
CSE1500 Databases Midterm

1

CSE1500 Database Technology Midterm
Contents
Chapter1. Databases and Database Users 3

Characteristics of the database approach 4

Self-Describing Nature of a Database

System (Meta-Data) 4

Data Abstraction .. 5

Views .. 6

Multiuser Transaction Processing 6

Database stakeholders 6

Database Administrators (DBA) 6

Database Designer 6

End Users ... 7

System analysts .. 7

Application programmers/Software

developers/Software engineers 7

DBMS system designers and implementers

 ... 7

Tool developers .. 7

Operators and mantianence personal 7

Chapter 2. Database System concepts and

Architecture ... 7

2.1 Data Models, Schemas and Instances 8

2.1.1 Categories of Data Models 8

2.1.1 Schemas, Instances, and Database

State ... 8

2.2 Three-Schema Architecture and Data

Independence .. 9

Architecture, low/physical level: 10

Conceptual Level 10

View Level .. 10

2.2.2 Data Independence 10

2.3 Database Languages and Interfaces 11

2.3.1 DBMS Langauges 11

2.3.2 DBMS Interfaces 11

2.4 Database System Environment 12

2.4.1 DBMS Component Modules 12

2.4.2 Database System Utilities 12

2.5 Centralized and Client/Server

Architectures for DBMSs 13

Centralized architecture 13

Client/Server architecture 13

Two-tier architectures (use APIs) 14

Three-tier acrchitectures 14

2.6 Categories of DBMS 14

Chapter 5. The Relational Data Model and

Relational Database Constraints...................... 15

5.1 Relational Model Concepts 15

5.1.1 Domains, Attributes, Tuples, and

Relations .. 15

5.1.2 Characteristics of Relations 16

5.1.3 Relational Model Notation 16

5.2 Relational Model Constraints and

Relational Database Schemas 16

5.2.1 5.2.2 Key Constraints and Constraints

on NULL Values .. 17

5.2.3 Relational Databases and Relational

Database Schemas 17

5.2.4 Entity Integrity, Referential Integrity,

and Foreign Keys 18

5.3 Insert, Delete, and Update Operations

dealing with constraints 20

5. 4 The Transaction Concept 20

Lecture 1 Introduction to Database Systems .. 20

Chapter 3. Data Modeling with Entity-

Relationship (ER) Model 30

CSE1500 Databases Midterm

2

3.1 Using High-Level Conceptual Data Models

for Database Design 30

Conceptual Design (Schema) 31

3.3 Entity Types, Entity Sets, Attributes and

Keys .. 32

Entity type .. 33

Example .. 34

3.4 Relationship Types, Relationship Sets,

Roles, and Structural Constraints................. 35

3.7 ER Diagram Naming Conventions 37

Lecture 2. Introduction to Modelling 39

Chapter 4. The Extended EER Model 56

4.1 Subclasses, Superclasses, and Inheritance

 ... 56

Subtype/subclass entity type 56

4.2 Specialization and Generalization 57

4.2.1 Specialization 57

4.2.2 Generalization 57

4.3 Constraints and Characteristics of

Specialization and Generalization Hierarchies

 ... 57

4.3.1 Constraints on Specialization and

Generalization .. 57

4.3.2 Specialization and Generalization

Hierarchies and Lattices 58

4.7 Ontology ... 58

Lecture 3. The Relational Model 59

Lecture 4. More on Modelling 75

Lecture 5. Functional Dependencies and

Normalization... 84

Chapter 14. .. 99

14.1 Informal Design Guidelines for Relation

Schemas ... 99

14.2 Functional Dependencies 100

14.3 Normal Forms Based on Primary keys

 ... 101

Lecture 6 .. 103

Lecture 7 – SQL .. 107

6.1 SQL Data Definition and Data Types 107

Data types .. 108

Constraints ... 109

6.3 Basic Retrieval Queries in SQL 111

Duplicates .. 112

Set Operators ... 112

Substring Pattern Matching 112

Ordering ... 113

INSERT, DELETE and UPDATE 113

Comparison involving NULL and three-valued

logic .. 114

Nested Queries .. 115

Lecture - Joins .. 116

Alter Tables .. 125

Add column .. 125

Drop column .. 125

Add constraint 125

Drop constraint 125

Change default, data type 125

Renaming column, table 125

Lecture 8 .. 126

CSE1500 Databases Midterm

3

Chapter1. Databases and Database Users
An app where operations with a database are central it’s called a database application. New platforms

have pushed the creation of databses that store nontraditional data (images, video, etc. instead of plain

text and numbers).

New types of database systems are often referred to as big data storage systems or NOSQL systems,

which have been created to manage data for social media applications, and are used by companies such

as Google, Amazon and Yahoo to manage the data requried in their web search engines as well as to

provide cloud storage.

OLAP = online analytical processing systems used to extract and analyze useful business information

from large databases to support decision making.

real-time active and active database technology = used to control industrial and manufacturing

processes

database search techniques = used by search engines.

database: collection of related data. Furthermore, a database has the following implicit properties:

1. It represents an aspect of the real world, and changes of the world are reflected in the

database.

2. It is a logically coherent collection of data with some inherent meaning. Random assortment of

data cannot be referred to as a database

3. It is designed, built and populated with data for a specific purpose. It has an intended group of

users and an application in which the users are interested.

A database can be of any size and complexity.

A database can be distributed over several servers and be acessed by millions of users.

A database can be manually mantained (such as a library card system) or computeried (the same thing

but digital).

A database management system (DBSM) is a computerized system that enables users to create and

mantain a database. It is a general purpose software system that facilitates the process of

defining: specifying data types, structures and constrains. This descriptive information is stored by the

DMS in the form of a “database catalog/dictionary” called meta-data (which can be accessed by queries

to skip things and be faster).

constructing: storing the data on some storage medium

manipulating: querying (SCRUD), and reports.

and sharing databses among users and applications.

a transaction is a type of query that makes a simultaneous read and write in different locations.

the DBMS also protects (crashes and security) and mantains (allow for updates and changes) the

database.

CSE1500 Databases Midterm

4

DBMS is often shortened as database system.

Design of a new application for an existing database or design of a brand new database starts off with a

phase called requirements specification and analysis. These requirements are documented in detail and

transformed into a conceptual design that can be represented and manipulated using some

computerized tools so that it can be easily maintained, modified, and transformed into a database

implementation.

The design is then translated to a logical design that can be expressed in a data model implemented in a

commercial DBMS. The final stage is physical design, during which further specifications are provided

for storing and accessing the database

Characteristics of the database approach
traditional file processing: each user defines and implements files needed for a specific software

application as part of programming the application (i.e. container classes in java). Different users may

required different data, that might be related in some sort of way. But you don’t want to constantly

merge data into new objects ad-hoc per query.

Instead, the database approach has a single repository that mantains the data, where it has been

defined once and then such data may be accesed by various users, repteadly, through queries,

transactions and application programs. A database approach has:

1. self-describing nature of the database system

2. Insulation between programs and data

3. Support of multiple views of the data

4. Sharing of data and multiuser transaction processing

Self-Describing Nature of a Database System (Meta-Data)
Database systems not only contain the database itself, but also a complete definition or description of

the database structure and constraints, called “meta-data” which is stored in the DBMS catalog, and

contains the structure of each file, type and storage format, and data constraints. Newer systems such

as NOSQL do not require meta-data because it is “self describing”.

DBMS software can access diverse databases by extracting the database definitions from the catalog

and using these definitions.

CSE1500 Databases Midterm

5

Data Abstraction

Program-data independence

We only need to change the description of a table in the catalog instead of rwriting an entire program:

In traditional file processing, the structure of data files is embedded in the application programs, so any

changes to the structure of a file may require changing all programs that access that file. By contrast,

DBMS access programs do not require such changes in most cases. The structure of data files is stored in

the DBMS catalog separately from the access programs.

Program-operation independence

An operation (also called a function or method) is specified in two parts. The interface (or signature) of

an operation includes the operation name and the data types of its arguments (or parameters). The

implementation (or method) of the operation is specified separately and can be changed without

affecting the interface. User application programs can operate on the data by invoking these

operations through their names and arguments, regardless of how the operations are implemented.

