WEEK 1 — HISTORY (& ASSEMBLY, I MOVED IT AFTER ISA)
HISTORY

Architecture = interconnection of components
Hardware is interconnected via “buses” (circuits)
Software is interconnected via “interfaces” (api)
PRE-HISTORY: CALCULATORS AND PROGRAMMABLE MACHINES (1700-
1930)
Calculators:
Machines of Pascal and Leibniz were mechanical devices
e No memory or program
e Leibniz used binary system (1705)
e Asingle operation at a time
e Only simple operations (+,-,*,/)
Programmable machines:
e Mechanical Music Instruments
o Bagdad 9% Century
o “Carillons”
e Chess
o Mechanical Turk (1770) (fraud, man inside a box)
¢ Weaving machines
o Jacquard Loom (Head) (1801)
o Used Punch cards
Difference (polynomials) engine

e Invented by Johann Helfrich von Muller 1786
e Extended by Charles Babbage (1822) but never finished

Analytical Engine (First Conceptual CPU)

e Designed by Charles Babbage (inspired by Jacquard punch cards
and von Muller calculator)
e Never completed, but brought the Instruction Set Architecture
concept of a CPU:
e Arithmetic Unit + IFs + Memory (with stored-program and
variables) + I/0 devices.
o Program contained calculations + order sequences

First computer programmer (for non-finished Analytical Engine):
Ada countess of Lovelace 1840s
e First computer algorithm: Note G, in Assembly
e Math algorithm to generate Bernoulli Numbers
Analog Computers: Vannevar Bush 1931.
¢ First systems that enabled significant reduction of calculation time
¢ Used nomograms and slide rules. Graphical tools designed to allow
the approximate graphical computation of a mathematical
function/operation.

15T GENERATION: ELECTRO-MECHANICAL (1930-1950)
Boosted by World War 2 (1939-1945).

Electro-mechanical devices:
ASCC: Automatic Sequence Controlled Calculator

e Built by Howard Aiken 1937-1944
¢ First general purpose digital computer
e 750,000 components

e 5tons
e 100 times faster in theory, 3-5 times faster in practice (component
failures)

ENIAC: Electronic Numerical Integrator and Computer

e Built by John Mauchly and John Presper Eckert 1943-47

e First all-electronic computer

e But international patent won later by John Atanasoff in 1973
(computer already in 2" generation).

e 18k tubes of 5-10cm

e 150 kW dissipation

e 30 tons

e 1000 bits of memory

e 20 hours to 20 seconds.

e 10 tubes broke on power up

e Difficult to program

e Not very flexible

e Technologically complex

e Small memory

e Literal bugs (and origin of software bug term) would break it

EDVAC: Electronic Discrete Variable Automatic Computer
e Built by Mauchly and Eckert 1948-49
e Basis of Von Neumann Architecture
e Mean Time to Failure (MTTF) 8 hours

2ND GENERATION: TRANSISTORS (1955-1975)
Transistors:

e Reliable
e Less power
¢ U. Manchester world's first transistorized computer 1953
e Bell Labs 1948
e DEC PDP-1 1959
o Hacker culture
o First game (Spacewar)
e 1st Supercomputer: Cray’'s CDC 6600 - 10MFLOPS
floating point operations per second

https://www.youtube.com/watch?v=FJGkFU3leY0

3RP GENERATION: MICROPROCESSORS (1960-TODAY)
Integrated Circuits:

Enabled small low-cost microprocessors

1st CPU: Intel 4004 * 108KHz

Apple 1978 first B2B computer

IBM 1980 Personal Computer first commercial computer

e Blueprint for today’s PCs

¢ Revolutionized the market

e Open standards and friendliness to third-party hardware and
software developers

PERIPHERALS (I/O DEVICE) - BOTH 2NP AND 3RP GENERATION
First monitor 1951 was US army’s display system

First mouse 1968 Doug Engelbart “X-Y Position Indicator for a Display
System”

4™ GENERATION: MULTI-COMPUTING (1969-TODAY)
Roots of the Internet:

ARPANET 1965-1969

¢ Leonard Kleinrock develops queuing Theory

e 4 computers at UC Santa Barbara, UC Los Angeles, Stanford, U Utah
1972 ARPANET public + Email

TCP/IP at Stanford 1974 (universal protocols between different machine
systems)

1982 ARPANET +TCP/IP = early Internet
Cloud computing (Server farms, multi-core)
File/video/... sharing; IoT; Social Media

WEEK 2 - LOGIC CIRCUITS

John Vincent Atanasoff Intermezzo. Inventor of Digital Computer
1930s. Programmable devices that compute arbitrary arithmetic or logical
operations, being able to perform more than one function. Use digital rather
than analog components.
Atanasoff’s principles of digital computers:

1. Use binary information bits

2. Use electricity and electronics instead of mechanical devices

3. Memory based on capacitors

4, Computation by Boolean algebra
Unit of Information:
Computers consist of digital (binary circuits)
bit (binary digit) 0 = off, 1 = on

Two interpretations of bits:

e Arithmetic: as data values
e Logic: as truth values (false or true)

Bit Strings: Groups of bits, which can be given a specific meaning

BOOLEAN ALGEBRA: USES 2 VALUES

A computer can transform Bit Strings (expressions) into other strings
(results). 1+ 2 =3->01 XOR 10 =11

George Boole 1854 created this algebra that can compute regular
arithmetic.

Commutative law: x+y = y+Xx, x*y=y*x (order doesn’t matter)
Distributive Law: x(y+z) = xy+xz

Associative law: (x+y)+z = x+(y+2z). (no bracket) Mult is also associative.
So AND and XOR are associative.

Different than school algebra: x+x = x, x*x = x (no squares, no 2)

Because an expression repeating the same (boolean 1/0) expression n times
is redundant and its truth value remains the same.

Complement: the 1-x of something, in Boolean algebra = -x (not x)
Such that: x and not x = 0 (x(1-x) = x-x"2 = x-x = 0)
xornotx =1 (x+(1-x) = 1-0 = 1). (1-x) = NOT X = x = ~X
Truth tables and computing functions
Sum of products form...

x |y | f(x,y) =xXORYy f(x,y) = ~vx*y + x*ny

0|0 0 Minterm for f(...)=0 —Don’t include--
0|1 1 Minterm for f(...)= 1 ~x*y

1|0 1 Minterm for f(...)= x*~y

1|1 0 only when listing Minterm with f(...)=1

Any polynomial function can be constructed using Boolean algebra.
Any function has a Sum of Products form.
LOGIC GATES

X X _|
i — XTY] — X7
y ' y

OR AND
X X
INVERT
0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 0 1 1 0 0
1 1 1 1 0 1 1 1

) S

XOR NAND (not both)

T

NOR (neither)

De Morgan’s Law: ~(xy) = ~x+~Yy (negation sign “flips” + for *)
~(xty) = ~x*y

KARNAUGH MAPS

Optimizing Sum-of-Products

| wraparound |

Construction

» Rows/cols differ in 1 bit
= One cell per minterm

« Cell = 1 from truth table

Optimization

« Group all 1s

« Adjacent 1s, horiz./vert.
« Group size is power-of-2
« Largest groups

A different drawing [

f=V-X+W-X+v-W-y+V-y

overlapping |

y
» Only represent areas
where input = 1
1 1 1
« Labels where 1 1 1
variables = 1 w
v
1 1 1

X
[=V-X+W-X+v-W-y+V-y

Don't cares (marked as d/x/?) are jokers, can be used as 1 or 0 according
to our needs. Used for minimization and for grouping larger more cells.

LOGIC GATES CIRCUITS

0 ""1 .1'2 | f{.l‘l,_l:‘z] = _t‘|+_~(1
) i 0 0 0

1 U1 1

0 1 0 1

y 11 I

(b) Parallel connection (OR control)

X

-

2| S Xp) = X0 XK

0 0 =
—') v ,-'} T, — 0
| | 1

1

_—0 =D
-0 S

(c) Series connection (AND control)

:.[

1 2 |f(-'(1. X)) = x,@x,
0

0
0
1
1

—

1
|
0
(d) EXCLUSIVE-OR connection (XOR control)
e
o
_'{1
Input ®_ f
inversion
x@ S 1 T8l

NAND "
N T WP E Y

2-input NOR Gate = % .
Equivalent f "'I I] + X

1" *2

(a) Network for the XOR function
ELECTRONICS OF LOGIC GATES
Switching voltages:
On = Voltage wants to go to supply/Vout(continuation) at 5V (Vsupply)
Off = Voltage wants to go to ground and/or at OV (Vground) =

Voltage If electrons go to ground with voltage thatis CMOS realization of a NAND gate. Vsuppy
" a bad circuit because you are wasting energy supply y
Vespoy — If both a circuit connec-ted.back to supply V‘l : Pull-up network
Logical 1 /battery/Vout and a circuit connected to *a
ground/source/earth are available in | . VA
Threshold == —i’- parallel electrons will go to ground
Logical 0 (Vout = 0) because there are more positive Pull-down network
N g charge electrons on earth than on supply, L
C T therefore attracting the flowing negative _ -
charged electrons and “draining” Vout from all the Voltage. If electrons go V., T X, X, T, T, T; T, f
back to voltage without resistance too much energy will travel in the circuits ' | - -
causing a short circuit. 0o 0 on on off off | 1
There is a Voltage threshold where the Voltage is neither logical 1 nor 0. = 0 1 on off off on 1
Hlu T, 1 0 off on on off 1
NOR gate 1 L1 | off off on on | 0
Vsuppy if +V -> closed gate (electron flow) —
if OV -> oper! ?ate (n? flow) (a) Circuit (b) Truth table and transistor states
Used for positive variables.
PULLDOWN: Conditions for Vout = 0 TO MAKE AN OR GATE CONNECT A NOR WITH AN INVERTER GATE
Vout Va OR Vb: parallel and N-type
0 Vsupply Vsupply
ad X
J >1 n NOR Vauppy
a gate i
e g] F{[
1 T, -
(b) Parallel connection (OR control) v
J ’
if +V -> open gate (no flow); if OV -> closed gate (electron flow) | ¢ [
Used for negative variables. Vi 3[Ts l -
PULLUP: Conditions for Vout = 1 Vout -
~Va AND ~Vb. It would require a series connection v __< _I Vi :
0 0 1 and a P-type transistor (it conducts when 0V). 8 Ty Tz l
0 1 0 0 0 = — =—a
- ¥ - Vo
: ? g e fl Inverter gate Figure A.19 CMOS realization of an AND gate V-
(c) Series connection (AND control) _ Jﬁ
Inverter gate: Quick read: If ~V connect to supply (and not ground), ' [:’% ' v. I—}
if V connect to ground (and not to supply).]
CMOS CIRCUIT: s vwlnn|v|rs ﬂ_—g%“
Complementary metal-oxide semiconductor circuit. Combines PMOS and Vi n 0 | iow | on off | hieh | 1 v |
NMOS to avoid power consumption when connecting to ground. You can t | nigh | off on]0";_ 0 ' |]
observe that the Pull up network is exactly the opposite of the 3

pulldown network using de Morgan’s Law.

(b) Truth table and transistor states

XOR-gate

https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=kYwNj9uauJ4
https://www.youtube.com/watch?v=kYwNj9uauJ4
https://www.youtube.com/watch?v=kYwNj9uauJ4

PROPAGATION DELAYS
Switching transistor states takes time (and energy).

Simplest example: inverter

I 1
—Do— v | .

I

I

delay transition time
V. N
supply 1 ']
i | 0
—_—
propagation delay 1
1l

Vout
V'm.ll !

time

Every network of gates has delays. The speed of the circuit depends on
the maximum number of logic gates that a signal needs to propagate
through. The optimized sum of products is implemented as digital logic.

Still, an AND gate is more efficient to implement as a NAND & NOT
than strictly making the AND Pullup and Pulldown networks from their literal
Minterms. So not all logic gates delay the same.

The number of inputs to a logic gate is called its fan-in.
The number of branches coming for next gates it’s called fan-out.
The thumb rule is to keep fan-in and fan out bellow 10.
Clock Hertz frequency calculation from:
Propagation Delay ns * Number of Gates
1 — stability %
1 ns = 10~-9 seconds = 10 MHz

COMBINATORIAL CIRCUITS

Constructing a separate circuit for every function is very uneconomical

The goal is to combine Integrated (logic) Circuits that can compute
different functions by taking instruction parameters:

For 4 instructions (22), we need 2 instruction bits (p1 = 2" bit, p0= 15t bit)

SEQUENTIAL CIRCUITS
Depends on input parameters

L]
- F]_ g * Depends on internal state (last result), “recursive”
]

B e Stores prev data. Counter: B=1and F, = Fo.1 + B

THE SR LATCH (STORE)
Electronic element that can store binary information

R ___D 0
[(output) R

F

S Qnext Action
0 0 Q hold state
0 1 0 reset
- 1 0 1 set E
S o Q 1 1 X forbidden | —

You can set to 1, reset to 0 or keep the current state (neither set nor reset).
Set and reset at the same time (11) is nonense. You want either, not both.
It would lead to Q=~Q=0 and if you “release” SR back to 00 one path will
randomly be faster and feed the other NOR gate and Q will vary from 11
over time. If 11 is never used, we can remember the previous states of R
and S based on the current output. You can also make NAND SR Latches.

GATED SR LATCH (ENABLED)

R Clk S Q(r+1)
0 x x Q1) (no change)
I O 0 Q(r) (no change)

Clk 1 0 1 0
1 1 0 I R

—Jcw
1 1 1 X _
S e

It is the same as the SR latch, but changes in Q; states have a fixed tempo
controlled by a binary clock. Only when clock is 1 Q: may be updated.

Clocks are essential in logic circuits to properly time the update of variables.
GATED D LATCH (ONE D AND ENABLED)

2 instruction bits & 2 operand bits AB
f(p1,p0,A,B) plp0O [00| O1 10 | 11 | result type

Add A XOR B 00 00| 01 | 01| 00 | signedint

Multiply A AND B 01 00| 00 | 00 | 01 | signedint

Compare A-B 10 00 11 [01 | OO | signed int

Or A+B 11 00| 01 (01| 01 | boolean
Combinatorial circuits depend directly and A B

[] [|

Only on the given input.

pE F EF

b S Ck D |Q{r+|}
(Data) } o 0 x Q(r)
} Q0 0
11 1
Clk —
[- -
—|>.c>7R —ck Q-

D-latch

A single D input “samples” (sets state) of SR when clock is high and
stores/latches (keeps state) when clock is low"”. Clk allows multiple changes

https://www.youtube.com/watch?v=KM0DdEaY5sY
https://www.youtube.com/watch?v=peCh_859q7Q
https://www.youtube.com/watch?v=peCh_859q7Q

Latch: To retain whatever output state resulted from a previous input signal
until reset by another signal.

EDGE TRIGGERING (FLIP-FLOPS)

A flip-flop is edge triggered if the output is only updated at pulses:
1° [Positive (leading): when clock “jumps” from 0 to 1.
4 ok Negative (trailing): when clock “drops” from 1 to 0.

The edge triggered flip-flop is distinguished by the |> under D.

D FLIP-FLOP (POSITIVE EDGE TRIGGERED)
Is a D-Latch that enables changes only at the +edge start of the clock pulse.

A way to make an +edge detector consists of an AND of
2 opposites where the complement’s (opposite) inverter
propagation delay has for few ns both inputs to be 1.
—

That after the clock will make the circuit +edge triggered.

