then add a new condition on the product CodeP.

8.6.1 Example Queryin DB3

The query below retrieves the list of movies (t1t1e) having at least one cast member.

SELECT name
FROM person_100k, cast_info_100k
WHERE person_100k.id = cast_info_100k.person_-id
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ANOTHER QUERY

» Find the name of supplier of at least one red product

SELECT DISTINCT NameS

FROM Supplier, Supply, Froducts

WHERE Supplier.Code5 = Supply.CodeS AND Supply.CodeP = Product.CodePCodeP
AND Color = "Red"

If there are N tables in the FROM clause, at least N — 1 JOIN conditions in the
WHERE clause

ety
| Eolor | Siam | Starshasue
rr | ded | 4 | dasterdan |

T | NameS
T e | John
Aed | 47 | Eastardwn | Victor

Figure 42: Slide 58 - Another Query

i
i
i
i

P

Iiiiil§§i¥§§

The FROM clause can accommodate more than 2 tables.
In this case, there WHERE clause should specify N-7 JOIN conditions, to allow the join of N tables.

In the example we want to find the name of suppliers of at least one red product. Notice how we join
the Products, Supply, and Supplier tables by joining on their CodeS and CodeP attributes.

Pay attention to the original query, and on its implementation. By asking, “at least one product”, we
mean that we are satisfied with result sets containing suppliers of 2, 3, any red products. We are not
able, however, to specify a condition where we want to retrieve suppliers that supply EXACTLY one
product. We will see later how to specify such query.

8.7.1 Example Query in DB3

The query below retrieves the list of movies (t1t1e) having at least one female cast member.

SELECT title

FROM title_100k, cast_info_100k, person_1l00k
WHERE title_100k.id = cast_info_l08k.movie_id

AND person_100k.id = cast_-info_l100k.person_-id
AND gender = 'f'
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RESULT/3

» Find the code pairs of suppliers having their office in the same city
SELECT 51.Cede5, 52.Codes
FROM Supplier A5 51, Supplier AS 52 51.Codes | 52.Code5
WHERE $1.0ffice = S2.0ffice AND 51.CodeS < 52.CodeS | Sl
51 54
Lol <
» Let's keep only the right ones 52 S3
L3 f:
g <3
L. |
Lol = Lol

Figure 46: Slide 62 - Result

So, we can also define a condition that allows us to remove both issues. By imposing an order on the
two codes (e.g. for one to be bigger than the other), we can immediately eliminate tuples with same
values, and tuples in different orders.

8.11.1 Example Query in DB3

Now with pl.id < p2.1dwe obtained the desired results.

SELECT pl.name, p2.name, cl.movie_id

FROM person_100k AS pl, cast_info_1008k AS cl, cast_info_108k AS c2,
person_100k AS p2

WHERE pl.id = cl.person_id AND p2.id = c2.person_id AND cl.movie_id = c2.
movie_id AND pl.id < p2.id
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JU |NS |N SUL?z http:/fwww.contrib.andrew.cmu.edu/~shadow/sql/sql1 992

» SQL-2 introduced an alternative syntax for the representation of JOINs,
representing them explicitly in the from clause:

SELECT Targetlist

FROM Table [[AS] Alias]
{ [JoinType] JOIN Table [[AS] Alias] [ON BooleanExpression || USING JoinColumns]}
[ WHERE Conditions |

» JoinType can be any of INNER, RIGHT [OUTER],LEFT [OUTER] or FULI

[OUTER], permitting the representation of outer joins

» The keyword NATURAL may precede JoinType

Figure 47: Slide 63 - JOINs in SQL92

An alternative syntax introduced in SQL92 for the specification of joins makes it possible to distinguish

between the conditions that represent join conditions and those that represent selections of rows.

In this way we can also specify so-called outer joins and other extensions.

Using this syntax, the join condition does not appear as the argument of the WHERE clause, but instead
is moved into the FROM clause, associated with the tables that are involved in the join.