CSE1500 Databases Midterm

6

Data model

It is a very used term with different definitions, but in the context of data abstraction a data model is a

simplified visual representation of a data abstraction by using logic symbols and shapes to define

relationships and properties of objects (such as ER or UML models).

SQL is the standard data model and language for relational databases.

NOSQL is generally interpreted as Not Only SQL.

 Views
A DBMS has support for views, a view is a read-only representation of database contents that is

originated from a set of SELECT statements often combined with JOIN.

Multiuser Transaction Processing
Online transaction processing (OLTP) applications: A multiuser DBMS, as its name implies, must allow

multiple users to access the database at the same time. This is essential if data for multiple applications

is to be integrated and maintained in a single database. The DBMS must include concurrency control

software to ensure that several users trying to update the same data do so in a controlled manner so

that the result of the updates is correct. For instance a DBMS should ensure that each flight seat can be

accessed by only one agent at a time for assignment to a passenger.

Transaction: A transaction is an executing program or process that includes one or more database

accesses, such as reading or updating of database records. It has the following properties:

1. Isolation: The isolation property ensures that each transaction appears to execute in isolation

from other transactions, even though hundreds of transactions may be executing concurrently

2. Atomicity: either all the database operations in a transaction are executed or none are. (i.e.

transfering money from one account to another can’t be allowed to be half finished, either

money leaves account A AND arrives account B or no money leaves A AND no money arrives B)

Database stakeholders

Database Administrators (DBA)
Administrates the database environment: the database itself (primary resource) and the DBMS and

related software (secondary resource).

The admin authorizes access to the database, coordinates and monitors its use, mantains the database

with software and hardware updates, responsible for security and response time.

Database Designer
Choose appropiate structures to represent and store the data, before the database is actually

implemented and populated. It coordinates the requirements and makes a design that meets them.

CSE1500 Databases Midterm

7

End Users
They access the database for querying, updating, and generating reports.

• Casual end users: Use a sophisticated database query interface to specify their requests and a

typically middle or high level managers

• Naive/parametric end users: They make queries and update the database using standard types

of queries and updates (called canned transactions) that have been already programmed and

tested (so they use a GUI, they dont write the query themselves)

• Sophisticated end users: engineers, scientists, business analysts who directly use the DBMS for

their own uses.

• Standalone users: mantain personal databases by using ready-to-use packages with GUIs.

System analysts
Determien the requirement of end users and develop specifications for standard canned transactions to

meet these requirements.

Application programmers/Software developers/Software engineers
Implement these specifications as sprograms (test, debug, comment and mantain too) and are fully

familiar with the capabilities by the DBMS.

DBMS system designers and implementers
Design and implement the DBMS modules and interfaces as a software package.

Tool developers
design and implement tools—the software packages that facilitate database modeling and design,

database system design, and improved performance.

Operators and mantianence personal
(system administration personnel) are responsible for the actual running and maintenance of the

hardware and software environment for the database system.

Chapter 2. Database System concepts and Architecture
Modern DBMS packages are modular in design, with a client/server system architecture. Old ones where

a tightly integrated system.

The rapid growth of data has promoted the trends in computing where large centralized mainframe

computers are being replaced by hundreads of distributed workstations.

Cloud computing environments consist of thousand of large servers managing big data for users on the

Web.

In a basic client/server DBMS architecture, the system functionality is distributed between two types of

modules. A client module is typically designed so that it will run on a mobile device, user workstation, or

personal computer (PC). Usuall include user-friendly interfaces such as apps for mobile devices, or

forms- or menubased GUIs (graphical user interfaces) for PCs. A server module typically handles data

storage, access, search, and other functions.

CSE1500 Databases Midterm

8

2.1 Data Models, Schemas and Instances
A data abstraction is a highlight of the essential features of the data of a database. A data model is a

mean to represent a data abstraction.

Data models show the structure of a database, which constitutes, among other things, the data types,

relationships, and constraints that apply to the data.

 2.1.1 Categories of Data Models

• High level/Conceptural data models: define high level concepts perceived mostl at the front-

end experience of its users. Ubckyde cibceots such as entities (represent a real world-object or

concept i.e. ‘employee’, ‘supplier’), atributes (properties that describe an entity i.e. ‘name’,

‘salary’), relationships (i.e. ‘project’ and ‘consultant’).

• Low level/Physical data models: describe the details of how data is stored (on the disk) as files

in the computer by representing information such as record formats, record orderings, and

access paths, these details are not meant for the end users. acces path: is a search structure

that makes the search for particular database records efficient, such as indexing or hashing.

• Representational/implemention data models: mid-level description of how data is organized.

common in traditional commercial DBMS, include the relational data model, as well as legacy

data models (network and hirearchical models commonly used in the past). Representational

data models represent data by using record structures and sometimes are called record-based

data models.

• Object data model: new higher-level implmenation model closer to conceptual models, often

referred to as ODMG (Object Data Model Group)

• Self-describing data models: The data storage in systems based on these models combines the

description of the data with the data values themselves. In traditional DBMSs, the description

(schema) is separated from the data. These models include XML, as well as many of the key-

value stores and NOSQL systems that were recently created for managing big data.

2.1.1 Schemas, Instances, and Database State
Schema: description of a database. It is specified during database design adn it is not expected to

change very often. A schema diagram displays the structure of each record type but not the actual

instances of records. A schema diagram displays only some aspects of a schema, such as the names of

record types and data items, and some types of constraints

Each object in the schema (such as STUDENT or COURSE) is a schema construct.

CSE1500 Databases Midterm

9

The data in the database at a particular moment in time is called a database state or snapshot. It is also

called the current set of occurrences or instances in the database. Every time we insert or delete a

record or change the value of a data item in a record, we change one state of the database into another

state.

When we define a new database, we specify its database schema only to the DBMS. the corresponding

database state is the empty state with no data.

We get the initial state of the database when the database is first populated or loaded with the initial

data. From then on each new modification of the data represents a new database state.

The DBMS is partly responsible for ensuring that every state of the database is a valid state—that is, a

state that satisfies the structure and constraints specified in the schema.

The schema is sometimes called the intension, and a database state is called an extension of the

schema.

Making changes in let’s say STUDENT and adding another field suchas Email is known as schema

evolution.

2.2 Three-Schema Architecture and Data Independence
1. Use a catalog to store the database description (Schema) so as to make it self-desribing

The three schemas are only descriptions of data; the actual data is stored at the physical level

only. The processes of transforming requests and results between levels are called mappings.

2. Insulation of programs and data

3. Support of multiple user views

CSE1500 Databases Midterm

10

Architecture, low/physical level:

Conceptual Level
The conceptual level has a conceptual schema, which describes the structure of the whole database for

a community of users. This implementation is often based on a conceptual schema design in a high-level

data model.

View Level
The external or view level includes a number of external schemas or user views. , each external schema

is typically implemented using a representational data model, possibly based on an external schema

design in a high-level conceptual data model

2.2.2 Data Independence
The capacity to change the schema at one level of a database system without having to change the

schema at the next higher level.

1. Logical data independence is the capacity to change the conceptual schema without having to

change external schemas or application programs.

2. Physical data independence is the capacity to change the internal schema without having to

change the conceptual schema.

CSE1500 Databases Midterm

11

2.3 Database Languages and Interfaces

2.3.1 DBMS Langauges
One language, called the data definition language (DDL), is used by the DBA and by database designers

to define conceptual and internal schemas. The DBMS will have a DDL compiler whose function is to

process DDL statements in order to identify descriptions of the schema constructs and to store the

schema description in the DBMS catalog.

The DDL is used to specify the conceptual schema only. Another language, the storage definition

language (SDL), is used to specify the internal schema.

In most relational DBMSs today, there is no specific language that performs the role of SDL. Instead, the

internal schema is specified by a combination of functions, parameters, and specifications related to

storage of files.

View definition language (VDL): to specify user views and their mappings to the conceptual schema, but

in most DBMSs the DDL is used to define both conceptual and external schemas.

Once the database schemas are compiled and the database is populated with data, users must have

some means to manipulate the database, The most common “SCRUD” select, create, read, update,

delete are supported by the data manipulation language (DML). SQL is the most common relational

database language, which represents a combination of DDL, VDL and DML. The SDL was a component in

early versions of SQL but has been removed from the language to keep it at the conceptual and external

levels only.