MASTER-SLAVE D FLIP-FLOP (NEGATIVE EDGE TRIGGERED)
-] The first D-Latch (master)

L=l]

transfers the data to the
Clock k9 ’,m 0 second D-latch that takes

slave doesn’t get new
Master data, therefore the final output is only produced at clock drops.

the Output of the master
as D and waits until the
Clock | | ! | | |
<
b o |
° I

Master Slave is enabled (and updated)
clock drops to 0 to send it.
Q=0Q 1"’ L P

Qp Q, during clock 1 and
When clock is at 0 the
Positive and negative edge triggered D Flip-flops have the same icon.

5

T FLIP-FLOP
T flip-flop changes the state of its inside D flip-flop every clock cycle if its
input T (toggle) is equal to 1.

) 41 O}
£ 6 L
D Q Q
T —
1) S
Clock
JK FLIP-FLOP (EDGE TRIGGERED AND 2 INPUTS)
J-K (S q»r’
s J—
Q
A=k

a.‘—““%_‘“

- —
K AND b Q
E _—
T K cx | Q@ @
o} _a 0 o T ‘ Cagh share
— o | o o |
CLK__‘L Q . 0 J | ©
= \ 1 A ¥ Togs le
PN X i RNy ahis
Same as SR (store, but triggered) and it allows JK to be 11 to toggle like T's
J K [Qr+1)
! 00| en ' e
D Q Q 0 1 0o P
& S 3 10 1 Ax Qf
11 0
Clock Q“)

Alternative representation.

https://www.youtube.com/watch?v=YW-_GkUguMM
https://www.youtube.com/watch?v=F1OC5e7Tn_o

EXTRA, OTHER NEGATIVE FLOPS

REGISTERS

Arrangement of a number of

A shift register

D
@ D flip-flops synchronized by
. - Sewp 1 clock. «Serial in / parallel out
2 q o | [I_ SHIFT REGISTER Out; Out, Out, Outy
0 ol Data are written (loaded)
ke — | T time into or read from all flip- ™ 0 Q D Q 0 Q 0 Q
Dy | flops at the same time. Clk - > > >
| Ter Shift registers moves the |_ |_ |_
P4 Q
! — Time oytput from the utmost left « But delay needs to be accounted for
flip-flop to the next one on . multiple clocks
Negative-edge-triggered D flip-flop the right after each pulse
and so forth till the far right.
PARALLEL-ACCESS REGISTER
Master-slave that feeds its result in R/W -In .In -In In
n D— LI gy O XOR (addition) “IN” stands for
eal —les 5 inverse”. Soif IN =1and Q =0, Clk
Clk ey Q becomes 1. IfIN=1andQ =1,
o Q becomes 0. If IN = 0, Qt = Q¢ - . . 1
Negative edge triggered T flip-flop vV D vV b vV b V D
Q Q Q Q
PRESET AND CLEAR FLIP-FLOPS L L L L
e 1 Out Out Out Out

The register clock is controlled by a separate read/write signal (so all states
are on hold while on Read, until Write sign). Alternative form

—)}_I Parallel output
A

D
Damsp=— jh ;J
- e e

Clock

Lol
<
|
o
L]
i
o
o
)
o
L]

B
=D

Clcar +

Preset ﬁ,

Sometimes it is desirable to force a flip-flop into a

particular known state (rather than random),
D Q especially at PC start. Preset and Clear are _ _
“active low"”, so the opposite holds. If both are 1.
—4 olb— The D-latch is controlled by the clock. If clear = 0, &
it starts at 0, if preset = 0, it startsat 1
Clear _(r ?;;:lll Shift/Load Para]]e.l’inpul Clock

COUNTERS (SEQUENTIAL CIRCUIT)

Clock

Qp Q, Q,

It's like a shift register but instead of shifting the output Q it “enables” the
next clock signal when the last flip-flop was 0. (carry over).

A counter driven by a high-frequency clock can be used to produce
signals whose frequencies are submultiples of the original clock
frequency. Such a counter is said to be functioning as a scaler.

Ripple counter: when the flip-flops are positive edge triggered.

DECODERS (COMBINATORIAL CIRCUIT)

A circuit capable of accepting an n-variable input and generating the
corresponding output signal on one out of 2" output lines.

X Active
3 .l'l .\': Ul.llplll

0 0 0

0 1 1

2 1 0 2

1 1 3

It will allow for easer logic if’s
circuits rather than if each
time you’d have to manually
decode it in the next circuit.

>

Figure A.35

A two-input to four-output decoder.

S e

Yo could use the binary to decimal decoder to print
an electric clock. The one on the right is the BCD to
seven-segment display decoder.

MULTIPLEXERS (COMBINATORIAL)

Any one of n data inputs can be selected to appear as the output. The choice
is governed by a set of “select” inputs. Such circuits are called multiplexers.

X —

Xy ——-
Data inputs MUX Z 0 1 Xy

Xy ——]
3 1 0| x

Xy —] | 1 X4

l\’l W:
Select inputs
Data inputs could be all of the n = 1MB of memory addresses of a computer,

and the multiplexer will easily allow you to select and output a specific byte
by just using 20 (22°) select inputs.

X

A3

X4

J U U U

A | A

I-';'] Wy

Figure A.37 A four-input multiplexer.

The inputs of a multiplexer will be log, N and the output will be 1.
The inputs of a decoder will be n and the output will be 2",
Multiplexers are also used in logic functions.

COUNTER (COMBINATORIAL AND SEQUENTIAL)
I N N

goon 0ooo

preset l|—< MPLEX
ooog

- mininin noon
R/W l— ADD
'"']])
0001

Preset 0/1 tells multiplexer to either output the last register addition or to
start the counter at a specific value “V”. (input of multiplexer: log, 2 = 1)

R/W 0/1 read freezes the counter, write resumes it letting the register clock
to trigger data transfers from the multiplexor (inputs) to the output pins.
The ADD chips is an XOR circuit.

FULL ADDER WITH MULTIPLEXER

Carry-in

T

12

MUX Sum

Carry-out

full adder circuit component with only multiplexers

MEMORY

R/W REG | A REG | REG
H|u|njn
- nlniuin] ‘Eﬂﬂ oog ooon
address ggy— = | MPLEX
b
I

out

2 address pins to define via the multiplexer one of the 4 registers.
The decoder will take the 2 address bits and send the read/write signal to
the chosen register.

MOORE’S LAW

The number of transistors doubles every 1.5-2 years

Current transistor size 5nm
The cost of semiconductor fabs
doubles every 4 years.
Although the trend makes
computers cheaper the barriers
of entry to produce competitive
computers are higher and
therefore less parties are involved in making chips (Intel one of them).

1971
1985

2006

2012

WEEK 3 - DATA REPRESENTATION
In the past floating points conversions and the millennium bug has costed
lots of money. That’s why engineers now set up things for the long term.

RADIX (BASE) TO DECIMAL

dsdydidy, = dz * b® +dy, * b? +dy x b' + dg * b°

dn = nt" digit, b = base.
3210, =3+163 +2% 162+ 116 + 0+ 16° = 12816
DECIMAL TO BASE

Repeatedly subtract the largest power of BASE that fits in the number or
repeatedly divide by BASE, the n remainders (no = LSB) form the bit string.

LSB = Least Significant Bit = Oth bit. MSB = Most Significant Bit (often sign).
Large radix to small radix where big radix is a b™ multiple of the smaller:
dy =W W, ;. Hg,
65s = ([_2 _1 _o] [L2 _1 _o])2 (2 =8)
110101
6 5

Big to small: Split digits of the large radix into m digits of small base.

RADIX B TO < RADIX A (A = BM)

Small radix to big radix where big radix is a b™ multiple of the smaller:
dy =My 1 By, 5. Hy
(1010 1111 1000)2 = ([_o] [_o] [_oI)16 (16 = 2%)
1010 1111 1000
10(A) 15(F) 8
Small to big: Group digits of the small radix into m digits of large base.

|ASC[] Table: |
Dec Hex Oct Bin

Binary Oct Dec Hex Glyph Binary Oct Dec Hex Glyph Binary Oct Dec Hex Glyph
0100000040 2 |20 - 1000000100 64 | 40 @ = 1100000140 9% | 60] 0 000 0000
0100001041 33 |21 | | 1000001 101 65 41 A 1100001141 97 |61 & 1 1 001 0001
0100010042 34 | 22 1000010/102/ 66 | 42| B | 1100010142 %8 62| b 2 2 002 0010
0100011043 35 23 | # 1000011 103 67 43| C 11000111143 99 63 ¢ 3 3 003 0011
0100100044 36 24 10001001104 63 | 44 D 1100100 144 100 B4 4 4 4 004 0100
0100101045 37 |25 % 1000101 105 69 45 E 1100101 145 101 65 e 5 5 005 0101
0100110046 38 26 & 1000110106 70 46 F 1100110 146 102 66 f (5] 5 006 0110
0100111/047 38 | 27 | ° 10001111107 71 |47 G 11001111147 103 67 g 7 7007 0111
01010001050 40 | 28 | (10010001110 72 |48 H 1101000150/ 104 | 68 h 8 8 010 1000
0101001051 41 | 29 |) 1001001 111 73 |49 | | 1101001151 105 63 i g 9 011 1001
01010101052 42 | 2A 1001010112 74 [4A J 11010101152 106 BA | 10 A 012 1010
010 1011 4328 + 1001011113/ 75 4B | K 1101011183 107 BBk 11 B 013 1011
010 1100054 44 | 2C 1001100114 76 4C L 1101100154 108 6C | 12 C 014 1100
010 1101085 45 | 2D 10011011115 77 (4D M | 1101101185109 /6D m 13 D 015 1104
0101110/056 46 | 2E 1001110116 78 |4E| N | |1101110/156 110 6E | n 14 E 016 1110
01011111057 47 | 2F | / 1001111117 79 4F | © 101111157 111 | 6F o 15 F o047 1111
0110000/060/ 48 | 30 | O© 10100001120 80 |50 P 1110000160 112/ 70 p
01100011061 49 | 31 | 1 1010001121 81 |51 Q 1110001161 113/ 71 g
0110010/062 50 | 32 | 2 10100101122 82 | 52 R 11100101162 114 72 ¢ Binary Addition
01100110683 51 | 33 | 3 1010011123 83 |53 S 1110011163115 73 s 1 carry
01101001064 52 34 | 4 1010100 124 84 54 T 1110100164 116 74 1 1 X
0110101065 53 35 | 5 1010101 125 85 &5 | U 1110101165 117 | 76 u
0110110066 54 36 | 6 10101101126 8 |56 Vv | 1110110/166118 76 v 1 y
0110111067 55 37 7 | 1010111127 87 |57 W | 1110111167 19 77 | w 1 0 answer
01110001070 56 |38 | 8 10110001130 88 |88 X 11110001170 120 78 x X, Y,
011 1001|071 57 39 9 101 1001 131 89 &9 Y 111 1001 1171 121 | 79 y] J
0111010/072 58 3A 10110101132 90 |6A Z 11101017212 7A =z
01110111073 59 | 3B | 1011011133 91 (8B | 111011173123 78 |
0111100074 60 |3C < 1011100134 92 (6C| \ 11111001174 124 . 7C | | cH’—..—f.
01111011075 61 13D | = 1011101135 93 (6D | 1111011175125 70)
0111110/076 62 | 3E | > 1011110 136 94 | 5E 11111101176 126 7€~ I
0111111077 63 |3F 2 1011111137 95 | &F _

S,

10

FULL ADDER
The sum and carry bits
Sum: .
S =xi By ® ¢ i i
#Si =X Y;Ci + Xy + i

X;y;¢; + x;y;C

¥i

«Carry:)

#Ci+1 = YiCi + X;C;i + XYVi o Cirl

X

.\f

Concatenate full adders to add larger numbers. Carries ripple through
BINARY CODED DECIMAL (BCD)

1 8 3 7 It's a decimal number whose digits are
represented in 4 bit binary. Pros: each
0001 1000 | oot o 4bit group can be decoded to a digital led

number display. Cons: 5 bits are not used.
SIGN & MAGNITUD, ONE'S COMPLEMENT, TWO’'S COMPLEMENT

babsbiby Sign and e o For all systems: if MSB = 1 it's
ij.-. l “adias 1; — '—;a\ negative if MSB = 0 it’s positive.
0110 V6 v6 *s | All positive are the same.
Sien Yo - :i | S&M negative: MSB multiplies
gl ¥4 *3) unsigned number by -1.
il 5 é"lﬂ o T,:I:l | S&M 0: It will also multiply 0 by -1
: I: :; (I) @ :Z = :1; (-0), so 2 zeros.
Le1e = 2 . S&M range: [-(2"! -1), 2! -1]
oty = = = 1C negative: flip zeros and 1s
1110 -8 Cji - 1C0: 2 zeros (-0 = 111...1)

1C range: same as S&M

2C negative: 1C negative + 1; zero : only +0; range: : [-(2"1), 2" -1]
2C addition = subtraction. Just add numbers and ignore the last carry.
Negative overflow if + and + yield -, Positive overflow if — and - yield +
(number exceeds the number of bits and it gets “truncated”).

Addition of two different sign numbers will never yield integer overflow.

Offset of -x. 0000 = -x. 0001 = 1-x. Range: [-x, 2"t -x]. Offset in decimal
unless specified. Used as exponent in floats.

(Multiplication and addition in binary is the same as in decimal)

SIGN EXTENSION

« Extension: Represent n-bit as k-bit number

«If n < k:
»(Unsigned) 100 -> 0..0100

- (S&M) s10-> s0..010
»(1C,2C) x10-> x....x10
oIf n > k:

» (U, S&M) If n-k MSB bits (excluding sign) zero,
remove leftmost n-k bits

~(1C, 2C) If n-k+1 MSB bits equal,
remove leftmost n-k bits

- Else, overflow thus impossible

Can conversion between decimal and
binary numbers always be done exactly for
1. integers? Yes
2. fractions? No é-f_

» Counter-example:
> 0.2, = 0.125,; + 0.0625,, +... * 05

FIXED POINT FRACTIONS

bit 20t
-1 0.5
2 0.25
-3 0.125
-4 0.0625
-5 0.03125

-6 0.015625
-7 0.0078125
-8 | 0.00390625

0.001953125

0.000976563

0.2, = 0.00110011001100....., 2 ey

FLOATING POINT NUMBERS (IEEE-754)

Real number binary representation that assigns different meanings to
certain bits so that the user can pass the sign, the exponent and the
mantissa of a number. Changing the exponent allows the decimal point to
“float”. Float = sign * base®xronent * mantissa (like scientific notation).
Mantissa = units digit coefficient followed by the dot and the decimals
IEEE-754 float: Mantissa is always 1.something, therefore the 1. is skipped

sign exponent{8-bit) fraction (23-bit)
L I |

00111110001000000000000000000 000 =0.15625

31 23 0

bit sign, exponent excess-127, fraction is fixed point binary MSB start at -1
Floating-point numbers that are inverted differ only in sign bit (S&Mish)
Exponent all Os is makes mantissa implicit 1. become 0. (making 0 possible)
Exponent all 1s is for infinite if fractions bits are all 0 otherwise NaN i.e. 0/0
Decimal to float: 1 create fixed point binary 2 Shift binary places until 1.xx
3 Number of shifts + 127 = exponent 4 remove 1. from mantissa. Fill in.

WEEK 4 — INSTRUCTION SET ARCHITECTURE (ISA)

An ISA is an abstract model of a computer that serves as the interface
between software and hardware. Which specifies: supported data types,
what state there is (main memory and registers) and their semantics
(consistency and addressing modes) instruction set, I/O model.