The keyword CROSS JOIN is used to specify the CARTESIAN PRODUCT operation although this should be
used only with the utmost care because it generates all possible tuple combinations, some of which may
not exist in the real tables and thus wrong data!

It is also possible to nest join specifications; that is, one of the tables in a join may itself be a joined

table. This allows the specification of the join of three or more tables as a single joined table, which is
called a multiway join.

SELECT Pnumber, Dnum, Lname, Address, Bdate

FROM ((PROJECT JOIN DEPARTMENT ON Dnum = Dnumber)
JOIN EMPLOYEE ON Mgr_ssn = Ssn)

WHERE Plocation = ‘Stafford’;
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JOINS IN SQL92

¥ MATURAL JOIN on two relations K and 5

» Mo join condition specified

v Implicit EQUI JOIN condition for each pair of attribute with same name from R and 5
. - 1
» INNER JOIN 1BV
[ 2 | | A |
» Default type of join in a joined table (equivalent to JOIN) 3 0N —pg
v Must specify JOIN attributes e
v Tuple isincluded in the results only if a matching tuple exists in the other relation LEFT
[ 2 | N -
» LEFT OUTER JOIN = W0IN CBE 7
» Every tuple in left table must appear in result C
¢ i no matching tuple: values for attributes in the right table set to NULL RIGHT
| A |
v RIGHT OUTER JOIN =T 1 N
» Every tuple in right table must appear in result
v I no matching tuple: values for attributes in the left table set to NU «FULL»
. JOIN =
» FULL OUTER JOIN =] I —

b If no matching tuple: values for attributes in the left and/or right tables set ta NUL.

Figure 48: Slide 64 - JOINs in SQL92

The parameter JoinType specifies which type of join to use, and for this we can substitute the terms
INNER, RIGHT OUTER,LEFT OUTER, or FULL OUTER (the clause OUTER is optional).

The join condition is specified with the ON or USING clauses, or implicitly by the clause NATURAL. The
join condition determines which rows from the two source tables are considered to “match”.

The following explanations are partially taken from the the PostgreSQL documentation.

The 0N clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from a table A and B match if the ON expression
evaluates to true.

The USING clause is a shorthand that allows you to take advantage of the specific situation where both
sides of the join use the same name for the joining column(s). It takes a comma-separated list of the
shared column names and forms a join condition that includes an equality comparison for each one.
For example, joining A and B with USING (a, b) producesthejoin conditionONA.a = B.a AND A
.b = B.b

NATURAL is a shorthand form of USING: it forms a USING list consisting of all column names that appear
in both input tables. As with USING, these columns appear only once in the output table. If there are
no common column names, NATURAL JOTIN behaves like JOIN ... ON TRUE, producing a cartesian
product. Furthermore, the output of JOIN ... USING suppresses redundant columns: there is no
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need to print both of the matched columns, since they must have equal values. While JOIN ... ON
produces all columns from A followed by all columns from ~B, JOIN ... USING producesone output
column for each of the listed column pairs (in the listed order), followed by any remaining columns
from A, followed by any remaining columns from B.

In spite of the advantage of an increased compactness, queries using natural joins can introduce risks
to the applications, because its behaviour can change significantly as a result of small variations on the
schema. Another reason is that the natural join makes it necessary to analyse completely the schema
of the tables involved in order to understand the join condition. This is a disadvantage when writing
and when reading the query, because in both situations it is necessary to do a careful comparison of
the schemas of the joined tables in order to be sure of the behaviour of the query.

With the INNER join between the two tables, the rows involved in the join are generally a subset
of the rows of each table. It can happen that some rows are not included because there exists no
corresponding row in the other table for which the condition is satisfied. This property often conflicts
with the demands of applications that might need to retain the rows that would be eliminated by
the join. In writing the application, we might prefer to use null values to represent the absence of
information in the other table. This is the role of OUTER joins.

There are three different types of OUTER JOIN: LEFT, RIGHT,andFULL.