A query in a high-level DML often specifies which data to retrieve rather than how to retrieve it;

therefore, such languages are also called declarative.

A high-level DML used in a standalone interactive manner is called a query language.

2.3.2 DBMS Interfaces
User-friendly interfaces provided by a DBMS may include the following:

1. Menu-based Interfaces for Web Clients or Browsing.

2. Apps for Mobile Devices

3. Forms-based Interfaces

4. Graphical User Interfaces

5. Natural Language Interfaces

6. Keyword-based Database Search

7. Speech Input and Output

8. Interfaces for Parametric Users (small commands to minimize data entry time)

9. Interfaces for the DBA (that support his exclusive admin rights activites)

CSE1500 Databases Midterm

12

2.4 Database System Environment

2.4.1 DBMS Component Modules

2.4.2 Database System Utilities
1. Loading: A loading utility is used to load existing data files—such as text files or sequential

files—into the database.

2. Backup: A backup utility creates a backup copy of the database, usually by dumping the entire

database onto tape or other mass storage medium.

3. Database storage reorganization: This utility can be used to reorganize a set of database files

into different file organizations and create new access paths to improve performance.

CSE1500 Databases Midterm

13

4. Performance monitoring: monitors database usage and provides statistics to the DBA.

2.5 Centralized and Client/Server Architectures for DBMSs

Centralized architecture
At the beginning the DBMS itself was centralized where the DBMS functionality, application program

execution, and user interface processing were carried out on one machine. Allocating all of the

processing power at the DBMS side (people did not have resourceful PCs back then and connected to

the DBMS via terminals so mostly Display operations were carried at the user side).

Client/Server architecture
The client/server architecture was developed to deal with computing environments in which a large

number of PCs, workstations, file servers, printers, database servers, Web servers, e-mail servers, and

other software and equipment are connected via a network.

The idea is to define specialized servers with specific functionalities. For example, it is possible to

connect a number of PCs or small workstations as clients to a file server that maintains the files of the

client machines. Another machine can be designated as a printer server by being connected to various

printers; all print requests by the clients are forwarded to this machine. Web servers or e-mail servers

also fall into the specialized server category. The resources provided by specialized servers can be

accessed by many client machines. The client machines provide the user with the appropriate interfaces

to utilize these servers, as well as with local processing power to run local applications.

CSE1500 Databases Midterm

14

Two-tier architectures (use APIs)
A standard called Open Database Connectivity (ODBC) provides an application programming interface

(API), which allows client-side programs to call the DBMS, as long as both client and server machines

have the necessary software installed.

A related standard for the Java programming language, called JDBC, has also been defined. This allows

Java client programs to access one or more DBMSs through a standard interface.

Three-tier acrchitectures
Adds an intermediate layer between the client and the database server.

2.6 Categories of DBMS
We can categorize DBMSs based on the data model: relational, object, object-relational, NOSQL, key-

value, hierarchical, network, and other (such as tree-structured XML data model).

The second criterion used to classify DBMSs is the number of users supported by the system. Single-user

systems support only one user at a time and are mostly used with PCs. Multiuser systems, which include

the majority of DBMSs, support concurrent multiple users.

The third criterion is the number of sites over which the database is distributed. A DBMS is centralized if

the data is stored at a single computer site. A centralized DBMS can support multiple users, but the

DBMS and the database reside totally at a single computer site. A distributed DBMS (DDBMS) can have

the actual database and DBMS software distributed over many sites connected by a computer network.

Big data systems are often massively distributed, with hundreds of sites. The data is often replicated on

multiple sites so that failure of a site will not make some data unavailable.

The fourth criterion is cost. It is difficult to propose a classification of DBMSs based on cost. Today we

have open source (free) DBMS products like MySQL and PostgreSQL that are supported by third-party

vendors with additional services.

CSE1500 Databases Midterm

15

We can also classify a DBMS on the basis of the types of access path options for storing files. One well-

known family of DBMSs is based on inverted file structures.

Finally, a DBMS can be general purpose or special purpose. When performance is a primary

consideration, a special-purpose DBMS can be designed and built for a specific application; such a

system cannot be used for other applications without major changes. Many airline reservations and

telephone directory systems developed in the past are special-purpose DBMSs. These fall into the

category of online transaction processing (OLTP) systems, which must support a large number of

concurrent transactions without imposing excessive delays.

Chapter 5. The Relational Data Model and Relational Database

Constraints

5.1 Relational Model Concepts
The relational model represents the database as a collection of relations.

Each relation resembles a table of values or, to some extent, a flat file of records.

When a relation is thought of as a table of values, each row in the table represents a record, which

multiple attributes (columns).

5.1.1 Domains, Attributes, Tuples, and Relations
A domain D is a set of atomic values. By atomic we mean that each value in the domain is indivisible as

far as the formal relational model is concerned. A common method of specifying a domain is to specify a

data type from which the data values forming the domain are drawn. For example, the column with

header Usa_phone_number, has a domain of the set of ten-digit phone numbers valid in the United

States. This is a logical defintion of a domain. A data type or format is also specified for each domain. For

example, the data type for the domain Usa_phone_numbers can be declared as a character string of the

form (ddd)ddd-dddd, where each d is a numeric (decimal) digit and the first three digits form a valid

telephone area code. A domain is thus given a name, data type, and format.

So this relations mean that all the attributes belong to (and define) the same “relation schema” student,

aka student entity.

CSE1500 Databases Midterm

16

Tuples = records

5.1.2 Characteristics of Relations
Tuples in a relation do not have any particular order. That is, records in a table for student entity don’t

have a particular order. In a file records are physicall stored on disk so the have an intrinsic order.

The definition of a relation does not specify any order. When a relation is implemented as a file or

displayed as a table, a particular ordering may be specified on the records of the file or the rows of the

table.

A mapping from R to D is the union of these 2 sets. a tuple can be considered as a set of (<attribute>,

<value>) pairs, where each pair gives the value of the mapping from an attribute Ai to a value vi from

dom(Ai) The ordering of attributes is not important, because the attribute name appears with its value

The first normal form assumption, the so called “flat relational model” implies that all records are

composed of the exact same attributes, if for any reason a student doesn’t have an office phone, the

record still has the Office_phone attribute and the NULL value is used to denote what ‘null’ means in

any other programming language.

5.1.3 Relational Model Notation

• A relation schema (for an entity, such as student) R of degree n is denoted by R(A1, A2, … , An) (A

is the attribute/field/column).

• The uppercase letters Q, R, S denote relation names

• The lowercase letters q, r, s denote relation states.

• The letters t, u, v denote tuples.

5.2 Relational Model Constraints and Relational Database Schemas
Constraints on databases can generally be divided into three main categories:

1. Constraints that are inherent in the data model. We call these inherent model-based

constraints or implicit constraints.

2. Constraints that can be directly expressed in the schemas of the data model, typically by

specifying them in the DDL (data definition language, see Section 2.3.1). We call these schema-

based constraints or explicit constraints.

CSE1500 Databases Midterm

17

3. Constraints that cannot be directly expressed in the schemas of the data model, and hence

must be expressed and enforced by the application programs or in some other way. We call

these application-based or semantic constraints or business rules.

5.2.1 5.2.2 Key Constraints and Constraints on NULL Values
See 5.1.1 for normal attributes constraints (mostly data type, size, and format).

By definition, all elements of a set are distinct; hence, all tuples in a relation must also be distinct. No

two tuples can have the same combination of values for all their attributes. You can also ensure that a

specific (set of) attribute(s) (instead of the combination of the whole record) within an entity must be

unique (i.e. social security number, order id, etc). Any such set of attributes is called a super key. A

superkey SK specifies a uniqueness constraint that no two distinct tuples in any state r of R can have the

same value for SK (however, some of the fields can have repeated values):

super key {social security number, name, age} (name and age can exist already, the set of these 3 fields

is still unique)

Every relation has at least one default superkey— the set of all its attributes.

A more handy tool is to provide a key:

1. Two distinct tuples in any state of the relation cannot have identical values for (all) the

attributes in the key. This uniqueness property also applies to a superkey.