11

Multiple ISA implementations due to performance, size, and cost constraints
Flexibility: Complexity of what the ISA can do (op and address modes)
Programmability: Complexity for programmers (code length, #registers)
Implementability: ...for hardware (encoding of instr, memory consistency)

e Stack based; PROS:

* Register based; Easier to program;

e Long instruction word e Reduced code size;

(assembly code line); Complexity in hardware;

* explicit parallelism; Legac olitics), its in our
e Minimal instruction Set chs aziépservelg

Computer (MISC);

e Traditional architectures CONS:
(legacy); e Instruction encoding
e Powerful instructions complexity

(complex and too many);

o variable-length

¢ Memory to memory
operations. 68xxx and x86 o
family

instructions,

many addressing

modes,

e Slower than RISC (stack is
slower than registers),

¢ Consumes more energy (not
in embedded systems,
portable devices),

¢ many unused and too
specific instructions).

RISC (REDUCED INSTRUCTION SET COMPUTER)

¢ Reduced Instruction Set e Operations between registers
e Small number of instructions e Large register file
¢ Load/Store from Memory e Present in: PowerPC, ARM

VON NEUMANN ARCHITECTURE

Memory
:::E((:; Control unit 1 Input
ADD(X,Y,2) (PC,IR,CC)
WRITE(Z)
—) CPU
LS Arithmetic/logic unit i
: (registers) Output

MEMORY ORGANIZATION INSTRUCTION ADDRES FORMAT

Bits (D flip-flops) grouped into words (parallel access registers) grouped #address Operand 1 Operand 2 | Operand 3 | Pitfall
into Memory chips (or SoC (system on a chip)). 0 (stack) Pop destination | (But slides insist its 0)
Addressable by byte: 1 bit too little useful, a word too cumbersome. 1(accumulator) | Destination
1 byte (8 bits) = an ASCII character. Sweet spot. (implicit acc)
In x64 architecture: 2 (M-M) Source Destination Overwrite
word = 2 bytes, long (doubleword) = 4 bytes, quad = 8 bytes (R-M)
Alignment 3 (M-M-M) Source 1 Source 2 Destination | Long in
Q: any Variable len (R_ R_R)
3 = N gth
* Accessing items from memory disadvantages? | 1500 [popri_[pop r2 EVOLUTION OF INSTRUCTION SETS
Ak atess oo e GFGU) o Name Date Addresses Example
> 1604 | ADD VAR, R2
g Y e Accumulator <1960 1 68HC11
« Alignment 7] Etl)g Ifﬁo POP R1 Stack 1960-1970 0
~address is multiple of item size 1612 Memory-Memory | 1970-1980 2/3
~bin size must be a power of 2 1614 Register-Memory | 1970-today 2 CISC
] 1 Register-Register | 1960-today 3 RISC
« Unaligned access may be supported word unaligned ACCUMULATOR (SINGLE REGISTER)
Stack Memory Addresses are 8 bytes because x64 operates on quadwords Accumulator Simple design: easy to implement and program
(64 bits). Data must fit into those quads. Aligned access is easier for the Memory is bottleneck: can’t keep frequently accessed
programs to push/pop things around (like an Ikea store). Often empty bits data in the processor
BIG ENDIAN VS LITTLE ENDIAN :
Big — Left to ri FrTE—— Y * 16-bit words Load A — .
g = Left to right (IBM, The Internet), Little I= “Unit group” Right to left -byte addressable p4q B An implicit operand (register)
but the contents of the group are still read Left to Right. (Intel) o called the Accumulator
TYPES OF INSTRUCTIONS (INTEL VANILLA) .Data tAScEE] « M)
Data Copy Operations »S&M integers [Accum] <« [Accum] + M(B)
e Between memory and registers: [R1] <- M(LOC) M(C) < [Accum]
e Between memory locations: M(LOC;) <- M(LOC,) « Instruction 15 43 0
e Between registers: [R1] <- [Rz] [~4-bit opcode [m | |
Arithmetic and logic operations: ~ 12-bit address (m) operand opcode
e Add/-/*/ %/ divide... [R1] <- [R1] + [R2] STACK
Flow control operations: «Example: Push A [TOS] « M(A) Stack
Branch_IF_[R1]>[R2] LOOP Push B [TOS] « M(B)
. . Add [TOS] « [TOS] + [TOS_,]
I/0 operations: 1
/0 op Pop C M(C) «[TOS] stack
ISA LAYOUT IN MEMORY TOS
e An instruction may o T 2 - « Note: implicit references to stack for ALU ops
span multiple words operand | operand | operand | dnieger Jteger,

e #bits/specifier may A : .
be different per *Format: INSTR operand* ALp. Aritmetic and Logic i t
instruction type «Meaning: An instruction with O or more operands Unit (MPLXER) Status Sie
where an operand could be a TOS: Top of the stack Opcode -

register, constant, memory address

Integer
Result

12

REGISTER-MEMORY (CISC) ADDRESSING MODES (INTEL VANILLA)

Register-Memory e 16 Gen_eral purpose registers Immediate value
o aka register file Add AB
RIL o growing over time . Direct M(value/location)
(B) « M(A) + M(B)
= . faster than memory -
. fewer address bits, so easier to encode Register [reg]
o Memory is bottleneck . .
o can't keep frequently accessed data in the processor Register Indirect M([reg])
RO reserved for 0] Base with displacement M([reg] + disp)
Straight-line sequencing
e Index with displacement M([reg]*s + disp)
— a: [MOVA RL Base with index M([regl] + [reg2]*s)
4+a: [ADD B, R1 « Adding N numbers takes . -)
Addressing modes: o % (HOVRL € N+1 instructions Base with index and displacement | M([regl] + [reg2]*s + disp)
. Dire_ct Common branch instructions
* Register use flags in the status register Scale s=1,2,4 or 8 disp= 8, 16, 32 or 64-bit signed number
¢ Immediate A |25 « N — negative T _)
e Index B: [17 «Z - zero Base with index and displacement: Base = starting memory address,
c: |42 « V - overflow scale = bytes in word (increment between addresses), index “array
« C - carry pointer”, displacement = “column” byte displacement within the word?
o
AR WEEK 1 - ASSEMBLY
N .
4‘@\;{ = 5=, NUM[i]| X86-64 (IA-64), AT&T SYNTAX WITH GCC IN LINUX
MOV $N, R2 . LOg;(ia(;i‘:‘eCtL;irEZSed drete y P — . Program creation and execution flow
LOOP: [ADD NUM(4*R2), R1 *Adding N numbers takes g Y imput DevicS cuput » Type: source program
__— g§§ E;op 6 instructions « Programmable devices ﬁj 5;’“ ram >vim foo.s editor/ S ASCII file
+Central P ing Uni ADD(X,Y,Z) »Translate to machine code
X86-64 INSTRUCTION FORMAT ?;‘A_r; rocessing Un® M ~gcc foo.s — et fle
. - IA6 . .
CISC-style: at most (!) 15 bytes o »Load image & execute /
. ARM -t ! »./a.out load & run '_ - ~ image

HEEREREEEN . . - - A symbolic notation for machine language

Legacy prefixes (1-4 bytes, optional)

) <op> « Improves Readability:
Opcode with prefixes (1-4 bytes) OXOF <op> ~Machine code: 0010 1101 1001 0001
®"ModR/M (1 byte, if required) OxOF 0x38 <op> ~Assembly: Move RA, SUM
; i OxOF Ox3A <op>
'SI-B (1 byte, if required) _ _ o BX P « Access to all hardware resources
®Displacement (1/2/4/8 bytes, if required) ~Required for writing e.g. a bootloader

"Immediate (1/2/4/8 bytes, if required) T T —

~ for critical applications

13

ASSEMBLY STRUCTURE OF INTEL ARCHITECTURE

IA Family

« Intel Architecture = family of
processors
~same architecture / instruction set
- different organization
- different performance

« CISC (Complex Instruction Set)
~very large instruction set
~many addressing modes
~variable-length instructions

8088, 8086, | 1978-
81016, 80286 1982

1985
1989

1993

1995-
1999

2000-
2006

H’E‘ H‘ l‘

Pentium i3/5/7/9 | 2008-

Label Operation Operand 1 Operand 2+
Start MOV 200 RA

ADD RB RA
End JMP Start

| Give structure to your code |

| Specify the operation you want |

Specify the input & output

« 64-bit machines
~general purpose ISA
~backwards compatible with x86
« Dominant architecture for
~desktops
- servers

Memory layout

0
READ(X) «Memory is byte addressable
READ(Y)
ADD(XYZ) | i
s Data operands are 8 to 64 bits wide
+(Quad)words can start at any
X byte location
Y
z « Byte order is little-endian
. (vs. big-endian on PowerPC)
41

GENERAL PURPOSE REGISTERS

63 1615 87 0
R8 RAX M 1A
R9 RBX - S
R10 RCX CH L Data registers
R11 RDX | DH x|
DX
R12 RSP bet Pointer registers
R13 RBP L[64bit |
R14 RSI [eabit I } Index registers
R15 RDI [G&hi |
RIP [6abit | Instruction Pointer
RFLAGS [6abit | Status Register
RAX | 64-bit
EAX | 32-bit

(A] s

14

64-bit Lower 32 bits
rax eax
rbx ebx
rcx ecx
rdx edx
rsi esi
rdi edi
rbp ebp
rsp esp
r8 r8d
ro9 rod
rio riod
ri1 riid
riz ri2d
ri3 ri3d
ri4 ri4d
ris risd

Other important registers:

Lower 16 bits
ax
bx
cx
dx

Si

di

bp
sp
réw
row
riow
riiw
ri2w
ri3w
ri4w

risw

Lower 8 bits
al

bl

cl

dl

sil
dil
bpl
spl
r8b
r9b
riob
rilb
ri2b
ri3b
ri4b

ri5b

RIP = instruction pointer, points to the next instruction to be executed.
changing this register is the same as a jumps

RFLAGS = register that stores information about the last calculation

(flags) to use for conditional jumps

Variable-length instructions 1-15 bytes

Format for move and arithmetic:
Format for comparison:
Format for Flow Control:

INSRT SRC, DST
CMP OPRND1, OPRND 2
JMP LOCATION

opcode operands function description

mov src,dst dst = src copy

push dst (%rsp) = dst, %rsp -= 8 pushes a value onto the stack
pop src %rsp += 8,src=(%rsp) pops a value off the stack

xchg A,B A,B =BA switches the contents of A and B
addq src,dst dst = dst + src adds src to dst

subq src,dst dst = dst - src subtracts src from dst

inc dst dst =dst + 1 adds 1 to dst

dec dst dst =dst-1 subtracts 1 from dst

mulq src rdx:rax = rax * src multiplies rax by src (UNSIGNED)
imulq src rdx:rax = rax * src multiplies rax by src (SIGNED)
divq src rdx:rax = rax / src divides rax by src (SIGNED)

idivq src rdx:rax = rax / src divides rax by src (SIGNED)

jmp label jumps to label (unconditional)

je label jumps to label (if equal)

jne label jumps to label (if not equal)

ig label jumps to label (if greater than)

il label jumps to label (if less than)

jle label jumps to label (if less than or equal)
jge label jumps to label (if greater than or equal)
call label Fl)lf,’r}m;cll;g:lnt 15ddress + calls a function

ret jmp (%rsp) returns to caller

loop label dec %rcx, jnz label

A - B (answer not stored but

cmp A,B flags set) compares 2 numbers. Jump instruction follows
xorq src,dst src = src xor dst bitwise xor

orq src,dst src = src and dst bitwise and

andq src,dst src = src or dst bitwise and

shiq A,dst src = src << A shift left

shrq A,dst src = src >> A shift right

not dst dst = 1111111-dst bitwise inversion of dst

neg dst dst = 0 - dst 2’s complement, result of not and add 1

leag A, dst dst = &A load effective 15ddress (& means 15ddress of)
. . software interrupt (see linux system calls above, used
int int_no

together with int 0x80)

15

ADDRESSING MODES (AT&T)

example

movq $25,%rax

movq $label,%rax

movq label,%rax

movq (%rbx),%rax

movq 8(%rbx),%rax

movq -8(%rbx),%rax

movq
(%rbx,%rcx),%rax

movq
(%rbx,%rcx,8),%rax

name
immediate

immediate
(pointer)

direct

indirect

indirect offset

(positive)

indirect offset

(negative)

indirect variable
offset

indirect variable
scaled offset
(negative)

indirect variable

8 bit Scale s=1,2,4 or 8 disp= 8, 16,
32 or 64-bit signed number

movq scaled offset
8(%rbx,%rcx,8),%rax (negative)
+constant
MOVB Move one byte
MOVW Move one word 16 bit
MOVL Move one double word 32 bit
MOVQ Move one quad word 64 bit

description

Loads the
value into rax

decimal

loads the location of
the label into rax

loads the quadword at
the location of the
label into rax

loads the quadword at
the location pointed to
by rbx into rax

loads the quadword 8
after the location
pointed to by rbx into
rax

loads the quadword 8
before the location
pointed to by rbx into
rax

loads the quadword at
%rcx after the location
pointed to by rbx into
rax

loads the quadword at

%rcx*8 after the
location pointed to by
rbx into rax

loads the quadword at
8 after %rcx*8 after
the location pointed to
by rbx into rax

movzb move 0 extended byte.

16

ASSEMBLER DIRECTIVES

directive explaination

.quad reserves space for a 64 bit number to be stored

.long reserves space for a 32 bit number to be stored

.word reserves space for a 16 bit number to be stored

.byte reserves space for a 8 bit number to be stored

asciz reserves space for a string of text to be stored,
' automatically terminated by a O (NULL)

ascii reserves space for a string of text to be
’ stored, not automatically terminated by a 0 (NULL)

skip N skips n bytes. useful for defining arrays of data. This
-SKIp should normally only be used in the .bss

.equ defines symbolic names for expressions (i.e. constants)

Nibble = 4 bits (not an assembler directive)

ASSEMBLER SECTIONS

The .text segment is intended to hold all instructions. The .text segment
is read-only. It is perfectly fine to include constants and ASCII strings in
this segment.

The .data segment is used for initialized variables (variables that receive
an initial value at the time you write your program, such as those created
with the .word directive).

The .bss segment is intended to hold uninitialised variables (variables
that receive a value only at runtime). Therefore, this section is not part of
the executable file after compilation, unlike the other two sections.
(Not a section): .global label makes label visible to other programs. The
main label must be exported because the operating system needs to know
where to start running your program.
The calling convention (System V AMD64 ABI) that is used on *nix systems
is as follows. for 64 bit programs only The first six integer or pointer
arguments passed in the registers in this order:

1. RDI 3. RDX 5. R8

2. RSI 4. RCX 6. R9
(with sometimes R10 as a static chain pointer in case of nested functions)
Additional arguments are to be passed on to the stack

The return values are stored in RAX (In case of a 64 bit number) and in
RDX:RAX (MSB:LSB) in case of 128 bit numbers.

THE STACK

0120 You can push to the top or pop (take out) from the top of
°'§t' 24 the stack. Pushing values makes the RSP (register stack

%‘?"'f“ﬁ ot pointer) jump a smaller address and populate it with
oizd such value. If you want to collect the last second push
g‘l’;i value you type 8(%rsp) 8 being the scale of the byte
o121 addresses. In 64 architecture the jumps are 8.

Popping values would remove the value from the top of
the stack and assign it to a source and the RSP will return to its last place.

SUBROUTINES

Call = remember & jump
Call = remember & jump

100 [CALLSUB 0
101 ‘_‘ 100 [CALL 5UB U
102{... RIP 100 101]...
RSP 102[RIP | 1706
RLINK RSP
SUB 1706 ... RLINK 101
1707 [Sus 1706 ...
1708 [RETURN 17071 1. LEA 1(%RIP), %RLINK
1708 [RETURN 2. JUMP $1706

Calling a subroutine will make a jump and remember the next instruction
address for after the return.

You can pass parameters through registers (hold on to calling conventions)
or you can push them on the stack (hard to keep RSP offsets).