The LEFT join gives the same result as the inner join, but includes the rows of the table that appears
in the left of the join for which no corresponding rows exist in the right-hand table. The RIGHT join
behaves symmetrically (keeps the rows of the right-hand table); finally, the FULL join gives the result
of the inner join along with the rows excluded from both tables.
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INNER JOIN
» Find the name of supplier of at least one red product

SELECT DISTINCT NameS

FROM Products JOIN Supply USING (CodeP)
JOIN Supplier USING (CodeS)

WHERE Color = "Red"

g
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» Same results as in Slide 58

Figure 49: Slide 65 - Inner JOIN

In figure, we show how one of the query previously written can be expressed using the JOIN syntax.

8.13.1 Example Query in DB3

Here are two different formulations of the same query (find the title of all the movies where 'Keanu
Reeves' had arole).

SELECT title
FROM title_100k, cast_info_100k, person_100k
WHERE title_100k.id = cast_info_100k.movie_-id
AND person_100k.id = cast_info_100k.person_1id
AND person_100k.name = 'Reeves, Keanu'

SELECT title
FROM title_100k JOIN cast_info_100k ON title_100k.id = cast_info_100k.

movie_id
JOIN person_100k ON person_100k.id = cast_info_100k.person_-id
WHERE person_100k.name = 'Reeves, Keanu'
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LEFT OUTER JOIN

» Find the code and name of Supplier, and the code of the supplied Products, showing also
suppliers of no products

CodeS | NameS | CodeP
51 John Pl
51 John P2
51 John P3
51 John P4
SELECT Supply.CodeS, Supplier.NameS, Supply.CodeP 51 John i)
FROM Supplier LEFT OUTER JOIN Supply g1 John P&
ON Supplier.CodeS = Supply.CodeS 52 Victor P1
52 Victor P2
53 Anna P2
54 Angela P3
54 Angela Pd
54 | Angela | PS5
55 Paul | NULL

Figure 50: Slide 66 - Left Outer JOIN

Here instead, we exemplify the use ofa LEFT OUTER JOIN,onthetables Supply and Supplier. You
can notice how the tuple (S5, Paul,NULL) is returned even if such supply has no supplier.

Alter Tables

Add column
ALTER TABLE products ADD COLUMN description text;

Drop column
ALTER TABLE products DROP COLUMN description CASCADE;

Add constraint
ALTER TABLE products ADD CHECK (name <>");

ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;
ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

Drop constraint
ALTER TABLE products DROP CONSTRAINT some_name;

Change default, data type
ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;
ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

Renaming column, table
ALTER TABLE products RENAME COLUMN product_no TO product_number;

ALTER TABLE products RENAME TO items;
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Lecture 8

» Aggregate Query: query in which the result depends on the consideration of
sets of rows

» The result is a single (aggregated) value

» Expressed inthe SELECT clause
» aggregate operators are evaluated on the rows accepted by the WHERE conditions

» SQL92 offers five aggregate operators
» COUNT, SUM, MAX, MIN, AVG

» Except for COUNT, these functions return a NULL value when no rows are selected
OPERATOR COUNT

» COUNT returns the number of rows or distinct values

COUNT (<* | [DISTINCT | ALL] TargetList >)

» The DISTINCT keyword forces the count of distinct values in the attribute list

OPERATORS SUM,MAX.MIN.AVG

» SUM,MAX,MIN,AVG

» Allowed arguments are attributes or expressions

» SUM,AVG

» Only numeric types

» MAX,MIN
p Attribute must be sortable
» Applied also on strings and timestamps
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NULL VALUES AND AGGREGATES

» All aggregate operations ignore tuples with NULL values on the aggregated
attributes

» COUNT: number of input rows for which the value of expression is not NULI
» SUM,AVG,MAX,MIN: NULL values are not considered

p The COALESCE function can be used to force a value for NULL

SELECT AVG(season_nr) SELECT AVG(COALESCE (season_nr, 1))
FROM title_leéek FROM title_leéek

To use an aggregate function it must be explicitly stated to which subset of rows it must adhere to. That
is achieved with the GROUP BY clause. The clause accepts as argument a set of attributes, the query will
operate separately on each set of rows that possess the same values for these set of attributes.