2. It is a minimal super key that is, if you remove (part of) it, you could potentially lose uniqueness,

whereas in a superkey you dont need to be minimal (that is, you can have reduncancy).

A key is a superkey but not vice versa.

Any superkey formed from a single attribute is also a key.

A key with multiple attributes must require all its attributes together to have the uniqueness property

A key is time-invariant It must continue to hold when we insert new tuples in the relation.

More than one unique fields in a relation can be unique, we would could have then primary key and

candidate key, the choice can be arbitrary but both have the “uniqueness” constraint. Usually the

primary key has a smaller and easier to sort set of attributes.]

NOT NULL is a common constrain, especially among keys, who must be unique.

5.2.3 Relational Databases and Relational Database Schemas
A relational database schema S is a set of relation schemas S = {R1, R2, … , Rm} and a set of integrity

constraints IC. That is a set of Tables (that often represent an entity) related with each other under a

“schema” S. I.e (shopping cart (id, time, quantity, customer), product properties(description, price,

product, isAvaiable))

CSE1500 Databases Midterm

18

5.2.4 Entity Integrity, Referential Integrity, and Foreign Keys
Underline fields are primary keys, when there are 2 underlined fields is because one of them is a foreign

key that is, a pointer to a primary key at another table that contains the attributes assigned to such id.

The entity integrity constraint states that no primary key value can be NULL.

The referential integrity constraints means that a foregin key must match an existing primary key

somewhere.

CSE1500 Databases Midterm

19

In SQL, the CREATE TABLE statement of the SQL DDL allows the definition of primary key, unique key,

NOT NULL, entity integrity, and referential integrity constraints, among other constraints.

CSE1500 Databases Midterm

20

5.3 Insert, Delete, and Update Operations dealing with constraints
• If an insertion violates one or more constraints, the default option is to reject the insertion.

• The Delete operation can violate only referential integrity. This occurs if the tuple being deleted

is referenced by foreign keys from other tuples in the database. Several options are available if a

deletion operation causes a violation. The first option, called restrict, is to reject the deletion.

The second option, called cascade, is to attempt to cascade (or propagate) the deletion by

deleting tuples that reference the tuple that is being deleted. For example, in operation 2, the

DBMS could automatically delete the offending tuples from WORKS_ON with Essn =

‘999887777’. A third option, called set null or set default, is to modify the referencing attribute

values that cause the violation; each such value is either set to NULL or changed to a reference

value. The default option can be specifed by the DDL of the DBMS

• Updating an attribute that is neither part of a primary key nor part of a foreign key usually

causes no problems; the DBMS need only check to confirm that the new value is of the correct

data type and domain. Just make sure that PK remains unique and check out for dependencies

with foreign keys. The same options as with delete apply, most commonly reject or cascade.

5. 4 The Transaction Concept
A transaction is an executing program that includes some database operations that form together an

atomic unit of work against the database. Their either completed as a whole or rejected all. A large

number of commercial applications running against relational databases in online transaction

processing (OLTP) systems are executing transactions at rates that reach several hundred per second.

Lecture 1 Introduction to Database Systems
Focus of the course:

CSE1500 Databases Midterm

21

CSE1500 Databases Midterm

22

CSE1500 Databases Midterm

23

(relational)

CSE1500 Databases Midterm

24

CSE1500 Databases Midterm

25

CSE1500 Databases Midterm

26

(Schema example: all the relationships between tables, views and table properties of my food app)

CSE1500 Databases Midterm

27

CSE1500 Databases Midterm

28

CSE1500 Databases Midterm

29

CSE1500 Databases Midterm

30

Chapter 3. Data Modeling with Entity-Relationship (ER) Model
The entity-relationship model is a popular high-level conceptual data model used for the conceptual

design of database applications.

Unified Modeling Language is an object modeling methodology that go beyond tabase design to specify

detailed design of software modules and their interactions using various types of diagrams. UML’s class

diagrams are very similar to ER diagrams.

3.1 Using High-Level Conceptual Data Models for Database Design

CSE1500 Databases Midterm

31

• Mini world: the part of the real world that will be represented in the database.

• Requirements collections and analysis: The database designers interview prospective database

users to understand and document their data requirements

• Functional requirements: User defined operations (or transactions) that will be applied to the

database, including both retrievals and updates. This is part of Software Engineering.

• Conceptual schema: is a concise description of the data requirements of the users and includes

detailed descriptions of the entity types, relationships, and constraints.

• logical design or data model mapping: implementation of the database, using a commercial

DBMS. Most current commercial DBMSs use an implementation data model—such as the

relational (SQL) model—so the conceptual schema is transformed from the high-level data

model into the implementation data model.

• physical design: internal storage structures, file organizations, indexes, access paths, and

physical design parameters for the database files are specified.

Conceptual Design (Schema)

CSE1500 Databases Midterm

32

3.3 Entity Types, Entity Sets, Attributes and Keys
The basic concept that the ER model represents is an entity, which is a thing or object in the real world

with an independent existence. Entities ‘i.e. employee x has attributes (ssn, bank account, email, name,

phone number, position, works_for, manages)

Composite attributes can be divided into smaller subparts, which represent more basic attributes with

independent meanings. For example, the Address attribute of the EMPLOYEE entity shown in Figure 3.3

can be subdivided into Street_address, City, State, and Zip, 3 with the values ‘2311 Kirby’, ‘Houston’,

‘Texas’, and ‘77001’. Attributes that are not divisible are called simple or atomic attributes.

The value of a composite attribute is the concatenation of the values of its component simple attributes.

Single-value vs multivalued: Some attributes can also have an optional number of values such as

“college degree”, where the acceptable values would consist of NULL, degree 1, degree 2..., degree n.

There can be an upperbound and lowerbound for n.

Stored vs derived: Some values you store, such as Birth_date, others are computed automatically, such

as Age, these are derived.

Complex attributes: combination of composite (‘{‘ for taxonomy) , and multivalued (comma separated).:

CSE1500 Databases Midterm

33

Entity type
Entity Type is Like a Class, i.e. ‘Student’, where entities are like objects, i.e. var s = new Student(); where

s is an instance of Student. The Entity Type and the Entity Type Set are two separate concepts, but they

same word i.e. EMPLOYEE may be used to refeer to both these concept. While the Entity Type is like a

Java class and defines the properties of its Set in the DBMS schema, tbe Entity (Type) Set refers to the

collection (set) of all the records that are instance of (entities) of such Enitity Type.

An entity type is represented in ER diagrams5 (see Figure 3.2) as a rectangular box enclosing the entity

type name. Attribute names are enclosed in ovals and are attached to their entity type by straight lines.

Composite attributes are attached to their component attributes by straight lines. Multivalued

attributes are displayed in double ovals.

(foreign) key and/or uniqueness constraint are underlined. An entity type without a key is called a

weak entity type. It still has a parial key if an attribute happens to be unique, or in the worst case

scenario it still has a partial key if you take all of the attributes combined.

An entity type describes the schema or intension for a set of entities that share the same structure. The

collection of entities of a particular entity type is grouped into an entity set, which is also called the

extension of the entity type.

CSE1500 Databases Midterm

34

Example

CSE1500 Databases Midterm

35

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints

CSE1500 Databases Midterm

36

CSE1500 Databases Midterm

37

3.7 ER Diagram Naming Conventions

CSE1500 Databases Midterm

38

CSE1500 Databases Midterm

39

Lecture 2. Introduction to Modelling

CSE1500 Databases Midterm

40

CSE1500 Databases Midterm

41

B,C,D are software engineering

CSE1500 Databases Midterm

42

CSE1500 Databases Midterm

43

CSE1500 Databases Midterm

44

CSE1500 Databases Midterm

45

CSE1500 Databases Midterm

46

CSE1500 Databases Midterm

47

Double line: (must be mapped) All the entities in the university set are mapped to at least 1 professor.