Stack frames
Unified handling of parameters and local variables

Local variables int foo(int ¢, int b, int a)

Temporary storage intx,y, z
« Create space for local variables upon entry
«Where to store them? X = c+b; 5 > [
= . rl
»Registers — speed Z= Ef;(;4)i p-8 [B

~Memory — capacity bp -16 [C rsp

rbp -24

» Complications
»Function calls — values must be preserved
~Recursion — multiple instances of the same variable

«Using a base pointer register (RBP) to the start
of a stack frame
~local variables @ fixed offset from RBP
~parameters @ fixed offset from RBP

Prologues and epilogues with RSBP can help you keep separate stack frames
for each subroutine.
« Create a new frame when calling a subroutine

1. CALL subroutine
pushes the return
address on the stack

low address
Jtext

2. PUSH %RBP data
‘ saves the base ptr on
the stack for later

bss

rbp rbp heap
3. MOV %RSP, %RBP T T
rbp-8 |X creates a new 'base’ tree memory
rbp-16 [Y 4. SUB $24, %RSP S T P
rbp -24 |Z rsp creates space for local stack
variables high address

17

GDB DEBUGGER

GDB is a debugger which can help find segfaults or find other mistakes in
your program. to use it compile it using the -g option (put it directly after
"gcc") and then instead of running it like ./<programname>, you run it as
gdb ./<programname>. this should launch you into a gdb environment. in
this environment you can use the following commands:

b n (or breakpoint). this sets a breakpoint on line n

print code. this prints whatever you specify in code. this can be a full c
expression, or a register name (e.g. $rdi or $rax)

x/nx p print n 32 bit words after p. p can be an adress or register. this is
useful for reading whats on the stack (e.g. x/10x $rbp)

n (or next) steps ahead one instruction. when it finds a function call it will
not step into instructions inside this function. useful to skip large functions
like c stdlib function like printf

s (or step) steps ahead one instruction. this one does go into large functions
r (or run) runs the program until the next breakpoint or the end

c (or continue) after a breakpoint, continue restarts execution like run did
until it encounters another breakpoint or the program ends. useful if a
breakpoint is in a loop and you want to go to the next iteration

start starts the program, places a breakpoint on line one so you can
imediately start using s and n

when using GDB your program must be compiled with -g and your code
must be in a .text section

CHAPTER 2 AND 9 EXTRA NOTES

Unsigned integers uses less bits than Excess because excess still represents
negative side when 000000

Exponent of the IEEE-754 has to be within -126,127 - 128 yields inf or Nan
000xxxxxxx: 3-bit & Z-bit instructions.

Max would be 223 - 1 + 2~ (Z-3). You can only have 1 opcode at a time...
CISC vs RISC assembly difference is RISC uses 3 operands in math and it
only accepts registers.

CISC doesn’t need to LOAD things into registers.

Vanilla uses LOAD for moving into a REGISTER and STORE R, (SP) for PUSH.
Store seems to be the only one that has reversed order. (store src, dst)

Carry-in ¢; Sums; Carry-out ¢;

1

0 0 0 0 0
0 0 | 1 0
0
1

Loading to a memory is MOVE. T T L e
A

Most significant bit
(MSB) position

0 1 0 |

0 1 | 0

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1

1 1 1 1

EXAM PREP MULTIPLEXER ADDER (TRUTH TABLE TRICK)
BYTE CONVERSION Carry-in

Byte = 8 bits (2/3) PiB = 250 bytes LEJ
KiB = 2710 bytes EiB = 2760 bytes

MiB = 2720 bytes ZiB = 2~70 bytes L1 I

GiB = 2730 bytes YiB = 2780 bytes

TiB = 2740 bytes

FLOATING POINT ADDITION y[F—

1. Identify the operand with the smaller exponent 0wti TF
2. Make the smaller exponent equal to the larger MUX
3. Compensate by adding zeros to the binary fraction (don’t forget = &

implicit 1 of the mantissa)
4. Add both mantissas

5. Present the sum in a float nhumber with the high exponent. Carry-out
FLOAT CREATION
Prof. dr. Hook is tasked with improving the new floating point standard created by the CSE1400 Figure 3: Boole's circuit, containing a mistake

team last year to be used for storing grades efficiently. The improvements should make sure that

a grade between 1 and 10 (inclusive) can be represented exactly to a quarter grade point, for) . R . L)
exgmple' 9.75. 8.95. 5.75 () P y 9 & P André-Marie Ampére and George Boole are participating in the annual Circuit Olympics (CO).

)) o) One of the challenges is to build a full adder circuit component with only multiplexers and NOT
ﬂow many bits should he p:clf for the sign bit, mantissa, and exponent? Assume the exponent gates. Boole comes up with a design in the blink of a CPU cycle and proudly shows it to
is represented as an unsigned integer. Ampeére. However, Ampére replies with laughter, as he immediately spots a mistake in Boole's

A. 1 sign bit, 4 mantissa bits, 2 exponent bits design. What should change in Boole's design (shown in Figure 3) to be a correct full adder?
B. no sign bit, 5 mantissa bits, 2 exponent bits A. Switch the select inputs for the multiplexer that outputs the sum

C. no sign bit, 4 mantissa bits, 2 exponent bits B. Switch the select inputs for the multiplexer that outputs the carry-out

D. 1 sign bit, 4 mantissa bits, 3 exponent bits C. Switch data inputs 1 and 3 for the multiplexer that outputs the sum

D. Switch data inputs 2 and 4 for the multiplexer that outputs the sum

Solution: To represent numbers with a quarter of a unit precision exactly, we need to be
able to represent 2-2. Additionally, we will need to be able to go up to 9.75 with the same
precision. 9.75 can be represented exactly as (1001.11),. To write this number as an IEEE-
754 number, we need to shift the decimal point 3 places to get (1.00111), - 2*. This part
after the decimal point shows that a mantissa of at least 5 bits is required. The exponent
has to be at most 3, so 2 bits will be enough. No sign bit is required as grades are always a
positive number. How to solve: Assume all x, y, (and carry) data inputs are 0 and ignore the
select inputs. What would these incoming arrows input into the multiplexer?

If the incoming y was 0, then you'll get the 1234 truth table of:

Solution: The solution can be verified by (1) knowing the truth table for both output signals
and (2) checking if the circuit implementation is valid using the technique of Figure A.38
from the book.

Positi P Nexati o b B 0 But the actual sum truth table is 0110.
ositive overtlow: g - 03 - 53, ative overflow: ag - Oy - 5;
TR R 0 Therefore we know 2" and 4t" must be
Positive integers overflow, negative integers overflow 1 swapped.
1

Which of the following statements is true about an IEEE-754 32-bit number?

A. 1/0 is not representable as an IEEE-754 number.

B. 264.2-64 js not representable as an IEEE-754 number. This causes an overflow as the represented exponent range is (126, 127)

C. 2%1.2%% is not representable as an |IEEE-754 number. and the total exponent will be 125.

D. 209 4 2190 s not representable as an IEEE-754 number.

18

MULTIPLEXOR Z OTPUT FORMULA

-'h..-‘-
DEC MUX OF-
[N . “.I - .
0 0 NX]_*NXQ
0 I NX]_*XQ
x1|@) y1|@] 10 | xi*~x
x2 | @ y2 [J | X1¥x%z

Z = ~vy1¥eyanXi ¥ Xy + vy ¥y ¥ eox RXe + yr¥eyo* xi¥exo + yifyo* xa*xe

BOOLEAN SIMPLIFICATION
(c) x1x2 + Xox3 + x3X1 = X1X2 + X3X1

X1~vX2 + ~x2X3 + ~X1X3 = X1~X2 + X1~X2X3 + ~X1~Xx2X3 + ~x1x3 =
X1~x2(x3 + 1) + ~x1x3(~x2 + 1) = x1~x2 + ~x1x3

Explanation:

~x2x3 can be separated into x1~x2x3 + ~x1~x2x3, since ~x2x3 =
~x2x3(~x1 + x1) = x1~x2x3 + ~x1~x2x3.

Then we combine the terms again.

1 + anything = 1 in boolean algebra, so the terms x3 and ~x2 can be
omitted there.

KOOMEY'S LAW

Koomey's law describes a trend in the history of computing hardware: for
about a half-century, the number of computations per joule of energy
dissipated doubled about every 1.57 years

Name Algebraic identity

Commutative wt+y=y+w wy = yw

Associative w+y)l+z=w+(y+12) (wy)z = w(yz)

Distributive w4 vz=(w+viiw+3) w(y 4+ 2) = wy + w2

Idempotent Ww+w=w W= w

Involution W=wn

Complement w+w=1 wiw=10

de Morgan w+y=wy WYy=W+5¥
l+w=1 0-w=0
D+w=mn l-w=w

MOD-4 UP/DOWN COUNTER

x=0
@-@ Present Next state
state =0 =1 Du{pul
YaX ¥, ¥ ¥, ¥
x=0 x=0 0o 01 11 0
01 10 0o (1]
10 11 01 |
@- @ 1 00 1o 0
x=0
Figure A.46 State diagram of a mod-4 up/down counter that detects
the count of 2.
Present Rieat state | Output
state [.
x=0 x=1 i
SO S1 S3 0
S1 S2 S0 0
S2 S3 Sl 1
53 S0 52 0
Figure A.47 State table for the example of the up/down counter.
X r \
5, r'-/ ¥,
¥ E : Y,
Y2
D
Qe <Pp—
D
Q <p Clock

Figure A.49

The output z is determined as
=y,

These expressions lead w the circuit shown in Figure A.49,

19

Implementation of the up/down counter.

FINITE STATE MACHINE

Input Output

Combinational
ll'lgi.l:

Next
state

Present
state

A

A_..

Delay clements
(flip-flops)

1. Develop an appropriate state diagram or state table.
2. Determine the number of flip-flops needed, and choose a suitable type
3. Determine the values to be stored in these flip-flops for each state in the
state diagram. This is referred to as state assignment.
4. Develop the state-assigned state table.
5. Derive the next-state logic expressions needed to control the inputs of
the flip-flops. Also, derive the expressions for the outputs of the circuit.
6. Use the derived expressions to implement the circuit.
Embed computers = for specific purpose in embed systems, industrial
Personal computers = consumer market and variety of purposes
Servers and Enterprise systems = network of large computers with DB
Super computers and grid computers = high performance, expensive,
demanding computations (i.e. weather forecasting), grid = high speed
network of combination of personal computers, cloud is emerging trend
PRIMARY
Also called main memory. Electronic. Programs are stored here. It has
distinct addresses (byte addressable usually) It includes RAM, which can be
accessed at a fast fixed time.

20

CACHE MEMORY

Faster than RAM, holds sections of the program currently being executed.
At start of program is empty, data fetched from main memory is copied here
to interact with the CPU (cache is usually inside cpu close to registers).
SECONDARY STORAGE

Magnetic, optical and flash memory devices that keep data even when
there’s no power.

Any arithmetic or logic operation, such as addition, subtraction,
multiplication, division, or comparison of numbers, is initiated by bringing
the required operands into the processor, where the operation is performed.

PARALLELISM

You can gain better performance (i.e. run code faster)

By doing parallel tasks, using processors with multiple cores, or using
multiple processors (and or a combination of everything).

PROBLEMS CHAPTER 1

Page 46

You just copy the
operand 1 or return n Os
if the other operand’s bit
is 0 and then offset the n
number each time one bit
further.

You end up with n-1
additions with n being
the number of digits of
one of the operands.

1 0 1

| (13) Multiplicand M
®* 1 0 11

|

1

(11) Multiplier Q
1 0 1
0 1

) 0

1
0 0
1 10

I 000

1
1111 (143) Product P

(a) Manual multiplication algorithm

Unless the operands have the same bit length,

there are two possible number of sums.

The Sequential Circuit Multiplier seems to use n number of additions.:
This circuit performs multiplication by using a single n-bit adder n times.

It handles both positive and negative multipliers uniformly. Second, it
achieves some efficiency in the number of additions required when the
multiplier has a few large blocks of 1s.

Register A (initially 0)

ot
C = un—l e Hﬂ Ha-1
Add/Noadd
control
n-bit
adder
MUX =
u K
o1 sas ny
Muluplicand M
(a) Register configuration
M
1101
Initial configuration
o [ooo0o0] 1011
¢ A < \
0 1101 1011 Add . .
0 0110 110 Shift } First cycle
I Dol 1101 Add e
0 1001 1110 Shift }' Sacus cycis
0 1001 1110 No add }
; Third cycle
0 0100 BER Shift e
| 000l 111 Add .
0 1000 11 Shatt } Fowrk cycle
Product
(b) Multiplication example
Figure 9.7 Sequential circuit binary multiplier.

21

I promise that I will not use unauthorized help from people or non-course
materials during my exam. I will create the answers on my own and I will
create them only during the allocated exam time slot. I will not provide help
to or ask help from other students during their exam.

Multiplicand

m"/. l'll/l m/

M
! q
Typical cell
Carry-out FA f— Carry-in
"
Bit of ouigoing partial product [PP
(b) Array implementation

Figure 9.6 Array multiplication of unsigned binary operands.

CSE1400 Computer Organisation

WEEK 6 - CPU LOGIC (BEN EATER INTRO)

Assume we have a made up Assembly language
with the instructions:

itbsees LDA SRC (A) - Loads the parameter implicitly into
seeinee 5 register A

ADD SRC (A) - Adds the parameter and saves it into
register A

OUT (A) - Outputs the contents of register A into
the decimal display

However, these instructions that we just made up
don’t tell the computer anything at all yet. We
decided that the instructions of our assembly
language are of fixed length.

4 bits for the operation code and 4 bits for the paramater (whether the parameter is interpreted as a memory
location or as an immediate value is up to the “micro routine” to decide).

For now, let’s assume that LDA has opcode 0000, ADD has opcode 0001 and OUT has opcode 1110.
Let’s also assume that we started to store the program at memory location 0000, the second line of code of that
program is at 0001 and the last one at 0010.

How do we execute the program above?

1. The program counter keeps counting/jumping to the next line of code (command) that needs to be fetch and
sent to the instruction register. At the start of the program, the program counter will be the 1st command.

2. The first thing that is going to happen when we start to execute a program (or command of a program) is
that we need to load the contents of the (first) command from the memory (via the memory data register)
and put it in the Instruction Register (it tells us which command (opcode) we are currently running). This is
the start of the fetch cycle: we fetch the instruction from memory and put it into the instruction register.

3. Inorder to get the contents of memory location that the program counter indicates, first we need to take the
value of the program counter and move it to the Memory Addres Register (to indicate which memory address
cpmtemts to fetch).

4. Every opcode instruction will then start with a fetch cycle, that goes throu the following control logic micro
instruction (via to the Bus):

a. ProgramCounterou, MemoryAddresRegisteri,: Which means the counter outputs to the bus and the
emory Address Register reads from the bus.

)\

So for the progam above first
instruction LDA 14, we did
ProgramCounterou,
MemoryAddresRegisteri, ? ‘.

MI = MemoryAddresRegisteri,

CO = ProgramCounteroy;

b. In the next clock pulse/cycle wee need to move the contents of Memory Address Register into the
Instruction register: RAMou, InstructionRegisterin

RO - RAMout
II = InstructionRegisteri, 1

CSE1400 Computer Organisation
Nothing happens until the clock pulse/cycle is completed. Which lasts long enough to have
enough time to setup the control logic without conflicts and provide the desire output.
Ben Eater’s instruction register is purposefully 2 colored, the Most Significant 4 bits expect the
opcode and the 4 bits from the right expect the operand.
c. Thelastpartof the fetch cycle is to increment the program counter, so that it will be pointing
to the next 1nstructlon we would llke to load ProgramCounterEnab]e (CE in Ben’s Computer)

Therefore we need to make sure that the control logic hardware circuits know how to do:
1. ProgramCounter,,, MemoryAddresRegisteri,
2. RAM,y, InstructionRegisteri,
3. ProgramCountergnaple

Now that we’ve finally fetched the instruction. We will execute it.