GROUPING ROWS

» Queries may apply aggregate operators to subsets of rows
» For each product find the total amount of supplied items

SELECT CodeP, SUM(Amount)
FROM  Supply
GROUP BY CodeP

Supply | codes | CodaP | Amaunt |

Code$ | CodeP | Amount [51 [ r | 380 |

S| Pl 08 |52 PL | d0e |

51 2 08 [= P2_| e | CodeP| sum |

51 P3 B3] 52 P2 ane Pi G

31 P4 200 [} D - 2z | mee

51| P 1ot (51 [, | e || —p | P2 | oee |

51 PE_| 1ed 54| P | e | i L

52 Pl £l T T P5 S04
1 [ P4 288 —_t

52 P2 48 P 188
54 | P 208

g | m 00 L -

= = . 1 | #s 108

51 | pPa | 3o [ 54 | ps | am |

54 P 108 51 [ w6 188

Once the rows are partitioned into subsets, the aggregate operator is applied separately to each
subset. Each separate result is reported as a corresponging row in the result query.

The attributes that can appear in the select clause must be a subset of the attributes used in the GROUP
BY clause. Usually it is the list of all selected attributes (except the aggregate one).
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HAVING CLAUSE 1

v Conditions on the result of an aggregate operator require the HAVING clause

¢ Only predicates containing aggregate operators should appear in the argument of the HAVING clause

+ Find the departments in which the average salary of employees working in office number 20 is higher than 25

SELECT Dept

FROM Employee

WHERE Office = *28°'
GROUF BY Dept

HAVING AVG(Salary) > 2§

The syntax also allows for the definition of queries using the HAVING clause, without a corresponding
GROUP BY clause. The having clause will also accept as argument a boolean expression of simple
predicates. The simple predicates are generally comparisons between the result of the evaluation of an
aggregate operator and a generic expression.

MESTED QUERIES 3
NESTED QUERIES THAT RETURN ONE TUPLE

» If a subquery is guaranteed to produce one tuple, then the result of the
subquery can be used as a value

» Typically, a single tuple is guaranteed by key constraints of attributes SELECTed by
the subquery

» A run-time error occurs if there is no tuple or more than one tuple

» Usually, the tuple has one attribute, but with a tuple constructor we might have
many => row subquery

SCOPE OF ATTRIBUTES, VARIABLES, AND CORRELATED QUERIES

» A subquery can use attributes and/or variables defined by outermost queries in
their WHERE clause

» this is sometimes referred to as “transfer of bindings”
» The two queries are said to be correlated

» Semantics: the nested query is evaluated for each row of the external query
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THE EXISTS OPERATOR/1

» Find the name of the suppliers that supplied P2 at least once

SELECT Jblame
FROM
WHERE EX (SELECT *

FROM Supply
WHERE CodeP=‘P2" AND [Supplier].CodeS = Supply.CodeS)

» I We need to test the existence of a supply for the evaluation of suppliers

» Suppliers.CodeS = Supply.CodeS imposes a correlation between external
and internal query

LIMITATIONS

» A query cannot refer to attributes in a subquery, or in a query at the same level
of nesting

TUPLE CONSTRUCTOR

» The comparison with the nested query may involve more than one attributes

» The attributes must be enclosed within a pair of curved brackets (tuple
constructor)

» The query in the previous slide can be expressed as:

SELECT =

FROM Person P1

WHERE (FirstMame.Surname) MWOT IM (SELECT FirstMame, Surname
FROM  Person PI
WHERE P1.BSH <> P2 BSHN)
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SET QUERIES

» Union, intersection, and difference of relations are expressed by the following
forms, each involving subqueries:

» (subquery)INTERSECT[ALL] (subguery) CAN BE EXPRESSED WITH
OTHER OPERATORS
» (subquery)EXCEPT[ALL] (subquery) (TYPICALLY SUB-QUERIES)

ENHANCEMENT OF THE
» (subquery)UNION[ALL] (subguery)

SET SEMANTIC OF SET QUERIES

» Although the SELECT-FROM-WHERE statement uses bag semantics, the default
for union, intersection, and difference is set semantics.
» Thatis, duplicates are eliminated as the operation is applied

» Motivation: Efficiency
» When projecting attributes, it is easier to avoid eliminating duplicates. Just work
tuple-at-a-time.

» When doing intersection or difference, it is most efficient to sort the relations first
At that point you may as well eliminate the duplicates anyway

UNION

» Asingle SELECT cannot represent unions of values from two or more tables

A UNION [ALL] B

» It executes the union of two relational expressions
» Expressions generated by SELECT clauses
» Table A and Table B must be union compatible
¥ i.e. have compatible schema
v same number of output fields, in the same order, and with the same or compatible data types
» Duplicate removal
» UNION removes duplicates
» UNION ALL does not remove duplicates
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UNION EXAMPLE /1

» Find the code of red products OR products supplied by 52 (or both)

SELECT CodeP
FROM Products
WHERE Color = “Red’

UNTION

SELECT CodeP
FROM Supply
WHERE CodeS = *52°

INTERSECTION

A INTERSECT [ALL] B

» Intersection of two subqueries

v returns all rows that are both in the result of A and in the result of B
» As forthe UNION operator, schema must be union compatible
» Duplicate rows are eliminated unless INTERSECT ALL is used.

» Not supported by all RDBMS (e.g. not supported by MySQL)

EXCEPT

A EXCEPT [ALL] B

» Difference set operator
b Returns all rows that are in the result of A but not in the result of B

» As for the UNION operator, schema must be union compatible

» Not supported by all RDBMS (e.g. not supported by MySQL)
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Use of SQL for the definition of database schemas (DDL)

DEFINING A DATABASE SCHEMA

» A database schema comprises:
v declarations for the relations ("tables”) of the database
} domains associated with each attribute

¥ integrity constraints
» A schema has a name and an owner (the authorisation)

» Many other kinds of elements may also appear in the database schema, including:
b privileges, views, indexes, triggers

» Syntax: CREATE SCHEMA [ SchemaName ]

[[ authorisation ] Authorisation |
{ SchemaElementDefinition }

SQL makes it possible to define a database schema as a collection of objects; each schema consists of a
set of domains and tables, defined by the syntax in the slide. A schema also includes indices, assertions,
views and privileges. Authorization represents the name of the user who owns the schema. If the term is
omitted, it is assumed that the user who issued the command is the owner. The name of the schema can
be omitted and, in this case, the name of the owner is adopted as the name of the schema. After the
create schema command, the user can define the schema components.

It is not necessary for all the components to be defined at the same time as the schema is created.

DOMAINS

» Specify the content of attributes

» Two categories

» Elementary (predefined by the standard)
» User-defined (not available in all RDBMs implementations)

CREATE DOMAIN Grade AS SMA
DEFAULT HULL
CHECK {Grade »>= @ AND Grade <=18)

A domain is essentially a data type with optional constraints (restrictions on the allowed set of values).
The user who defines a domain becomes its owner.
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ELEMENTARY DOMAINS (DATA TYPES)/1

» Bit
» Single boolean values or strings of boolean values (may be variable in length)
» Syntax: BIT [varying] [(Length)]

» Exact numeric domains
» Exact values, integer or with a fractional part
» Four Alternatives

» NUMERIC [(Precision [, Scale ])]:fixed point number, with user-specified
Precision digits, of which Scale digits to the right of decimal point.