All University records must have a Professor Foreign Key (this case 1, but cardinality couuld also be N)

Single line: (optional). Professor records have the Dean_at attribute but can be null

CSE1500 Databases Midterm

48

Student takes the same exam in multiple sessions:

CSE1500 Databases Midterm

49

CSE1500 Databases Midterm

50

CSE1500 Databases Midterm

51

CSE1500 Databases Midterm

52

CSE1500 Databases Midterm

53

CSE1500 Databases Midterm

54

CSE1500 Databases Midterm

55

CSE1500 Databases Midterm

56

Week 2. The Relational Model

Chapter 4. The Extended EER Model
The ER modeling concepts discussed in Chapter 3 are sufficient for representing many database schemas

for traditional database applications, which include many data-processing applications in business and

industry. However more complex models exist and in this chapter, we describe features that have been

proposed for semantic data models and show how the ER model can be enhanced to include these

concepts, which leads to the enhanced ER (EER) model.

4.1 Subclasses, Superclasses, and Inheritance

Subtype/subclass entity type
The entities that are members of the EMPLOYEE entity type may be distinguished further into

SECRETARY, ENGINEER, MANAGER, TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so on.

The set or collection of entities in each of the latter groupings is a subset of the entities that belong to

the EMPLOYEE entity set, meaning that every entity that is a member of one of these subgroupings is

also an employee. We call each of these subgroupings a subclass or subtype of the EMPLOYEE entity

type, and the EMPLOYEE entity type is called the superclass or supertype for each of these subclasses.

We call the relationship between a superclass and any one of its subclasses a superclass/subclass or

supertype/subtype or simply class/subclass relationship.

The subclass member is the same as the entity in the superclass, but in a distinct specific role

When we implement a superclass/subclass relationship in the database system, however, we may

represent a member of the subclass as a distinct database object—say, a distinct record that is related

via the key attribute to its superclass entity.

An entity cannot exist in the database merely by being a member of a subclass; it must also be a

member of the superclass. Such an entity can be included optionally, as a member of any number of

subclasses. Because an entity in the subclass represents the same real-world entity from the superclass, it

should possess values for its specific attributes as well as values of its attributes as a member of the

superclass. We say that an entity that is a member of a subclass inherits all the attributes of the entity as a

member of the superclass. The entity also inherits all the relationships in which the superclass participates.

Observe how the subclass

Manager is a subset of super

class Employee

Manager ⊂ Employee

And see how the letter d

(disjoint/at most) expresses that

an employ can be secretary xor

technician xor engineer xor

none; and on top of that it can

be or not be a manager.The

double line means total

participation. So all employees

CSE1500 Databases Midterm

57

are registered as either salried or hourly, whereas not all employees are registered as secretary,

technicitan or engineer, that is, there are some positions in the company that do not have an entity type

of their own.

The diamonds are relationships. In Chen notation (this one, the one from the book), relations and

cardinalities are represented in active voice. “Many employees have 1 mentor”.

4.2 Specialization and Generalization

4.2.1 Specialization
Specialization is the process of defining a set of subclasses of an entity type. The set of subclasses that

forms a specialization is defined on the basis of some distinguishing characteristic of the entities in the

superclass. Attributes that apply only to entities of a particular subclass—such as TypingSpeed of

SECRETARY—are attached to the rectangle representing that subclass. These are called specific (or local)

attributes of the subclass.

4.2.2 Generalization
we suppress the differences among several entity types, identify their common features, and generalize

them into a single superclass of which the original entity types are special subclasses.

4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies

4.3.1 Constraints on Specialization and Generalization
In some specializations we can determine exactly the entities that will become members of each

subclass by placing a condition on the value of some attribute of the superclass. Such subclasses are

called predicate-defined (or condition-defined) subclasses.

CSE1500 Databases Midterm

58

For example, if the EMPLOYEE entity type has an attribute Job_type we can specify the condition of membership
in the SECRETARY subclass by the condition (Job_type = ‘Secretary’), which we call the defining predicate of the
subclass. This condition is a constraint.

When we do not have a condition for determining membership in a subclass, the subclass is called user-
defined. membership is specified individually for each entity by the user, not by any condition
that may be evaluated automatically.
The d notation also applies to user-defined subclasses of a specialization that must be disjoint.

Subclasses can also be overlapping (o) that is, the same (real-world) entity may be a member of more
than one subclass of the specialization.

The second constraint on specialization is called the completeness (or totalness) constraint, which may
be total or partial. A total specialization constraint specifies that every entity in the superclass must be a
member of at least one subclass in the specialization. For example, if every EMPLOYEE must be either an
HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the specialization {HOURLY_EMPLOYEE,
SALARIED_EMPLOYEE} in Figure 4.1 is a total specialization of EMPLOYEE. This is shown in EER diagrams
by using a double line to connect the superclass to the circle. A single line is used to display a partial
specialization, which allows an entity not to belong to any of the subclasses.

4.3.2 Specialization and Generalization Hierarchies and Lattices
A specialization hierarchy (single inheritance) has the constraint that every subclass participates as a

subclass in only one class/subclass relationship; that is, each subclass has only one parent, which results

in a tree structure or strict hierarchy.

For a specialization lattice (mulitple inheritance), a subclass can be a subclass in more than one

class/subclass relationship. That is a shared subclass. if no shared subclasses existed, we would have a

hierarchy rather than a lattice and only single inheritance would exist.

4.7 Ontology
The main difference between an ontology and, say, a database schema, is that the schema is usually

limited to describing a small subset of a miniworld from reality in order to store and manage data. An

ontology is usually considered to be more general in that it attempts to describe a part of reality or a

domain of interest (for example, medical terms, electronic-commerce applications, sports, and so on) as

completely as possible.

CSE1500 Databases Midterm

59

Lecture 3. The Relational Model
The relational model is based on set theory, which is the foundation of mathematics.

CSE1500 Databases Midterm

60

CSE1500 Databases Midterm

61

CSE1500 Databases Midterm

62

Partial function = injective

Total function = bijective

CSE1500 Databases Midterm

63

CSE1500 Databases Midterm

64

CSE1500 Databases Midterm

65

CSE1500 Databases Midterm

66

CSE1500 Databases Midterm

67

CSE1500 Databases Midterm

68

CSE1500 Databases Midterm

69

CSE1500 Databases Midterm

70

CSE1500 Databases Midterm

71

CSE1500 Databases Midterm

72

CSE1500 Databases Midterm

73

CSE1500 Databases Midterm

74

CSE1500 Databases Midterm

75

Lecture 4. More on Modelling

CSE1500 Databases Midterm

76

CSE1500 Databases Midterm

77

CSE1500 Databases Midterm

78

CSE1500 Databases Midterm

79

CSE1500 Databases Midterm

80

CSE1500 Databases Midterm

81

CSE1500 Databases Midterm

82

CSE1500 Databases Midterm

83

CSE1500 Databases Midterm

84

Week 3. Functional Dependencies and Normalization

Lecture 5. Functional Dependencies and Normalization

CSE1500 Databases Midterm

85

CSE1500 Databases Midterm

86

CSE1500 Databases Midterm

87

CSE1500 Databases Midterm

88

CSE1500 Databases Midterm

89

CSE1500 Databases Midterm

90

CSE1500 Databases Midterm

91

CSE1500 Databases Midterm

92

CSE1500 Databases Midterm

93

CSE1500 Databases Midterm

94

CSE1500 Databases Midterm

95

CSE1500 Databases Midterm

96

CSE1500 Databases Midterm

97

CSE1500 Databases Midterm

98

CSE1500 Databases Midterm

99

Chapter 14.
The implicit goals of the design activity are information preservation and minimum redundancy.

Information preservation in terms of maintaining all concepts, including attribute types, entity types,

and relationship types as well as generalization/specialization relationships, which are described using a

model such as the EER model. Thus, the relational design must preserve all of these concepts, which are

originally captured in the conceptual design after the conceptual to logical design mapping. Minimizing

redundancy implies minimizing redundant storage of the same information and reducing the need for

multiple updates to maintain consistency across multiple copies of the same information in response to

real-world events that require making an update.

Successive normal forms are defined to meet a set of desirable constraints expressed using primary keys and
functional dependencies. The normalization procedure consists of applying a series of tests to relations to
meet these increasingly stringent requirements and decompose the relations when necessary.

14.1 Informal Design Guidelines for Relation Schemas
Before discussing the formal theory of relational database design, we discuss four informal guidelines that
may be used as measures to determine the quality of relation schema design:

• Making sure that the semantics of the attributes is clear in the schema

• Reducing the redundant information in tuples

• Reducing the NULL values in tuples

• Disallowing the possibility of generating spurious tuples
These measures are not always independent of one another.