From here, first we read the 4 most significant bits of the instruction register. Which is the opcode: Since the 4 MSB

= 0001 =LDA instruction, it is just moving the operand to register A. Such a thing requires us to first update the

Memory Address Register with the 4 LSB (operand that points memory address) so that we can Read the values from

that memory address and eventually load them in A:

Ww&gl d. Purposefully, only the least significant bits of the Instruction Register are connected to the
: bus. Therefore InstructionRegister,,: will output the operand to the bus. Consequently, we

want to update the Memory Addres Register to get the bus contents, so

MemoryAddresRegisterin This gives: InstructionRegisterou, MemoryAddresRegisteri,

e. Now we want to take the contents of the Ram, and move them to Regiser A:
RAMou, RegisterAin

Each of these micro instructions (d and e) required 1 clock pulse/cycle.
Therefore, the single LDA 14 operation has been exectued with the following micro instructions (CPU Logic):
1. ProgramCounter,,, MemoryAddresRegisteri,
2. RAM,yy, InstructionRegisteri,
3. ProgramCountergnable
4. InstructionRegistero,, MemoryAddresRegisterin
5. RAMou, RegisterAin

A total of 5 clock cycles.

The next instruction (and all instructions) start the same way:

LOR W AvY IS : .
—— Program Counter spits out the Next Memory Address location, and the Memory
co M Location Address Registers listens to the bus and updates its contents.

RO 1T The RAM spits out the contents of the instruction, and the Instruction registers
cEe takes in those contents.

|0 mL Before executing the opcode, the program counter gets incremented

20 A\ Then it depends on the opcode (and your hardware). What happens next. Ben'’s

computer ALU uses Register A and Register B as operands. So in this case you'll
have to do 10 MI, RO B1. In ben’s computer ALU’s output is in E, so next is EO Al

2

CSE1400 Computer Organisation
8-bit CPU control logic (Ben Eater) https://www.youtube.com/watch?v=dXdoim96v5A

BPU - CHAPTER 5 (BASIC PROCESSING UNIT = BPU = CPU); RISC STYLE

The processing unit executes machine-language instructions and coordinates the activities of other units in a
computer. Such as fetching, decoding and executing such instructions. The processing unit is often called the central
processing unit CPU. The term central is not as appropiate today as it was in the past because today’s computers
often include several processing units. processor is a synonym for processing unit and CPU.

Processors that operate in parrallel have a pipelined organization where the execution of an instruction is started
before the execution of the precedeing instruction is completed.
Superscalar operation is to fetch and start the execution of several instructions at the same time.

FUNDAMENTAL CONCEPTS

The processor fetches one instruction at a time and performs the operation specified. These instructions are fetched
from successive memory locations unti la branch or a jump instruction is encountered.
The processor uses the program counter (PC) to keep track of the addres of the next instruction to be fetched and
executed. After fetching the instruction, the program counter is updated to point to the next instruction in sequence.
A branch instrucion may cause the PC to not (automatically) increase by 1 but by the address of the jump.
When an instruction is fetched it is placed in the instruction register, from where it is interpreted or decoded by the
processor’s control circuitry.
RISC-style steps for executing instructions:
1. Fetch the contents of the memory location pointed by the PC and load them into the IR (instruction fetch
phase).
IR « [[PC]]
2. Increment the PC to point to the next instruction.
PC < [PC] + k where k is the integer that denotes the byte difference between address1 and address2
3. Carry out the operation specified by the instruction in the IR (instruction execution phase). Which generally
consists of one or more of the following actions:
a. Read the contents of a memory location and load them into a processor register
b. Read data from one or more processor registers
c. Perform an arithmetic or logic operation and place the result ino a processor register
d. Store data from a processor register into a memory location

You LOAD registers and STORE in memory.
The processor communicates with memory through the processor-memory interface.
The instruction address generator updates the PC after each instruction is fetched

The register file is a memory unit that contains the general purpose registers
THe ALU does the computations, whose computations are stored in a rigster in the register file (For RISC) (Z in CISC)

INSTRUCTION EXECUTION

Load R5, X(R7) //DST, SRC
Which uses Index Addressing mode to load a word of data from memory location X + [R7] into register 5. By doing:
1. Fetch instruction from the memory
Increment program counter
Decode instruction to determine the operation to be performed
Read register R7
Add the Immediate value X to the contents of R7 (extra step)
Use the sum as the effective address of the source operand. and read the contents of that location
Load the data received from that location into register R5

5 STEP RISC INSTRUCTIONS

Depending on the hardware some operations can be done at the same time. Book assumes 5 steps for RISC processor.

NousEwhN

https://www.youtube.com/watch?v=dXdoim96v5A

v whe

B w e

CSE1400 Computer Organisation
Load R5, X(R7)

Fetch the instruction and increment the program counter
Decode the instruction and read the contents of register R7 in the register file

Compute the effective addres X + [R7]
Read the memory source operand
Load the operand into the destination register R5

Add R3, R4, R5, //DST, SRC, SRC

Fetch the instruction and incerement the program counter
Decode the instruction and read the contents of source register R4 and R5

Compute the sum [R4] + [R5]
Load the result into the destination register R3

However, since it is advantageous to the hardware to execute all instructions in the same number of steps, in RISC:

1. Same
2. Same
3. Same Input data Address C
4. No action
5. Same
Add R3, R4, #1000
1. Same c c
2. Decode the instruction and read register R4
3. Compute the sum [R4] + 1000 _ _
Register Register
4. Same ™ e " de |7
5. Same Address A Address B
Store R6, X(R8) //Store has different order, SRC, DST
1. Fetch the instruction and increment the program counter A B
2. Decode the instruction and read registers R6 and R8
3. Compute the effectie address X + [R8]
4. Store the contents of register R6 into effective address Output data
5. No action
COMMON RISC INSTRUCTION 5 STAGES (P} Two memory blacks
1. Fetch an instruction and increment the program counter.
2. Decode the instruction and read registers from the register file.
3. Execute an ALU operation.
4. (if needed) Read or write memory data if the instruction involves a memory operand.
5. (if needed) Write the result into the destination register

Address A ——

Address B ——=

Input data

|

C

Register
file

A B

la—— Address C

||

Output data

(a) Single memory block

In most RISC RO = 0 and the default index registers value. When RO is
used as the index register, the effective address of the operand is the
immediate value X. This is the Absolute addressing mode. Alternatively,
if the offset X is set to zero, the effective address is the contents of the
index register, Ri. This is the Indirect addressing mode. Thus, only one
addressing mode, the Index mode, needs to be implemented, resulting
in a significant simplification of the processor hardware.

REGISTER FILE

General purpose registers are implemented in the form of a register file
that allows two registers to be read at the same time, its contents giving
two separate outputs. The register files has 2 read addreses and 1 write
address for a third register. The addreses inputs are connected to the IR
field that specifies the DST. ports: inputs and outputs of any emory unit.
dual-ported: memory unit that has two output ports.

4

|

C
Address A
Register
file fe—— Address C
Address B ——m
A B

Immediate value

INTER-STAGE REGISTERS

It is necessary to insert registers between
stages. Inter-stage registers hold the results
produced in one stage so that they can be used
as inputs to the next stage during the next
clock cycle. Which leads to the processor
datapath structure on the right.

Recall that for computational
instructions, such as an Add
instruction, no processing actions take
place in step 4. During that step,
multiplexer MuxYin selects register RZ
to transfer the result of the
computation to RY

For Load and Store instructions, the
effective address of the memory
operand is computed by the ALU in
step 3 and loaded into register RZ

In the case of a Load instruction, the
data read from the memory are
selected by multiplexer MuxY and
placed in register RY

For a Store instruction, data are read
from the register file, which is part of
stage 2, and placed in register RB.
Since memory access is done in stage
4, another inter-stage register is
needed to maintain correct data flow
in the multi-stage structure. Register
RM is introduced for this purpose.

ALU

The Arithmetic and Logic Unit is used to manipulate data:

CSE1400 Computer Organisation

1. perform arithmetic operations: addition, substraction
2. logic operations: such as AND, OR, XOR

3. Itmay be connected directly to the register file
In CISC they’d have to go via the bus

4. The multiplexer selects either output B of the register file or
the immediate value in the IR as the second ALU operand inB

DATA PATH

Since the instructions are based on two phases, fetch and
execution, the hardware is also split in 2 corresponding sections.
The fetching section also decodes the instruction and the control
signals (between components), the other executes it: read
operands, compute and store/load results.

Each of the 5 steps take 1 clock cycle.

Stage 5

Stage 2

Stage 3

Stage 4

Stage 5
1

l

Address A o

Address B —

C

Register
file

- Address C

ﬁ®% D

|

Immediate value

1
1

/& k5><C_<5

s

MuxB
InA N InB
ALU
QOut
RZ RM

Return address

!

2

o @

A

Memory
address

= Memory

data

CSE1400 Computer Organisation
e The general purpose register that holds the return addresses is called LINK.
e The general purpose register that holds interrupts addresses is called IRA
e The return address is produced by the instruction address generator

INSTRUCTION FETCH SECTION

Register file e The addresses used to access the memory
(viaRA) (viaRY) come from the PC when fetching instructions and
from register RZ in the datapath when accessing
l I instruction operands.
Control Instruction e MuxMA selects one of this 2 sources.
eircuitry address e Theinstruction address generator updates the
generator PC ater each instruction is fettched
e The instruction read from the memory is
loaded into the IR, where it stays until its execution
Immediate Register RZ is completed and the next instruction is fetched.
e The contents of the IR are examined by the
IR 0 Mnma | control circuitry to generate the signals needed to
MuxB controll all the processor’s hardware. They are alos
(Immediate value used by the block labeled Immediate.
extended to 32 bits) e A 16 bit IV can be extended to 32 bits, which
Memory Memory

will be used either as an ALU operand or as an index
to compute the effective addres of an operand.

e The IV is sign extended or “padded” with zeros for arithmetic operations and logic instructions respectively.
e The IV alsois used to compute the target address of branch instructions.

data address

INSTRUCTION ADDRES GENERATOR RA
The Addres Generator Circuit on the right,)
Immediate value
e Uses an adder to increment the PC value by 4 0 17 IR
MuxPC 4 (Branch offset)
(4 byte difference in addresses)
e butitalso computes the branch values. l l
o MuxINC selects constant 4 or branch PC 0 MuxINC l/
e MuxPC selects Adder result or RA
e PC-Temp holds tempraryily the PC contents due
to interrupts or subroutine saves v \ i
INSTRUCTION FETCH AND EXECUTION STEPS PC-Temp V
Add R3, R4, R5 i Adder

MuxY

(Return address)

Using the registers of datapath graph:
1. Memory address « [PC],

Read memory, 31 27 26 22 21 17 16 0
IR « Memory data' Rsrel Rsre2 Rdst OP code
PC « [PC] + 4
2. Decode instruction, (a) Register-operand format
RA < [R4],
RB « [R5] 31 27 26 22 21 65 0
3. RZL« [RA] + [RB] Rsre Rdst Immediate operand OP code
4. RY < [RZ]
5. R3 «[RY] (b) Immediate-operand format
31 6 5 0
Immediate value OF code

(c) Call format

Instruction encoding.

CSE1400 Computer Organisation

Load R5, X(R7)
Memory address < [PC], Read memory, IR < Memory data, PC « [PC] + 4
Decode instruction, RA < [R7]
RZ « [RA] + Immediate value X
Memory address < [RZ], Read memory, RY < Memory data
R5 « [RY]

v whe

Store R6, X(R8)
Memory address < [PC], Read memory, IR < Memory data, PC « [PC] + 4
Decode instruction, RA < [R8], RB « [R6]
RZ « [RA] + Immediate value X, RM « [RB]
Memory address < [RZ], Memory data « [RM], Write memory
5. Noaction

B w N e

Note: a memory Read or Write operation can be completed in one clock cycle when the data involved are available
in the cache. When the operation requires access to the main memory, the processor must wait for that operation to
be completed.

Source register addresses are specified using the same bit positions in all instructions. The hardware reads the
registers whose addresses are in these bit positions once the instruction is loaded into the IR

BRANCHING

The standard PC increment continues until a branch or subroutine call instruction loads a new address into the PC.
Subroutine call instructions also save the return address. Interrupts from I/0 devices and software interrupt are
handled in a similar manner.

Branch instructions specify the branch target address relative (i.e. +5 or -3 lines back), A branch offeset given as an
immediate value in the instruction is added to the current contents of the PC. The number of bits used for this offset
is less than the word length of the computer. Therefore the range of addresses is limited. Subroutine call instructions
reach a larger range of addresses as they have more available bits to specify the target addres and the RISC
computers ahve jump and call instructions that use general-purpose registers to specify a full 32-bit address.

Step Action

1 Memory address < [PC], Read memory, IR < Memory data, PC <« [PC] +4

2 Decode instruction

3 PC <« [PC] + Branch offset
4 No action

5 No action

Sequence of actions needed to fetch and execute an unconditional branch
instruction.
. In processors that do not use condition-code flags, the branch instruction specifies a compare-and-test operation

that determines the branch condition. For example
Step Action

1 Memory address <— [PC], Read memory, IR < Memory data, PC « [PC]+4

2 Decode instruction, RA « [R5], RB « [R6]

3 Compare [RA] to [RB], If [RA]=[RB], then PC <« [PC] + Branch offset
4 No action

5 No action

Sequence of actions needed fo fetch and execute the instruction:

Branch_if [R5]=[R6] LOOP.

A simpler and faster comparator circuit can examine the contents of registers RA and RB and produce the required
condition signals though. The comparator is usually inside the ALU and therefore not explicitly shown in graphs.

CSE1400 Computer Organisation
Subroutine calls and returns are implemented in a similar manner to branch instructions. The address of the
subroutine may either be computed using an immediate value given in the instruction or it may be given in full in
one of the general-purpose registers
Step Action

1 Memory address < [PC], Read memory, IR < Memory data, PC « [PC] +4
2 Decode instruction, RA <« [R9]

3 PC-Temp « [PC], PC « [RA]

4 RY <« [PC-Temp]

5 Register LINK <« [RY]

Sequence of actions needed to fetch and execute the instruction:
Call_Register R9.

WAITING FOR MEMORY

The role of the processor-memory interface circuit is to control data transfers between the processor and the
memory. Most of the times the instructions are found in the cache, which in that case the operation is compeleted in
one clock cycle. When the information is not in the cache and has to eb fetched from the main memory several clock
cycles may be needed. The interface circuit must inform the processor control circuitry to delay subsequent
execution steps until the memory operation is completed. To do so there is a signal that needs to be checked, Memory
Function Completed (MFC). When MFC is received, the processor proceeds to the next step. Step 1 of the execution
sequence of any instruction involves fetching the instruction from the memory. Therefore, it must include a Wait for
MFC command, as follows:

Memory address < [PC], Read memory, Wait for MFC,

IR < Memory data, PC « [PC]+ 4
The Wait for MFC command is also needed in step 4 of Load and Store instructions.