» DECIMAL [(Precision [, Scale ])]:functionally equivalent to NUMERIC
» INTEGER: a finite subset of the integers that is machine-dependent
» SMALLINT: a machine-dependent subset of the integer domain type

» Approximate real values
» Based on floating point representation

» FLOAT [(Precision)]: floating point number, with user-specified
precision of at least n digits. By default n is 53, but it can be less

» REAL: floating point numbers, with machine-dependent precision

» Double Precision: double-precision floating point numbers, with
machine-dependent precision

» Temporal Instants
» DATE: format yyyy-mm-dd
» TIME [(Precision)] [ with time zone ]:format hh:mm:ss:p with an optional
decimal point and fractions of a second following.
» TIMESTAMP [(Precision)] [ with time zone ]:formatyyyy-mm-dd
hh:mm:ss:p

» Temporal intervals
» INTERVAL FirstUnitOfTime [ TO LastUnitOfTime ]
» Units of time are divided into two groups:
» year, month
» day, hour, minute, second
» In PotgreSQL the syntax is different: interval '2 months ago'
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» Geometric Types: two-dimensional spatial object
» point, line, lseg,box,path,Open path,polygon, circle

» Network Address Types: to store IPv4, IPvé, and MAC addresses
» cidr, inet,macaddr, macaddr8

JSON Types

» json: data is stored an exact copy of the input text

v

» jsonb.datais stored in a decomposed binary format
» XML Type, used to store XML data
» Composite Types: represents the structure of a row or record

» UUID, Array, Ranges, Text Search (to support full text search)

TABLE DEFINITION

»p An SQL table consists of
» an ordered set of attributes

b a(possibly empty) set of constraints

» Statement CREATE TABLE
» defines a relation schema, creating an empty instance

» Constraints: integrity checks on attributes
» OtherConstraints: integrity constraints on the table

» Syntax:
CREATE TABLE TableName {
AttributeName Domain [DefaultValue] [Constraints]
{, AttributeName Domain [DefaultVWalue] [Constraints]}
[OtherConstraints]
]

DEFAULT DOMAIN VALUES

» Define the value that the attribute must assume when a value is not specified during row
insertion

» Syntax:

DEFAULT < GenericValue | USER | CURRENT_USER | SESSIOM_USER | SYSTEM_USER | NULL =

» GenericValue represents a value compatible with the domain, in the form of a constant
or an expression

» USER* is the login name of the user who issues the command
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A common example is for a timestamp column to have a default of CURRENT_TIMESTAMP, so that it
gets set to the time of row insertion. Another common example is generating a “serial number” for each
row. In PostgreSQL this is typically done by using the SERIAL data type.

CONSTRAINTS /1

v

Constraints are conditions that must be verified by every database instance
» Defined in the CREATE or ALTER TABLE operations

» Automatically verified by the DB after each operation

v

Advantages
» declarative specification of constraints

» unique centralised verification

v

Disadvantages
» might slow down execution
» pre-defined type of constraints

» e.g.no constraint on aggregated data
» buttriggers can help

INTRA-RELATIONAL CONSTRAINTS

Intra-relational constraints involve a single relation

» NOT NULL (on single attributes)
» upon tuple insertion, the attribute MUST be specified

» UNIQUE: permits the definition of candidate keys
v for single attributes: UNIQUE, after the domain
» for multiple attributes: UNIQUE( Attribute , Attribute )

» PRIMARY KEY: defines the primary key

» once for each table
» implies NOT NULL
v syntax like UNIQUE
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» Each pair of FirstName and Surname uniquely identifies each element

FirstName CHARACTER({Z&) NOT HNUL
Surname CHARACTERC22) WOT NULL
UMIQUE (FirstName, Surname)

¢+ Note the difference with the following (stricter) definition

FirstMName CHARACTER(28) NOT NULL UNIQUE
Surname CHARACTER(2Z®) MNOT NULL UNIQUE

Figure 78: Slide 82 - Example of Intra-Relational Constraints

The slide contains show examples of usage for the UNIQUE constraint.