Guideline 1. Design a relation schema so that

it is easy to explain its meaning. Do not

combine attributes from multiple entity types

and relationship types into a single relation.

Intuitively, if a relation schema corresponds

to one entity type or one relationship type, it

is straightforward to explain its meaning.

Otherwise, if the relation corresponds to a

mixture of multiple entities and relationships,

semantic ambiguities will result and the

relation cannot be easily explained.

Guideline 2. Design the base relation schemas
so that no insertion, deletion, or modification
anomalies are present in the relations. If any
anomalies are present, note them clearly and

make sure that the programs that update the database will operate correctly.

Guideline 3. As far as possible, avoid placing attributes in a base relation whose values may frequently
be NULL. If NULLs are unavoidable, make sure that they apply in exceptional cases only and do not apply
to a majority of tuples in the relation.
Guideline 4. Design relation schemas so that they can be joined with equality conditions on attributes
that are appropriately related (primary key, foreign key) pairs in a way that guarantees that no spurious
tuples are generated. Avoid relations that contain matching attributes that are not (foreign key, primary
key) combinations because joining on such attributes may produce spurious tuples.

CSE1500 Databases Midterm

100

14.2 Functional Dependencies
Any relational database schema can be expressed as a single universal Relation Schema R with n

Attributes Such table will have a lot of rows and a lot of null values.

In that huge table, we can identify ask the owner for patterns, called “functional dependencies”.

That is attribute X implies attribute Y. X->Y. This combination of attributes are a proper subset of R. They

also specify a constraint on the possible tuples that can be accepted in a valid state for R.

The constraint is that, for any two tuples t1 and t2 in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].

That is also called Y is functionally dependent on X. X is called teh left-hand side of the FD and y the right
That also means that X is a candidate key of R. Then X → R.
Relation extensions r(R) that satisfy the functional dependency constraints are called legal relation

states (or legal extensions) of R. Hence, the main use of functional dependencies is to describe further a

relation schema R by specifying constraints on its attributes that must hold at all times.

A functional dependency is a property of the relation schema R, not of a particular legal relation state r

of R. Therefore, an FD cannot be inferred automatically from a given relation extension r but must be

defined explicitly by someone who knows the semantics of the attributes of R.

We can hower use counter examples to prove that certain FD do not hold.

These FD indicate that Hours and Ename are

attributes of an entity that has ssn as

primary key, and Pname and Plocation are

attributes of an entity that has Pnumber has

primary key.

This table violates 3NF, only attributes of the

primary key should be in a table. Attributes of the foreign key should be kept at its own table.

Lecture notation for FD constraints

BTW a relation is a table that explicty has foreign keys. A (composite) “key” can be redundant (scrapping

things will keep it unique), a superkey is atomic (scrapping thigns will not keep it unique). Single value

keys are superkeys by default (what else is left to remove? ;P)

CSE1500 Databases Midterm

101

14.3 Normal Forms Based on Primary keys
Prime attributes are attributes belonging to a candidate key.

Most practical relational design projects take one of the following two approaches:

• Perform a conceptual schema design using a conceptual model such as ER or EER and map the

conceptual design into a set of relations.

• Design the relations based on external knowledge derived from an existing implementation of
files or forms or reports.

Stack Overflow:

1NF

1NF is the most basic of normal forms - each cell in a table must contain only one piece of
information, and there can be no duplicate rows.

2NF and 3NF are all about being dependent on the primary key. Recall that a primary key
can be made up of multiple columns. As Chris said in his response:

The data depends on the key [1NF], the whole key [2NF] and nothing but the key [3NF] (so
help me Codd).

2NF
Say you have a table containing courses that are taken in a certain semester, and you have
the following data:

|-----Primary Key----| uh oh |
 V
CourseID | SemesterID | #Places | Course Name |
--|
IT101 | 2009-1 | 100 | Programming |
IT101 | 2009-2 | 100 | Programming |
IT102 | 2009-1 | 200 | Databases |
IT102 | 2010-1 | 150 | Databases |
IT103 | 2009-2 | 120 | Web Design |

This is not in 2NF, because the fourth column does not rely upon the entire key - but only a
part of it. The course name is dependent on the Course's ID, but has nothing to do with
which semester it's taken in. Thus, as you can see, we have duplicate information - several
rows telling us that IT101 is programming, and IT102 is Databases. So we fix that by
moving the course name into another table, where CourseID is the ENTIRE key.

Primary Key |

CourseID | Course Name |
---------------------------|
IT101 | Programming |
IT102 | Databases |
IT103 | Web Design |

No redundancy!

https://stackoverflow.com/questions/723998/what-are-database-normal-forms-and-can-you-give-examples/724032#724032
http://en.wikipedia.org/wiki/Ted_Codd

CSE1500 Databases Midterm

102

3NF

Okay, so let's say we also add the name of the teacher of the course, and some details
about them, into the RDBMS:

|-----Primary Key----| uh oh |
 V
Course | Semester | #Places | TeacherID | TeacherName |
---|
IT101 | 2009-1 | 100 | 332 | Mr Jones |
IT101 | 2009-2 | 100 | 332 | Mr Jones |
IT102 | 2009-1 | 200 | 495 | Mr Bentley |
IT102 | 2010-1 | 150 | 332 | Mr Jones |
IT103 | 2009-2 | 120 | 242 | Mrs Smith |

Now hopefully it should be obvious that TeacherName is dependent on TeacherID - so this
is not in 3NF. To fix this, we do much the same as we did in 2NF - take the TeacherName
field out of this table, and put it in its own, which has TeacherID as the key.

 Primary Key |

 TeacherID | TeacherName |
 ---------------------------|
 332 | Mr Jones |
 495 | Mr Bentley |
 242 | Mrs Smith |

No redundancy!!

One important thing to remember is that if something is not in 1NF, it is not in 2NF or 3NF
either. So each additional Normal Form requires everything that the lower normal forms had,
plus some extra conditions, which must all be fulfilled.

CSE1500 Databases Midterm

103

Lecture 6

CSE1500 Databases Midterm

104

CSE1500 Databases Midterm

105

CSE1500 Databases Midterm

106

CSE1500 Databases Midterm

107

Week 4. SQL

Lecture 7 – SQL
SQL is a high-level declarative language, that means the user defines what result he expects and know

how it is executed. The exeuction of the relational algebra is left to the optimizer by the DBMS.

SQL is a comprehensive database language: It has statements for data definitions,

queries, and updates. Hence, it is both a DDL (data definition language, used by the DBA and by database

designers to define conceptual and internal schemas.) and a DML (data manipulation language i.e.

SCRUD). This course uses postgreSQL https://www.postgresql.org/docs/11/index.html

6.1 SQL Data Definition and Data Types
SQL uses the terms table, row, and column for the formal relational model terms relation, tuple, and

attribute, respectively.

SQL command for data definition is the CREATE statement, which can be used to create databases

(schemas), tables (relations), types, and domains, as well as other constructs such as views, assertions,

and triggers.

An SQL schema (database) is identified by a schema name and includes an authorization identifier to

indicate the user or account who owns the schema, as well as descriptors for each element in the

schema. Schema elements include tables, types, constraints, views, domains, and other constructs (such

as authorization grants) that describe the schema.

A schema is created via the CREATE SCHEMA statement, which can include all the schema elements’

definitions. Although these can be changed later.

the following statement creates a schema called COMPANY owned by the user with authorization

identifier ‘Jsmith’.

CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;

The privilege to create schemas, tables, and other constructs must be explicitly granted to the relevant

user accounts by the system administrator or DBA.

A catalog is a collection of schemas. A catalog always contains a special schema called

INFORMATION_SCHEMA, which provides information on all the schemas in the catalog and all the

element descriptors in these schemas. Integrity constraints such as referential integrity can be defined

between relations only if they exist in schemas within the same catalog. Schemas within the same

catalog can also share certain elements, such as type and domain definitions.

The CREATE TABLE command is used to specify a new relation by giving it a name and specifying its

attributes and initial constraints. The key, entity integrity, and referential integrity constraints can be

specified within the CREATE TABLE statement after the attributes are declared, or they can be added

later using ALTER TABLE.