CONTROL SIGNALS
RF_write IR, 47 . The processor hardware components
IR 4 5 LINK are governed by control signals, which
¢ _— l l determine which multiplexer input is
IR Address A 5 | - selected, what operation is perfomed by the
2 Register) ALU, and whether to read or write a memor
IRy, _ddress B Addioss location or register.
5 A B . In each clock cycle (one for each step
5 C_select of the 5th step structure), intermediate results
— L . are stored in inter-stage registers RA, RB, RZ,
&8 RM, RY and PC-Temp, which are always
RA RB enabled. The other registers must be enabled

' T only when necessary and via control signals.

o The register file has three 5-bit address inputs, allowing access to 32 general-purpose registers. Two of these
inputs, Address A and Address B, determine which registers are to be read. They are connected to fields
[IR31—27 and IR26—22 in the instruction register.

e The third address input, Address C, selects the destination register, into which the input data at port C are to
be written.

e Multiplexer MuxC selects the source of that addres. 0 and 1 represent 2 possible IR slots for addresses.

e The third input of the multiplexer is the address of the link register used in subroutine linkage instructions

e New data are loaded into the selected register only when the control signal RF_write is asserted

e Multiplexers are controlled by signals that select which input data appear at the multiplexer’s output

RFE_write =T5 - (ALU + Load + Call)

ALU_op —,.

1 |
| RA | | RE |
|
B_select Immediate value

Ry
MuxB

-
< Condition
. signals

ﬁ Return address

Y_select MuxY <

signal
RA
! .
0 n Immediate value
PC_select MuxPC 4 (Branch offset)
PC_enable PC

Memory
address

L — = Memory

data

Two signals, MEM_read and MEM_write
are used to initiate a memory Read or a

memory Write operation.

When the requested operation has been
completed, the interface asserts the MFC

CSE1400 Computer Organisation
e The operation performed by the ALU is determined by a k-bit
control code.
¢ The comparator generates condition signals that indicate the
result of the comparison. These signals are examined by the
control circuitry during the execution of conditional branch
instructions to determine whether the branch condition is true
or false.

IR_enable

Extend —zs| Immediate
2
* RM MA_select
MuxB
and MEM_read MEC
MuxINC
Data > MEM_write
‘ Address
X 1

Processor-memory interface
-—

To cache and main memory

e The instruction register has a control signal,

INC_select

—

| PC-Temp I A4

(Return address)

Adder

MuxY

IR_enable, which enables a new instruction to be loaded
into the register. When fetching it must be activated only
after the MFC signal is asserted.

e The immediate value can be 1. sign extended 16-bit,
zero-extended 16-bit, and a special 26-bit value. Hence
its control signal Extend needs 2 bits.

e The INC_select signal selects the value to be added to
the PC, either the constant 4 or the branch offset specified
in the instruction.

e The PC_select signal selects either the updated
address or the contents of register RA to be loaded into
the PC when the PC_enable control signal is activated

Control signals for the instruction address generator.
W

HARDWIRED CONTROL

There are 2 approaches to generate the control signals: hardwired control (RISC) and microprogrammed control
(CISC). In hardwire control, the setting of the control signals depends on:

Contents of the step counter

Contents of the instruction register

B select = Immediate

The result of a computation or a comparison operation

External input signals, such as interrupt requests

Counter_enable

Step » Clock
counter
R [| |
T1 T2 T5
OP-code bits L l l
INSI
External
INS2 Control Inputs
Instruction signal
decoder generator
Condition
| signals
INSm
)
N —

Control signals

CSE1400 Computer Organisation
e Instruction decoder interprets the OP-codeand he
addressing mode information of the IR
e Instruction decoder sends the corresponding INS; output to
the control signal generator
e After each clock cycle the step counter signals either one of
T1to T5.

DEALING WITH MEMORY DELAY

e The timing signals T1 to T5 are asserted in sequence as the
step counter is advanced. Most of the time, the step counter
is incremented at the end of every clock cycle.

¢ When MEM _read or a MEM_write command is issued does
not end until the MFC signal is asserted.

e To extend the duration of an execution step to more than
one clock cycle, we need to disable the step counter:

Counter_enable = WMFC + MFC

e A new value is loaded into the PC at the end of any clock

cycle in which the PC_enable signal is activated.

The PC is incremented only once when an execution step is extended for more than one clock cycle. When fetching
an instruction, the PC should be enabled only when MFC is received. It is also enabled in step 3 of instructions that
cause branching (BR = instructions in branch group):

PC_enable =T1 - MFC+ T3 - BR

Temporary
registers

CISC STYLE (BOOK INTRO)

|

C

Register
file

CISC-style instruction sets are more
complex because they allow much greater
flexibility in accessing instruction
operands. Unlike RISC-style instruction
sets, where only Load and Store
instructions access data in the memory,
CISC instructions can operate directly on
memory operands. Also, they are not
restricced to one word in length.

Control
circuitry

interface

Processor- memory

Interconnect

Therefore, CISC-style instructions require
a different organization of the processor
hardware. Possible CISC processor
suggested by the book on the left.

IR

The main difference between this
organization and the five-stage structure
discussed earlier is that the Interconnect

PC

!

To cache and main memory

mA NV B

ALU

Qut

Y block, which provides interconnections
Instruction among other blocks, does not prescribe
address any particular structure or pattern of data
generator flow. It provides paths that make it
possible to transfer data between any two
components, as needed to implement
instruction. Inter stage registers are not

needed but some registers are needed to hold intermediate results during instruction execution.

10

CSE1400 Computer Organisation
CIS STYLE (LECTURES)

[SAs are needed to be standard so programs (and devices) are portable among different machines.

INSTRUCTION EXECUTION

e Divide and conquer: split the problem into multiple pieces solve them seperately and connect them.
RISC used 5 steps (page 4), CISC is flexible.

Since different parts of the hardware are allocated

[1F

D EX

MEM WB to different steps. You can start the fetching of the

IF ID EX

MEM WB next instruction before the current one has been

CONST

MEM executed. The ALU is involved in load/store
instructions in index addressing.

IF 1D EX wB |

CIS CPU

A Same components except for the CPU bus, the

Instruction

Register file is generally smaller (less registers) and
the Control Circuitry includes bus behaviour.

CISC HAS 6 STAGES

address

Control

generator .
- Curcuitry

Although it really depends on each computer. It

Processor-memory interface

generally will take more stages than RISC because
there are more complex instructions that require

[«
-

1 MAR

MUX

z_. CPU bus
v

The bus connects all the different components.

— MDR |+

* more steps.

Parts involved in fetching an instruction:

Lookup Memory Address Register
Increase/update program counter

Wait till Memory Data Register content arrives
Send Instruction to Instruction Register

Register
file

BN e

—
ADD $16, R2, R4 // SRC, SRC, DST

Stage 1. (already done, fetched the instruction and increased the program counter)
Stage 2. Decode instruction (Control Circuitry) (logic gates that look at the instruction and prepare things)
i. Load constant/immediate value of 16 the ALU
ii. Load Register in ALU with R2
Stage 3. (Skip) Reserved for fetching operands from memory/complex addressing
Stage 4. Execute and load the ALU result in Z register (Z is a necessary register to keep the results)
Stage 5. (Skip) Reserved for reading from memory
Stage 6. Move the register Z value to Register 4 accross the bus
Stage 7. (Skip) Reserved for writing to memory
INTERACTING WITH MAIN MEMORY AND THE BUS
MAR 1 Bus can transfer
complete
e MDR machine words
. (] at a time
Main READ
Memory CPU
WRITE
K JCPU bus
MFC

The control circuitry must disconnect all the other components not using the bus to avoid 1. data corruption and 2.
interfering electronic signals (noise).

11

CSE1400 Computer Organisation
The tri-state gates/buffer wrapping register Z are the control

Register gating circuit gates that refer to whether Z should be listening (in)

i or writing (out) to the bus. '
CONST Tri-state gates |""'ename
X
|sasi t— « Disconnect input/output electronically
I ~open switch
Characteristic table Vin
Zn @] CPU bus Enable Enable In Out
In {\go Out e
i 1 0 1
1 1 0
Z = high impedance

Z = high resistance = disconnecting from bus.
X T assume is the last value on the Bus.

REGISTER FILE

Address registers using

- Gates R;,, and R,

Addresses;, Addresses,,;

- Addresses;,, and Addresses,;
|

R1
R2
R3
R4

R1

R2
R3

R4

T

You do it like this instead of adding an Rin Rout n times for each Register. Otherwise the mictro instruction length
would be too long and the suggested architecture is actually pretty efficient for moving contents between registers.

STORE R2, (R1) // SRC, DST indirect addressing mode, R1 contains the value of the memory address

Stage 1. Fetch

a. PCout

b. MARin

c. Read

d. WMEC (till here one cycle)
e. MDRout

f. IRin (another cycle?)

In CISC we can skip stages if we dont need them.

Stage 2. Decode instruction

g. Rlout
h. MARin (one cycle)
i. RZout

j. MDRin (another cycle)
Stage 7. Write to memory

k. Write
l. WMFC (last cycle)

To improve CPU performance you can duplicate components (such as the bus, which would allow to parallel
transfers), (the ALU or the register files could also be duplicated) and/or pipeline parts of instructions.

12

CSE1400 Computer Organisation
CONTROL CIRCUITRY

Manipulates the control lines (tri-state gates that control the in/out behaviour of the registers connected to the bus)
STORE R2, (R1)

PC_out, MAR_in, read, WMFC
MDR_out, IR_in

R1_out, MAR_in

R2_out, MDR _in, write, WMFC

=W

Conceptual task of control circuitry

“Signal table” to look up all instruction stages

PC,« PC, Rl, Rl, MAR, MDR, IR, .. WMFC
1| 1 0 o0 o0 1 0 0 1]
0o 0 0 0 0 1 1
o o o 1 1 0o 0 0

NO s WwWN

Fixed format per opcode in RISC (every instruction has virtually the same operands)
and for CISC the look up table regards the different possible addressing modes.
Step counter 1. First fetch the next instruction.

Counter_enable 2. Then decode what needs to be done
3. Then execute the thing

Step

couner e 4. Then write the results back at the right place
| IR | ™1 The step counter regards each of those steps above
i T = step (tick). Counter below

OP-code bits l 1 1
INSI . T
=y : External
INS2 Control 2 mputs
Instruction signal
decoder . generator 1 T 0 § 0 T 0
. . Condition
. signals
INSm
Clock > > Q P>

B . ‘ ‘ .
./
Control signals
Qo Q Q,
Control signals depend on... An example of a flag that changes the program behaviour
is the WMFC and status flags in register for comparistion
and branches, zero flag.
« Instruction code . HARDWIRED CONTROL
»What kind of instruction are we executing? ---'II-I--T----D-ecTic-a?eTi-ci-rc-ui-tgl-t}Ta? r-nzlé S- ;p-t-h;
« Control step counter ':\ box in the middle. which takes inputs
»Which stage of the instruction are we currently in? &7\ 53 fror.n the step coun.te.r, ir_15truction
dema | register decoder, condition signals and
« Flags & external signals : eenerior | external inputs.
~Are there signals that change program behavior? = e The counter is controlled by the MFC
-4 and WMEFC signals:
' I Counter_enable = WMFC + MFC
To write anything you always need to be on tick T5 and S (ALU or Load or Call) were executed

13

[RF_write|= T5 - (ALU + Load + Call)

CSE1400 Computer Organisation

Calling an address requires to write/load the return addres on LINK register and occasionall mess with the stack
pointer so depending on how you implement call you have to write 1 or 2 registers

Control Signal Generator

By PLA (or ASIC)

Programmable Logic Array (PLA)

AND array

OR array

1t t tt 1

11

t

vy vy

| 11
| INSxx | |counter| | signals |

Icontrol signalsl

| RF_write = T5 - (ALU + Load + Call) = TS « ALU + T5 - Load + TS - Call |

Programmable Logic Array on the left. You defnie which
2 signals need to be “ANDed”

The end array generates the ANDs. AND the OR array
takes all elements of the AND to make a sum of products

Hardwired control

(dis)advantages

Implemented in hardware
» 50 it’s fast!
« 50 it's inflexible!

BPLA = Programmable Logic Array = Hardware Approach to generate control signals
MICRO PROGRAMMED CONTROL

A little processor instide the processor. So. in practice, an opcode is nothing but a menonic that stands for a set of
micro instructions, which enable/disable the tri-state gates that wrap the components interacting with the bus.

Microprogram ‘control store’
Signal table stored in ROM

rogge
o (5

PCox PG, R1, Rl

1 1
2 0
3 0
4

5

6

7 ;
« Incr

0 0
0 0
0

MAR, MDR,, IR, .. WMFC

0 1 0 o0 1

0 0 1 1 CON 673\ LO&A
1 1 0 0 0 4,/‘

eased flexibility (branching)

The rows represent the steps/ticks of an opcode. In CISC that would be 5 (fetch, decode, alu, r/w memory, w register)
whereas in CISC 7 (fetch, decode, fetch complex addressing operands, alu, r memory, move registers, w memory).

Microinstructions
Like instructions, but different

Instruction

Microinstruction

MOV | R1 A

MOV | R1 | R2
PCou | PCih | IRy END
PCou | PCin | IR, END
PCou | PCi | IR, END

14

After fetching we can branch
to a standard address of
sum, substr, call etc. Microinstruction
operations. SNCas

Micro instructions in CISC,
unlike the instructions, are upPC
of fixed length.

generator

A CPU inside a CPU -> {}

Compared to hardwire, this
uses branching instead of
sequencing.

Comapred to a full CPU,

Control store

there’s no ALU nor registers

Control signals

Micromstruction Extermsl

address inputs

generator

Condition

sianals

upPC

Don’t forget the external inputs and
conditions signals.

END bit: It is generally cheaper to have 1
bit in each microinstruction than to have
a full word dedicated to a jump/call
function to end the program.

1 bit* 5 or 7 ticks is less than 1 * 23ish bit

word length.

CSE1400 Computer Organisation

Microroutine example

ADD R1, R2
Address Micro-instruction
0 PC_out, MAR_in, Read, WMFC

Fetch Instruction
1 MDR_out, IR_in
2 Branch to starting address routine (here, 42) Decode
42 RF_read, RF_addr_out = 1, X_in Exec
43 RF_read, RF_addr_out = 2, MUX_x, F_alu = “ADD", Z_in
44 Z_out, RF_write, RF_addr_in = 2, End

Remember that jumps are relative not absolute so jump 10 means jump to instruction +10.

If Z=0 then go to address 0

The number of control lines doesn’t change if the
registers are 64 bits or 32 bits, the number of control lines
regard the components connected to the bus.

BNZ PC+OFFSET

Address Micro-instruction

0 PC_out, MAR_in, Read, WMFC i
Fetch Instruction

1 MDR_out, IR_in

2 Branch to starting address routine (here, 103) Decode

103 PC_out, X_in, if Z=0 then goto address 0 <— Test Z bit

104 Offset-field-of-IR_out, MUX_x, F_alu = “ADD", Z_in

105 Z_out, PC_in, End « New PC address

Control-store organization
Mixed encoding

Microprogrammed control
(dis)advantages

Implemented as a ‘software’ program

» 50 it’s flexible!
«+ 50 it's slower!

« 50 it's more complex to build in hardware!

Vertical
Horizontal organization organization
micro- (PCout IR, MAR;, | MDR,,J\| REG,, addr
instruction
1 1 0 1 0 00
2 1 0 1 00
3 0 0 0 10
S

15

Control-store organization

Micro-instruction layout

1. No/ little encoding: horizontal organization

1. Large words
2. Less decoding

3. Faster

FEEE]
I 11

RO R1 R2 R3

2. Much encoding: vertical organization

1. Small words
2. More decoding

3. Slower

3. Mixed encoding

R
—

RO R1 R2 R3

Mix & match
Encoding type per field

[FL|F2|[F3|[F4|F5[F6|F7]|F8|

Field 1 (4 bits):
Field 2 (4 bits):
Field 3 (2 bits):
Field 4 (4 bits):
Field 5 (2 bit):

Field 6 (1 bit) :
Field 7 (1 bit) :
Field 8 (1 bit) :

Register address_in
Register address_out
RF_in/out

Function ALU
Read/Write/Nop
Carry-in ALU

WMFC

End

CIS STYLE (BOOK WRAP UP)

CSE1400 Computer Organisation

A bus consists of a set of lines to which several devices may be connected, enabling data to be transferred from any
one device to any other. A logic gate that sends a signal over a bus line is called a bus driver, which can be only 1. A

flip-flops make the Rin and Rout registers.