In the first case, the constraint imposes the condition that there can be no two rows that have both the
same first name and the same surname. In the second (stricter) case, the constraint is violated if either
the same first name or the same surname appears more that once.

INTER-RELATIONAL CONSTRAINTS

» Constraints may take into account several relations

» REFERENCES and FOREIGN KEY key permit the definition of referential
integrity constraints. Syntax:
» for single attributes: REFERENCES, after the domain

» for multiple attributes: FOREIGN KEY (Attributel , Attribute2) REFERENCES
Table (Attributel , Attribute2)

b Itis possible to associate reaction policies to violations of referential
integrity

REACTION POLICIES FOR REFERENTIAL INTEGRITY CONSTRAINTS

» Reactions operate on the referencing table, after changes to the referenced table

» Violations may be introduced
» by updates on the referred attribute
» by row deletions

» Reactions (can be specific to an event)
» CASCADE: propagate the change
» SET NULL: nullify the referring attribute
» SET DEFAULT: assign the default value to the referring attribute
» NO ACTION: forbid the change on the external table

» Syntax:

ON < DELETE | UPDATE > < CASCADE | SET MULL | SET DEFAULT | NO ACTION =
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SCHEMA UPDATES

p Two SQL statements:

» ALTER: to modify a domain, the schema of a table, or a user

» DROP: to remove schema, domain, table, etc.

ALTER TABLE Department ADD COLUMN MoOfOffices NUMERIC(4)
ALTER TABELE Department ADD CONSTRAINT UniqueAddress UNIQUE(Address)

DROF TABLE TempTable CASCADE

RELATIONAL CATALOGUES

» The catalog contains:
¥ The data dictionary

¥ The description of the data contained in the data base (tables,
etc.)

» Statistics about the data (distribution, access, growth)

SELECT table_name
v It is based on a relational structure (reflexive) FROM information_schema.tahles
WHERE table_schema = ‘public

» It can be queried!

» The SQL92 standard describes a Definition Schema
{composed of tables) and an Information Schema
{composed of views)

Figure 82: Slide 87 - Relational Catalogues

Although only partly specified by the standard, each relational DBMS manages its own data dictionary
(or rather the description of the tables presentin the database) using a relational schema. The database
therefore contains two types of table: those that contain the data and those that contain the metadata.
This second group of tables constitutes the catalogue of the database.

This characteristic of relational system implementations is known as reflexivity. A DBMS typically
manages the catalogue by using structures similar to those in which the database instance is stored.
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DATA MODIFICATION IN SOL

» Statements for:
p insertion INSERT
» deletion DELETE
» change of attribute values UPDATE

» All the statements can operate on a set of tuples (set-oriented)

» In the condition it is possible to access other relations

INSERTIONS /1

INSERT INTO TableName [(AttributeList)] <VALUES(ListofValues)|SELECT s(L=

» Using Values

INSERT INTO Department (DeptMame,City) VALUES ('Production”,Toulouse'})
» Using a subquery

IKSERT INTO LondonProductsi
SELECT Code, Description
FROM Product
WHERE ProdArea = "London’

» The ordering of the attributes (if present) and of values is meaningful (first
value with the first attribute, and so on)

» If AttributeList is omitted, all the relation attributes are considered, in the order
in which they appear in the table definition

» If AttributeList does not contain all the relation attributes, to the remaining
attributes it is assigned:
» the DEFAULT value (if defined)
» the NULL value
» PRIMARY KEYs might get special handling
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DELETIONS /1

» The DELETE statement removes from the table all the tuples that satisfy the
condition

DELETE FROM TableMame [WHERE Condition]

» The removal may produce deletions from other tables if a referential integrity
constraint with CASCADE policy has been defined

» If WHERE clause is omitted, DELETE removes all the tuples

UPDATES /1

UPDATE TableName
SET Attribute = <Expression | SELECT SOL | NULL | default=
{, Attribute = <Expression | SELECT SOL | NULL | default=}
[WHERE Condition]
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