Typically, the SQL schema in which the relations are declared is implicitly specified in the environment in

which the CREATE TABLE statements are executed. Alternatively, we can explicitly attach the schema

name to the relation name, separated by a period. For example, by writing:

https://www.postgresql.org/docs/11/index.html

CSE1500 Databases Midterm

108

CREATE TABLE COMPANY.EMPLOYEE
rather than

CREATE TABLE EMPLOYEE

In PostgreSQL we are always connected to a particular database/schema. So appending is not needed.

Example of table creation with constraints and keys:

The relations declared through CREATE TABLE statements are called base tables (or base relations); this

means that the table and its rows are actually created and stored as a file by the DBMS. Base relations

are distinguished from virtual relations, created through the CREATE VIEW statement which do not

correspond to a phyisical phile but a query. (It may correspond to a physical phile that contains the

query script).

Declaring dependencies before the other tables have been created can lead to errors. Therefore it is

often prefered to create all the tables without keys and constraints and later alter them to apply the

dependencies and constraints.

Data types
The basic data types available for attributes include numeric, character string, bit string, Boolean, date,
and time. For numeric the most common are INT and DOUBLE

When specifying a literal string value, it is placed between single quotation marks (apostrophes), and it is
case sensitive. String values are stored in n/char(length) or n/varchar(length), the first being of a fixed length
and the second specifying the max length.

Difference between nvarchar and varchar (also for nchar and char): The n prefix stands for "national
character set". An nvarchar column can store multi-byte characters such as Unicode data. A varchar
column is restricted to an 8-bit codepage. Some people think that varchar should be used because it
takes up less space. I believe this is not the correct answer. Codepage incompatabilities are a pain, and
Unicode is the cure for codepage problems. With cheap disk and memory nowadays, there is really no
reason to waste time mucking around with code pages anymore [source].

For example, if the value ‘Smith’ is for an attribute of type CHAR(10), it is padded with five blank
characters to become ‘Smith’ if needed. Padded blanks are generally ignored when strings are
compared. For comparison purposes, strings are considered ordered in alphabetic (or lexicographic)
order; if a string str1 appears before another string str2 in alphabetic order, then str1 is considered to be
less than str2. There is also a concatenation operator denoted by || (double vertical bar) that can
concatenate two strings.

https://stackoverflow.com/questions/144283/what-is-the-difference-between-varchar-and-nvarchar

CSE1500 Databases Midterm

109

A Boolean data type has the traditional values of TRUE or FALSE. In SQL, because of the presence of
NULL values, a three-valued logic is used, so a third possible value for a Boolean data type is UNKNOWN.

Bit-string data types are either of fixed length n—BIT(n)—or varying length— BIT VARYING(n), where n is
the maximum number of bits. Another variable-length bitstring data type called BINARY LARGE OBJECT
or BLOB is also available to specify columns that have large binary values, such as images. As for CLOB,
the maximum length of a BLOB can be specified in kilobits (K), megabits (M), or gigabits (G). For
example, BLOB(30G) specifies a maximum length of 30 gigabits.

The DATE data type has ten positions, and its components are YEAR, MONTH, and DAY in the form YYYY-
MM-DD. The TIME data type has at least eight positions, with the components HOUR, MINUTE, and
SECOND in the form HH:MM:SS. Only valid dates and times should be allowed by the SQL
implementation. This implies that months should be between 1 and 12 and days must be between 01
and 31; furthermore, a day should be a valid day for the corresponding month. The < (less than)
comparison can be used with dates or times—an earlier date is considered to be smaller than a later
date, and similarly with time. Literal values are represented by single-quoted strings preceded by the
keyword DATE or TIME; for example, DATE ‘2014-09-27’ or TIME ‘09:12:47’.

A timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus a minimum of six positions

for decimal fractions of seconds and an optional WITH TIME ZONE qualifier.

Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data type. This specifies an

interval—a relative value that can be used to increment or decrement an absolute value of a date, time,

or timestamp. Intervals are qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

The format of DATE, TIME, and TIMESTAMP can be considered as a special type of string. Hence, they

can generally be used in string comparisons by being cast (or coerced or converted) into the equivalent

strings.

It is possible to specify the data type of each attribute directly, alternatively, a domain can be declared,

and the domain name can be used with the attribute specification. This makes it easier to change the

data type for a domain that is used by numerous attributes in a schema, and improves schema

readability. For example, we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

Constraints
If a primary key has a single attribute, the clause can follow the attribute directly. For example:

KvkNummer INT PRIMARY KEY,

Same goes for UNIQUE, NOT NULL (which is already implied for primary keys) DEFAULT value

To declare a composite primary key:

PRIMARY KEY(coulmn1, column2, ...)

Same goes for composite (and single) FOREIGN KEY.

CSE1500 Databases Midterm

110

Referential integrity constraint can be violated when tuples are inserted or deleted, or when a foreign

key or primary key attribute value is updated. The default action that SQL takes for an integrity violation

is to reject the update operation that will cause a violation, which is known as the RESTRICT option.

However, the schema designer can specify an alternative action to be taken by attaching a referential

triggered action clause to any foreign key constraint. The options include SET NULL, CASCADE, and SET

DEFAULT. An example with multiple constraints below:

You can see that a constraint may be given a constraint name, following the keyword CONSTRAINT. The

names of all constraints within a particular schema must be unique. A constraint name is used to

identify a particular constraint in case the constraint must be dropped later and replaced with another

constraint. Giving names to constraints is optional. It is also possible to temporarily defer a constraint

until the end of a transaction.

CHECK (Column > 0 AND Column < 21); or CHECK (StartDate < EndDate); so you check for a boolean expression that

returns 1 or 0. In that sense, it is possible to create a user-defined function that returns 1 or 0 by passing

parameters from different tables as input. Here's an example check constraint using a function:

ALTER TABLE YourTable

ADD CONSTRAINT chk_CheckFunction

CHECK (dbo.CheckFunction() = 1)

Where you can define the function like:

CREATE FUNCTION dbo.CheckFunction()

RETURNS INT

AS BEGIN

 RETURN (SELECT 1 /* Query with different table inputs that either returns 1 or 0*/)

END

CSE1500 Databases Midterm

111

6.3 Basic Retrieval Queries in SQL
The basic form of the SELECT statement, sometimes called a mapping or a select-from-where block, is

formed of the three clauses SELECT, FROM, and WHERE and has the following form:

SELECT <attribute list>
FROM <table list>
WHERE <condition>;

By the way != in SQL is <>, && is AND || is OR (because || in SQL is the concatenate operator).

SQL will iterate through the whole set of tuples and evaluate them against the boolean condition

A query that involves only selection and join conditions plus projection attributes is known as a select-

project-join query. The next example is a select-project-join query with two join conditions.

In SQL, the same name can be used for two (or more) attributes as long as the attributes are in different

tables. If this is the case, and a multitable query refers to two or more attributes with the same name, we

must qualify the attribute name with the relation name to prevent ambiguity. This is done by prefixing the

relation name to the attribute name and separating the two by a period.

The ambiguity of attribute names also arises in the case of queries that refer to the same table twice, as in

the following example. But we can use AS newName to define the new name of a table and a column as well.

If more than one relation is specified in the FROM clause and there is no WHERE clause, then the CROSS
PRODUCT—all possible tuple combinations—of these relations is selected. This will often result in incorrect
and very large relations.

To retrieve all the attribute values of the selected tuples, we do not have to list the attribute names explicitly
in SQL; we just specify an asterisk (*), which stands for all the attributes. The * can also be prefixed by the
relation name or alias; for example, EMPLOYEE.* refers to all attributes of the EMPLOYEE table.

CSE1500 Databases Midterm

112

Duplicates
As we mentioned earlier, SQL usually treats a table not as a set but rather as a multiset; duplicate tuples

can appear more than once in a table, and in the result of a query. SQL does not automatically eliminate

duplicate tuples in the results of queries, for the following reasons:

■ Duplicate elimination is an expensive operation. One way to implement it is to sort the tuples first and

then eliminate duplicates.

■ The user may want to see duplicate tuples in the result of a query.