Bus A Bus B Bus C
Instruction
A A address A
generator
o
D Q
A
1 Register
L 5 file
‘ RUJH
R:
" Clock
Input and output gating for one register bit.
Alternative bus architecture by using 3 buses.
Step Action
1 Memory address < [PC]. Read memory, Wait for MFC, IR < Memory data, Control
PC « [PC] + 4
2 Decode instruction 1
3 RS « [R5] + [R6] IR
Sequence of actions needed to fetch and execute the instruction: Add R5, Ré.
. N Temporary
Step Action - registers
1 Memory address < [PC], Read memory, Wait for MFC, IR « Memory data,
PC « [PC] + 4
.) Processor-memory
Decode instruction interface
3 Memory address < [PC], Read memory, Wait for MFC, Templ <« Memory data,
PC « [PC] + 4 V V \Y
4 Temp2 <« [Templ] + [R7]
5 Memory address < [Temp2], Read memory, Wait for MFC, Templ « Memory data To cache and main memory
6 Templ <« [Templ] AND [R9]
7 Memory address <— [Temp2], Memory data < [Temp1], Write memory, Wait for MFC

Sequence of actions needed to fetch and execute the instruction: And X(R7), R9.

Step Action

1 Memory address « [PC], Read memory, Wait for MFC, IR « Memory data,
PC < [PC] + 4

2 Decode instruction

3 Memory address < [PC], Read memory, Wait for MFC, Templ < Memory data,
PC « [PC] + 4
4 Temp2 <« [Templ] + [R7]
5 Memory address <« [Temp2], Read memory, Wait for MFC, Templ <« Memory data
6 Templ <« [Templ] AND [R9]
7 Memory address «— [Temp2], Memory data <+ [Templ], Write memory, Wait for MFC

Sequence of actions needed to fetch and execute the instruction: And X(R7), R9.

MICROPROGRAMMED CONTROL

Control signals are generated for each
execution step based on the instruction
in the IR and they control what happens
on the bus. To do so there is a
microprogram stored on the processor
chip in a small and fast memory called
the microprogram memory or the
control store. . Let each control signal be
represented by a bit in an n-bit word,
which is often referred to as a control
word or a microinstruction. (bit such us

the one of a component either reading or listening from the bus, PC enable, WMFC, etc).

16

CSE1400 Computer Organisation

The sequence of microinstructions corresponding to a given machine instruction constitutes the microroutine that
implements that instruction. The microprogrammed control unit is shown below.

Microinstruction
address
generator

ubPC

v

Control store

Control signals

Furthermore, the address generator uses a microprogram counter.

Microprogrammed control is simple to implement and provides considerable
flexibility in controlling the execution of machine instructions. But, it is slower than
hardwired control.

Modern processors have a multi-stage organization because this is a structure that

is wellsuited to pipelined operation.

Solved problems at page 209 of the book

17

CSE1400 Computer Organisation

CHAPTER 3 AND 7: INPUT/OUTPUT
MEMORY-MAPPED I/0

e The idea of using addresses to access various locations in the memory
Processor Memory and registers can be extended to accessing various devices.

e Each I/0O device must appear to the processor as consisting of some
addressable locations, just like the memory.

¢ memory-mapped I/0: Some addresses in the address space of the
processor are assigned to these [/0 locations, rather than to the main
memory.

e These locations are usually implemented as bit storage circuits (flip-
flops) organized in the form of “I/0 registers”

Interconnection network

/O device 1 oo I/O device n

A computer system.

Load R2, DATAIN //DST, SRC: reads the data from the DATAIN register and loads them into processor register R2.
Store R2, DATAIN //SRC, DST: sends the contents of register R2 to location DATAOUT, which is a I/0O register.
I/0 DEVICE INTERFACE

e An I/O device is connected to the
Interconnection network interconnection network by using a
circuit, called the device interface.

e The interface includes some registers
among them data, status, and control
] Y registers whcih are accessed by program

[A [

instructions as if they were memory
S?;Zr:g DATA DATA locations.
registers STATUS STATUS PROGRAM-CONTROLLED I/0
¢ Consider a task that reads characters
E’i?:{:rlh CONTROL CONTROL typed on a keyboard, stores these data in
— Interface Interface the memory, and displays the same

characters on a display screen. A simple
way of implementing this task is to write
a program that performs all functions
needed to realize the desired action.

Processor Keyboard Display

Figure 3.2 The connection for processor, keyboard, and display.

e Responeses from the keyboard must be doneina ~ Address 76 5 4 3 2 1 0
tlmely manner. 0x4000 KBD_DATA
e The rate of data transfer from the keyboard to a —
computer is limited by the typing speed of the ox4004 (KIN)'KIRQ KBD_STATUS
user, which is unlikely to exceed a few characters =
per second 0x4008 KIE KBD_CONT

e The rate of output transfers from the computer to
the display is determined by the rate at which
characters can be transmitted to and displayed on 7 6 5 4 3 2 1 0
the display device, typically several thousand
characters per second.

(a) Keyboard interface

0x4010 DISP_DATA

o The difference in speed between [/0 devices o0xd014 (501)3 DIRQ| DISP_STATUS
creates the need to syncronize data transfer ==
between them 0x4018 DIE DISP_CONT

(b) Display interface

Registers in the keyboard and display inferfaces.

CSE1400 Computer Organisation

e signaling protocol: On output, the processor sends the first character and then waits for a signal from the
display that the next character can be sent. Then sends the second character, and so on.

e On input: The processor waits for a signal indicating that a key has been pressed and that a binary code that
represents the corresponding character is available in an I/0 register associated with the keyboard. Then
the processor proceeds to read that value.

e Polling: The processor reads a status flag (such as KIN = key has been pressed) which is part of an 8 bit status
register (KBD_STATUS)

o If the registers in I/0 interfaces are to be accessed as if they are memory locations, each register must be
assigned a specific address that will be recognized by the interface circuit.

e All addresses should be word-aligned. This makes the /0 registers accessible in a program executed by the
processor

Assume that the initial state of KIN is 0 and the initial state of DOUT is 1, which is normally performed by
the device control circuits when power is turned on
o Read the character pressed to register 5: READWAIT Read the KIN flag
Branch to READWAIT if KIN=0
Transfer data from KBD_DATA to R5

To display the character from register 5: WRITEWAIT Read the DOUT flag

Branch to WRITEWAIT if DOUT =0

Transfer data from R5 to DISP_DATA
The wait loop is executed repeatedly until the status flag DOUT is set to 1 by the display when it is free to receive a
character. Then, the character from R5 is transferred to DISP_DATA to be displayed, which also clears DOUT to 0.

e In computers that use memory-mapped [/0 you could implement it as follows (RISC-style)

READWAIT: LoadByte R4, KBD_STATUS WRITEWAIT: LoadByte R4, DISP_STATUS
And R4, R4, #2 And R4, R4, #4
Branch_if [R4]=0 READWAIT Branch_if [R4]=0 WRITEWAIT
LoadByte R5, KBD_DATA StoreByte R5, DISP_DATA

Recall that KIN is b1 (10pase 2 = 2)and DOUT is b2 (100pase2 = 4)

INTERRUPTS
When the processor is polling in aloop like in the example above Program 1 Program 2
it cannot perform other tasks. Instead, we can arrange for the [/0 COMPUTE routine DISPLAY routine
device to alert the processor when it becomes ready by sending a 3
hardware signal called an interrupt request to the processor. An ! l

example solution is to sperate the computation and I/0 routines,
and let the processor compute most of the time and occasionally tmierrupt

occurs = i

jump to the I/0 routines. Such jump is the interrupt. here
i+1
e The routine executed in response to an interrupt request :
is called the interrupt-service routine, which are similar M
i T
to subroutine calls.
e When the interrupt occurs, the PC saves the current PC Transfer of control through the use of interrupts.

value in temp register LINK or IPS, then PC is updated
with the interrupt adddress, the procesor executes it, then resumes the previous routine.

e Aspartofhandling interrupts, the special control signal “intterupt acknolwedge” from the processor informs
the device that its request has been recognized so that it may remove its interrupt-request signal. It is sent
to the device through the interconnection network.

o Before starting execution of the interruptservice routine, status information and contents of processor
registers that may be altered in unanticipated ways during the execution of that routine must be saved.

CSE1400 Computer Organisation
Return-from-interrupt instruction: The saved information is restored before execution of the interrupted
program is resumed. In this way, the original program can continue execution without being affected (except
delay) by the interruption.
interrupt latency: delay from the register savings before executing interrupt. Typically, the processor saves
only the contents of the program counter and the processor status register
Some computers provide two types of interrupts. One saves all register contents, and the other does not.
shadow registers: a different set of registers can be used by the interrupt-service routine, thus eliminating
the need to save and restore registers.
real-time processing: The concept of interrupts used in operating systems and in control applications where
processing of certain routines must be accurately timed relative to external events.

ENABLING AND DISABLING INTERRUPTS

[t must still be within the programmers power to control whether interrupts are enabled or not. It should be possible
to enable/disable interrupts both at processors and 1/0 device ends. To do so we use control bits in registers that
can be accessed by program instructions.

status register (PS): processor registor that contains information about its current state or operation, when
1, interrupt is allowed, when 2 interrupts are ignored.

The I/0 devices also have a control register that contain the information about how themselves should be
operated.

When a device activates the interrupt-request signal, it keeps this signal activated until it learns that the
processor has accepted its request.

It is essential to ensure that this active request signal does not lead to successive interruptions, causing the
system to enter an infinite loop from which it cannot recover.

A good choice is to have the processor automatically disable interrupts before starting the execution of the
interrupt-service routine.

The processor saves the contents of the program counter and the processor status register.

After saving the contents of the PS register, with the IE bit equal to 1, the processor clears the IE bit in the PS
register, thus disabling further interrupts.

Then interrupt-service routine starts, followed by the Return-from-interrupt instruction

Which restores the contents of the PS registe, sets the IE bit back to 1, and therefore interrupts are again
enabled (but not looped, it is still up to the processor to decide when to pick up the request).

The device raises an interrupt request.

The processor interrupts the program currently being executed and saves the contents of the PC and PS
registers.

Interrupts are disabled by clearing the IE bit in the PS to 0.

The action requested by the interrupt is performed by the interrupt-service routine, during which time the
device is informed that its request has been recognized, and in response, it deactivates the interrupt-request
signal

Upon completion of the interrupt-service routine, the saved contents of the PC and PS registers are restored
(enabling interrupts by setting the IE bit to 1), and execution of the interrupted program is resumed.

HANDLING MULTIPLE DEVICES

Multiple devices, that are operationally independent, sending interrupt requests are not syncrhonised. To fix this:

When an interrupt request is received it is necessary to identify the particular device that raised the request
if two devices raise interrupt requests at the same time, it must be possible to break the tie and select one of
the two requests for service (and then execute the other).

The information needed to determine whether a device is requesting an interrupt is available in its status
register. When the device raises an interrupt request, it sets to 1 a bit in its status register, which we will call
the IRQ bit.

The simplest way to identify the interrupting device is to have the interrupt-service routine poll all I/0
devices in the system

CSE1400 Computer Organisation
o The first device encountered with its IRQ bit set to 1 is the device that should be serviced. (first-in-first-out)

VECTORED INTERRUPTS

The main disadvantage of the previous last step is the time spent interrogating the IRQ bits of devices that may not
be requesting any service.
e vectored interrupts: interrupt-handling schemes where teh device identifies iteself t othe processor rather
than the processor polling for devices.
o A device requesting an interrupt can identify itself if it has its own interrupt-request signal, or if it can send
a special code to the processor through the interconnection network
e interrupt-vector table: permanently allocated area in the memory to hold the addresses of interrupt-service
routines, these addresses are alos called interrupt vectors.

INTERRUPT NESTING

e Generally, interrupts should be disabled during the execution of an interrupt-service routine, to ensure that
arequest from one device will not cause more than one interruption (aka. interrupt himself).

e Hower sometimes it is desired that high priority devices may be able to interrupt lower prioiritiy devices.

e Aprocessor priority level can be assigned, which can be encoded in a few bits of the processor status register

e For each nested interrupt service routine the stack must save the program counter and the status register,
which has to be done before the interrupt-service routines enables nesting.

CONTROLLING I/0 DEVICE BEHAVIOUR

e control register: register in the device interface that hodls information needed to control the device

o The control register is accessed as an addressable location, just like the data and status registers. In a 32-bit
processor, the control registers are 32 bits long.

e interrupt-enable: bit in the control register of the device that stores whether the processor will recognise it

e *IRQ: bit that is set to 1 if an interrupt request has been rised but not yet serviced

PROCESSOR CONTROL REGISTERS

e To deal with interrupts, besides the status register (PS) with the intterupt-enable bit (IE), other registers
and bits shall be used. The IPS saves the content of PS when an interrupt request is received and accepted.

o After the interrupt-service routine, the previous state of the processor is restored from IPS to PS. If nested
interrupts are used then IPS must use the stack.

o IENABLE: allows the processor to slectively respond to individual 1/0 devices, where a bit is assigned for
each device.

o [PENDING: register that indicates the active interrupt requests (usefol for when multiple devices make
requests at the same time).

e control registers cannot be accessed in the same way as the general-purpose registers. They cannot be
accessed by arithmetic and logic instructions, nor by Load and Store in the same enconding format.

e Therefore they have their own dedicated special instructions:

MoveControl R2, PS //DST, SRC

CISC INTERRUPTS

e CISC can test status bits of [/O registers directly.“TestBit” instruction is used to test the status flag.
o SetBit and ClearBit will make it 1 and 0 respectively.

EXCEPTIONS

e An interrupt is an event that causes the execution of one program to be suspended and the execution of
another program to begin
e exception: refers to any event that causes an interruption, which is not limited to just I/O interrupts
o recovery from errors: If an error occurs (in the hardware), the control hardware detects it and
informs the processor by raising an interrupt. For example, The OP-code field of an instruction may
not correspond to any legal instruction, or an arithmetic instruction may attempt a division by zero.

CSE1400 Computer Organisation
= when an interrupt is caused by an error associated with the current instruction, that
instruction cannot usually be completed, and the processor begins exception processing
immediately
o debuggings: A debugger usex exceptions to allow trace mode and breakpoints features, which
interrupt the instructions at specific points.
o operating system: the OS software may use exceptions to communicate/control with the execution
of user programes. It also uses hardware interrupts to perform I/0 operations.

BUS STRUCTURE

The bus is the interconnection network that is used to transfer data among the processor, memory, and /0 devices.

e Only one source/destination pair of units can use this bus to
Processor Memory transfer data at any one time.

e The bus consists of three sets of lines used to carry: address,
Bus data and control signals

e Each I/0 device is assigned a unique set of addresses for the
registers in its interface.

eWhen the processor places a particular address on the address
lines, it is examined by addres decoders of all devices on the bus.

Address lines
Bus { Data lines

Control lines

1/O device 1 oo /O device n

A single-bus structure.

e The device that recognizes this address responds to
the commands issued on the control lines.
e The processor uses the control lines to request either Address Control Data, status, and 10
a Read or a Write Operation decoder circuits control registers interface
e The requested data are transferred over the data
lines.
e When [/0 devices and the memory share the same nput device

address space, the arrangement is called memory-

mapped I/O I/O interface for an input device.
e interface circuit: the device’s address decoder, data

and status registers, and the control circuitry required to coordinate 1/0 transfers.