■ When an aggregate function is applied to tuples, in most cases we do not want to eliminate

duplicates.

Duplicates are not possible if you have a primary key.

Anyway the DISTINCT keyword after SELECT will display unique tuples.

SELECT ALL is already implied when only writing SELECT

Set Operators
It is possible to use the set operations from mathematical set theory, set union (UNION), set difference

(EXCEPT), and set intersection (INTERSECT). These set operations apply only to typecompatible relations,

so we must make sure that the two relations on which we apply the operation have the same attributes

and that the attributes appear in the same order in both relations.

Substring Pattern Matching
The first feature allows comparison conditions on only parts of a character string, using the LIKE

comparison operator. This can be used for string pattern matching. Partial strings are specified using

two reserved characters: % replaces an arbitrary number of zero or more characters, and the

underscore (_) replaces a single character.

CSE1500 Databases Midterm

113

Ordering
The default order is in ascending order of values. We can specify the keyword DESC if we want to see

the result in a descending order of values. The keyword ASC can be used to specify ascending order

explicitly. Order by goes after where.

INSERT, DELETE and UPDATE
In SQL, three commands can be used to modify the database: INSERT, DELETE, and UPDATE.

In its simplest form, INSERT is used to add a single tuple (row) to a relation (table). We must specify the

relation name and a list of values for the tuple. The values should be listed in the same order in which

the corresponding attributes were specified in the CREATE TABLE command

If you don’t know the order or if you only want to add partial elements then you can explicitly list these

attributes and then it’s values, in the same order.

Just be sure that the missing attributes don’t have NOT NULL constraint. It is also possible to insert into

a relation multiple tuples separated by commas in a single INSERT command. The attribute values

forming each tuple are enclosed in parentheses.

The DELETE command removes tuples from a relation. It includes a WHERE clause, similar to that used in

an SQL query, to select the tuples to be deleted. Tuples are explicitly deleted from only one table at a

time. However, the deletion may propagate to tuples in other relations if referential triggered actions

are specified in the referential integrity constraints of the DDL. Depending on the number of tuples

selected by the condition in the WHERE clause, zero, one, or several tuples can be deleted by a single

DELETE command. A missing WHERE clause specifies that all tuples in the relation are to be deleted;

however, the table remains in the database as an empty table. We must use the DROP TABLE command

to remove the table definition. DROP TABLE EMPLOYEE;

CSE1500 Databases Midterm

114

The UPDATE command is used to modify attribute values of one or more selected tuples. As in the

DELETE command, a WHERE clause in the UPDATE command selects the tuples to be modified from a

single relation. However, updating a primary key value may propagate to the foreign key values of tuples

in other relations if such a referential triggered action is specified in the referential integrity constraints

of the DDL. An additional SET clause in the UPDATE command specifies the attributes to be modified and

their new values:

(10% raise to employee 5)

Notice that

Each UPDATE command explicitly refers to a single relation only. To modify multiple relations, we must

issue several UPDATE commands.

Comparison involving NULL and three-valued logic
SQL has various rules for dealing with NULL values. NULL is used to represent a missing value, but that it

usually has one of three different interpretations—value unknown (value exists but is not known, or it is

not known whether or not the value exists), value not available (value exists but is purposely withheld),

or value not applicable (the attribute does not apply to this tuple or is undefined for this tuple).

It is often not possible to determine which of the meanings is intended; for example, a NULL for the

home phone of a person can have any of the three meanings. Hence, SQL does not distinguish among

the different meanings of NULL.

Each individual NULL value is considered to be different from every other NULL value in the various

database records. When a record with NULL in one of its attributes is involved in a comparison

operation, the result is considered to be UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL

uses a three-valued logic with values TRUE, FALSE, and UNKNOWN instead of the standard two-valued

(Boolean) logic with values TRUE or FALSE.

CSE1500 Databases Midterm

115

In select-project-join queries, the general rule is that only those combinations of tuples that evaluate the

logical expression in the WHERE clause of the query to TRUE are selected. Tuple combinations that

evaluate to FALSE or UNKNOWN are not selected (unless it is outer join).

SQL allows queries that check whether an attribute value is NULL. Rather than using = or <> to compare

an attribute value to NULL, SQL uses the comparison operators IS or IS NOT. This is because SQL

considers each NULL value as being distinct from every other NULL value, so equality comparison is

not appropriate.

Nested Queries
IN can also refer to a list of values:

SELECT name, population FROM world WHERE name IN ('Brazil', 'Russia', 'India', 'China');

= ANY and = SOME have the same effect as IN

Other operators that can be combined with ANY (or SOME) include >, >=, <, <=, and <>. The keyword ALL can

also be combined with each of these operators.

EXISTS and NOT EXISTS in SQL is used to check whether the result of a nested query is empty (contains no
tuples) or not.

CSE1500 Databases Midterm

116

Lecture - Joins

CSE1500 Databases Midterm

117

CSE1500 Databases Midterm

118

CSE1500 Databases Midterm

119

CSE1500 Databases Midterm

120

CSE1500 Databases Midterm

121

The keyword CROSS JOIN is used to specify the CARTESIAN PRODUCT operation although this should be

used only with the utmost care because it generates all possible tuple combinations, some of which may

not exist in the real tables and thus wrong data!

It is also possible to nest join specifications; that is, one of the tables in a join may itself be a joined

table. This allows the specification of the join of three or more tables as a single joined table, which is

called a multiway join.

CSE1500 Databases Midterm

122

CSE1500 Databases Midterm

123

CSE1500 Databases Midterm

124

CSE1500 Databases Midterm

125

Alter Tables

Add column
ALTER TABLE products ADD COLUMN description text;

Drop column
ALTER TABLE products DROP COLUMN description CASCADE;

Add constraint
ALTER TABLE products ADD CHECK (name <> '');

ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);

ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

Drop constraint
ALTER TABLE products DROP CONSTRAINT some_name;

Change default, data type
ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

Renaming column, table
ALTER TABLE products RENAME COLUMN product_no TO product_number;

ALTER TABLE products RENAME TO items;

CSE1500 Databases Midterm

126

Lecture 8

CSE1500 Databases Midterm

127

To use an aggregate function it must be explicitly stated to which subset of rows it must adhere to. That

is achieved with the GROUP BY clause. The clause accepts as argument a set of attributes, the query will

operate separately on each set of rows that possess the same values for these set of attributes.

Once the rows are partitioned into subsets, the aggregate operator is applied separately to each

subset. Each separate result is reported as a corresponging row in the result query.

The attributes that can appear in the select clause must be a subset of the attributes used in the GROUP

BY clause. Usually it is the list of all selected attributes (except the aggregate one).

CSE1500 Databases Midterm

128

The syntax also allows for the definition of queries using the HAVING clause, without a corresponding

GROUP BY clause. The having clause will also accept as argument a boolean expression of simple

predicates. The simple predicates are generally comparisons between the result of the evaluation of an

aggregate operator and a generic expression.

CSE1500 Databases Midterm

129

CSE1500 Databases Midterm

130

CSE1500 Databases Midterm

131

CSE1500 Databases Midterm

132

Use of SQL for the definition of database schemas (DDL)

SQL makes it possible to define a database schema as a collection of objects; each schema consists of a
set of domains and tables, defined by the syntax in the slide. A schema also includes indices, assertions,
views and privileges. Authorization represents the name of the user who owns the schema. If the term is
omitted, it is assumed that the user who issued the command is the owner. The name of the schema can
be omitted and, in this case, the name of the owner is adopted as the name of the schema. After the
create schema command, the user can define the schema components.
It is not necessary for all the components to be defined at the same time as the schema is created.

A domain is essentially a data type with optional constraints (restrictions on the allowed set of values).
The user who defines a domain becomes its owner.

CSE1500 Databases Midterm

133

CSE1500 Databases Midterm

134

CSE1500 Databases Midterm

135

A common example is for a timestamp column to have a default of CURRENT_TIMESTAMP, so that it
gets set to the time of row insertion. Another common example is generating a “serial number” for each
row. In PostgreSQL this is typically done by using the SERIAL data type.

CSE1500 Databases Midterm

136

CSE1500 Databases Midterm

137

CSE1500 Databases Midterm

138

CSE1500 Databases Midterm

139