BUS OPERATION

e bus protocol: set of rules that govern how the bus is used by verious devices. It defines when a device may
place information on the bus, when it may load data on the bus, etc. all done by control signals (such as R/W)

e The bus control lines also carry timing information. They specify the times at which the processor and the
1/0 devices may place data on or receive data from the data lines. There syncronous and asyncrhonous.

e master: devide that initates data transfer by issuing Read or Write commands on the bus. (often the CPU)

e slave: the deviced addressed by the master.

SYNCHRONOUS BUS

Clock cycle ¢ clock cycle: clock signal’s two phases: the high level
- - followed and the low level that follows.
o clock pulse: first half of the cycle (the high part).
¢ diamond: means change in value.

¢ halfway line: unreliable/ignored data.
Single bit, switching between 0 and 1

Bus clock

Address and
command

I

Multiple bits, first all 0s, than mix of 1s and 0s
C___ —

Multiple bits, mix of 1s and 0s, changing over time

X X

Data

Ty 1 I

CSE1400 Computer Organisation

Read operation:

1.
2.

Master places the slave address on the addres lines and sends a command on the control lines.

The clock bus period from t0 to t1 > the maximum propagation delay over the bus. (long enough to allow
step 3).

All devices decode the address and control signals, and only the slave places at t1 the requested input data
on the data lines.

At the end of the clock cycle, at time t2, the master loads the data on the data lines into one of its registers.
The clock bus periodf from t1 to t2 > (t0 to t1) + setup time of the master’s register.

Write operation:

1.

4,

Master places the slave address on the addres lines a command on the control lines and the data on the data
line.

The clock bus period from t0 to t1 > the maximum propagation delay over the bus. (long enough to allow
step 3).

All devices decode the address and control signals, and only the slave, at t1 loads the output data on into its
data register

The clock bus periodf from t1 to t2 > (t0 to t1) + setup time of the slave’s register.

Because of propagation delays on bus wires and in the circuits of the devices, while the clock changes are assumed
to be seen at the same time by all devices connected to the bus:

a given signal transition is seen by different devices at different times.

This forces all devices to operate at the speed of the slowest device.

solution: bus incorporates control signals (Slave-ready) that represent the response from the device. These
signals inform the master that the slave has recognized its address and that it is ready to participate in a data
transfer operation. The number of clock cycles will vary from one device to another.

The master, which has been waiting for this signal, loads the data into its register at the end of the clock cycle
Save removes its data signal from the bus and returns its slave-ready signal to the low level by end of cycle T
the master may send new address and command signals to start a new transfer in clock cycle T+1

If the addressed device does not respond at all, the master waits for some predefined maximum number of
clock cycles, then aborts the operation (i.e. wrong address or device malfunction)

——= Time

| 2 3 4
Clock -
Address X X
Command X X
Data { B
L/
Slave-ready

An input transfer using multiple clock cycles.

Address
and command

Master-ready

CSE1400 Computer Organisation
ASYNCHRONOUS BUS

— Time Aka handshake protocol: exchange of command and response

D(ﬁ"'X signals between the master and the salve (so no need for

Slave-ready & clock (negative) edge). A control line Master-
I ready is asserted by the master to indicate that it is ready to

start a data transfer.

1. The master places the address and command information
Slaverready _—"l_ on the bus.
KL 2. Then it indicates to all devices that it has done so by
Data)_ activating the Master-ready line.
[3. This causes all devices to decode the address
4. The selected slave performs the required operation and
K n f B 4 s informs the processor that it has done so by activating the
Bus cycle Slave-ready line.
5. The master waits for Slave-ready to become asserted
Handshake control of data fransfer during an input operaion. before it removes its signals from the bus. In the case of a
Read operation, it also loads the data into one of its
registers.

o fully interlocked/full handshake: a change in one signal is always in resonse to a chinge in the other. Highest
degree of flexibility and reliabilit

e advantage: the handshake protocol eliminates the need for distribution of a single clock signal whose edges
should be seen by all devices at about the same time (simplifies the design), plus delays are flexible, whereas
in synchronous you will be bottlenecked by the slowest device.

o disadvantage: it is only advantageous when there are slow devices. If all devices are within the same range
it is better to use a synchronous clock because you will only need to accomadate a one round trip delay
instead of two.

ARBITRATION

e busdriver: A logic gate that places data on the bus.

e arbitrer circuit (round robin scheme): circuit that decides who uses a specific resource request by multiple
entities at once. The arbitrer associates priorities with individual requests. It will grant it to higher priority
first. Once the driver is done, it deactivates its Bus-grant.

1/0 LECTURE
I / O Interface Interface: Information exchange protocol between

Compared to the memory interface

elements, ISA is an interface between hardware and

......................... 1. Registers software,
|I - Interfaces are portable, so that the same protocol works
: with different elements.
Ry cPU The difference between the Memory — CPU interface and

the Device CPU interface is that the Devices have registers
inside them, so that the CPU can access them just as if they

were normal registers, thouse would be mapped registers.
1/O device i. Data registers

;'_J

I/O Interface »to store incoming and outgoing data

2. Status and control registers
~to certify status of device
~to control transfer

Single-bus architecture

Pro: Con:

CSE1400 Computer Organisation

Dual-bus architecture

: Pro: Con:
«simple «not scalable «fast «not scalable
o IerX|bIe t *slow «flexible « complex
«low cos i *qui
=0 Ty quite cheap “
Bus Bus

|1/0 device #1 |

e Black thick lines are buses

I/O organization
A typical motherboard

Northbridge

~high performance
Southbridge

- flexibility

(intel' inside”

"CORE 17
Other chipsets:
~Sandy Bridge (2011—)
~Intel Skylake (2015—)

—
=

Flash ROM
(BIOS)

Bus interface

'

v v v

address control data and
decoder circuits status registers

11O In'terface

I/O device

Cables and
ports
off-bowd

[1/0 device #n | /

e North bridge focuses on performance (it has
quick access to the CPU) Main memory and GPU
are there.

e South bridge is for all other devices
(connectivity, = USB, ethernet, keyboard,
periferals) and provides felxibility

e North and South combined = computer

chipset. Component on the mother board that
connects the CPU to all the other devices that we
could potentially connect to.

e You can’t plug any CPU in any chipset as these
work with a very unique chemistry (to gain
efficency) there is not a fixed interface between a
CPU and a general chipset.

o However, the chipset itself is compatible with
a lot of devices

oading

Only when the address match will the slave device
respond to the command in the control lines.

Address lines
Data lines
Control lines

Vo SV S
1. Dataregisters:
Store incoming and outgoing data
2. Status and control registers
Certify status of the defice
to control transfer
3. Address decoder
to detect if data is for the device

CSE1400 Computer Organisation
Synchronous bus

JICEVIA Al Delay between clock edge Sy I’%ChI‘Ol’lOUS bus Delay between bus change
and change on bus Reality at primary and bus change
- R at secondary
Bus clock ——
) Address X X Ao X X
Primary N Primary
Data — — Data e —
Secondary Secondary T
Data {) S— Data { >___
to tl tz t tl tZ

o setup time (lots of gates to change values)
e propogation delay
e drawback: slowest device sets the delay adjustment clock speed for all devices

Multi-cycle bus — handle device variability

v 2] 3| 4
Bus clock | | | | | | |
Address X
Command X X
Data [—+ faster devices need fewer cycles to respond
Secorday resdy I - signal completed to CPU
Primary = CPU
Asy nchropous bus Secondary = IO device
Input operation
Address X)
& ; X Y Explicit handshaking (vs synchronous clock)
omman
o) Timing must account for signal propagation skew, caused
maryready — I ________ .
Sl s — by detours (longer paths (wire length and gates))
Data —____I5—

Secondary notices exchange is complete,
clears data and its own ready signal to
return to initial state.

How does the CPU talk to IO devices?

Port-mapped I/0 Memory-mapped I/0
1. Use separate memory 1. Map I/O devices to region
space for I/O devices. in main memory.

2. Use special instructions to 2. Use existing instructions
interact with this separate to move data to/from
memory space. device.

Memory-mapped I/O .-

I/0 mapped

Assign an address range .-~
to each I/O device .-~~~

-

Stack

'

unused

- 21 0 Data

0x408 || [[T 1 | [sin [sour] rostatus

Program

| DATAIN

| DATAQUT

Main memory

CPU executes the I/O program

« Unconditional I/O
~no synchronization with I/O device

« Passive signaling (Polling)
»synchronization between CPU and I/O device by
programmed interrogation by CPU

« Active signaling (Interrupts)
~synchronization between CPU and I/O device by
active interrupt of device

CSE1400 Computer Organisation
Not all of the 2764 bits of the main memory addresses
will be used so some are allocated to device registers.
So you will map specific addresses, in hex generally
Therefore the same move command can be used
interchangeably with registers both inside and outside
the CPU

»MOV DATAIN, R1
read from the keyboard

»MOV $42, DATAOUT
write to the screen

Programming I/0 routines:

Use status registers and busy waiting

READWAIT: Testbit #1, IOSTATUS
Branch=0 READWAIT
Move DATAIN, R1

WRITEWAIT: Testbit #0, IOSTATUS
Branch=0 WRITEWAIT
Move R1, DATAOUT

Actively wait in a loop until the bitis 1.
Keeps the CPU busy with this loop.

Unconditional I/0. The device is constantly sending data but the CPU reads it whenever he wants. You get racing the
beam issue: The pixels are displayed when the CPU wants, so half of the image has old pixels the other half new pixels

Passive signaling (polling) : Similar as buys waiting, but instead of every cycle it is every x seconds

Active signaling: removes control from the cpu.

The CPU may not be interrupted when it is executing an instruction, these are atomic. The interrupt will sneak in the

PC after the current instruction is completed.

Interrupts

Programmer’s perspective

Interrupts

Execution flow

Compute routine Print routine

1 O — | 1-
jump
Interrupt 2.
i+1 3.
| 4,
M

el i
-3

Control passes to other code on an external event ¢,
- ISR - Interrupt Service Routine (aka interrupt handler) -
- at random (!) moment in time

I/0 device alerts CPU by hardware signal
- Interrupt ReQuest line (IRQ, part of the I/O bus)
CPU stops program execution

Interrupts are disabled

Device is informed of acceptance and
clears IRQ

ISR is invoked to handle device’s request
Interrupts are enabled

Execution of program resumes

10

Vectored interrupts

CPU

IRQ
| I |
[DEVi] [DEv2| |DEV3]
GRANT l
I0 Bus interrupt vector
ISR1
ISR2
ISRn

Daisy chaining = hooking up multiple devices in a sequence.

Daisy chain

CPU

IRQ

l | l
{ DEV1 [—| DEV2 |—{DEV3 |»

GRANT

« Rule out simultaneous interrupts by
prioritizing devices
« Fixed order (from left to right)

~when inactive, pass signal on

Recap
1.

CSE1400 Computer Organisation
Shared interrupt line hardware to the CPU, which
the CPU cant ignore.

1. A Device sends interrupt signal via the IRQ

2. CPU sends Grant signal back to (all) devices
via GRANT (different when prioritizing)

3. Device sends ID on data bus

4. CPU calls ISR from interrupt vector [ID]

The interrupt vector information is usually in the
device drivers.

When multiple devices raise a grant signal the
priority will go from the closest device to the CPU
to the furthest. (Because you are the first to
receive the grant signal).

Ifthe high priority device didnt raise the interrupt
it will pass the grant on to the next devices.

Users generate increasingly more data. We

need high-performance and flexible I/0 to

meet demand

2. I/O devices use an interface based on signals

and registers

3. I/O devices are connected to the CPU using
one or multiple (a)synchronous buses

4. If the CPU controls the I/O devices:
1. We can use memory-mapped

or port-mapped I/O

2. We can use unconditional I/0, busy-waiting,

polling, or interrupts

5. Vectored interrupts/daisy-chaining
support multiple devices/interrupts, different

characteristics

11

CSE1400 Computer Organisation

CHAPTER 8 MEMORY (SOLVED PROBLEMS PAGE 324)

The memory of a computer comprises a hirearchy, including a cache, the main memory, and secondary storage.

Direct memory access is a mechanism to transfer data between an I/0 device, such as a disk, and the main memory
with minimal involvement from the processor.
Caches decrease memory access times.

BASIC CONCEPTS

The maximum size of the memory that can be used in any computer is determined by the addressing scheme.
16-bit addresses can have 2”16 memory locations.
Memory is usally designed to store and retrieve data in word-length quantities. From now own, assume 32-
bit addresses for byte addressable memories. The high order 30 bits determine which word is specified. the
low order 2 bits of the address specify which byte location is involved.
o Awordis 2 bytes.
o longis 4 bytes

Processor-memory interface

o quad is 8 bytes L Memory
The connection between the CPU and memory consist of: k-bit address
o addres
o data . n-bit data ~] Upto 2* addressable
o control lines <] locations
The processor uses the addres lines to specify the
memory location involved in a data transfer operation <

The processor uses the data liens to transfer the data at Processor

AV

Word length = n bits

Control lines
(RIW, etc.)

such specific address
The control lines carry the command indicating a Read or Connection of the memory to the processor.

Write operation and whether a byte or a word is to be

transferred.

Control lines also provide the timing information by asserting MFC

memory access time: speed of memory unit that elapses the time between initation of an operation to
transfer a word of data and the completion of that operation.

memory cycle time: minimum time delay required between the initation of two successive memory
operations (i.e. time between 2 successive reads). Cycle time is usually shorter than access time.
random-access memory (RAM): if the access time to any location is the same, independent of the location’s
address. Which is different to other type of memories such as disc, where certain data is located at places
that take longer for the disc to read. The cycle times range from 100ns to less than 10ns

CACHE AND VIRTUAL MEMORY

Memory access time is the bottleneck in the CPU as decoding and processing the instruction take less time
than fetching the instruction from memory.

cache memory: small fast memory inserted between the larger (slower) main memory and the processor. It
holds the currently active portions of a program and its data.

virtual memory: only the active portions of a program are stored in the main memory, and the remainder is
tored on the much larger secondary device. Sections of the program are transferred back and forth. Therefore
the application sees a memory that is much larger than the computer’s actual main memory.

block transfers: Data is transfered in blocks involving tens to thousands of words

Semiconductor RAM Memories

INTERNAL ORGANIZATION OF MEMORY CHIPS

Memory cells are commonly organized in the form of an array, where each cell stores 1 bit of data
Each row constitues a memory word
word line: cells of a row are connected to a common line. Driven by the address decoder on the chip

CSE1400 Computer Organisation

e columns are connected to a Sense/Write circuit by 2 bit lines which are connected to the data input/output
lines of the chip. Depending on the Read/Write signals the Sense/Write will either output the cells contents

or listen to the input and write it on the cell.

m bl b, b QO \
LJO(N

\ l l |

Ao Will] I |

At = Address Memory
a decoder cells

Ay —m

SR ==

AL

éé’j Sense/Write Sense/Write Sense/Write
a{ circuit circuit circuit - CS
b HJ LLJ LIJ Lo CSaP
— oA
Data input/output lines: b b, by S

16 words of 8 bits each (it is still up to the architect to define how many bits a word contains). This is refered to as a
16x8 organization. The configuration above stores 128 bits (16*8) and reqiores 14 external connections for address,
data and control lines. It also needs 2 lines for power supply and ground conections.

1024 cells, organized as a 128x8 memory. Requires a total of 19 external connections.
1kx1 setting would be a 10 bit address, with only one data line, resulting in 15 external connections

a 1G-bit chip may have a 256M X 4 organization, in which case a 28-bit address is needed and 4 bits are transferred

to or from the chip /_|>_
STATIC MEMORIES / <

static memories: memories that consist of circuits capable of retaining their state as long as power is applied.

SRAM (static RAM cell below, CMOS style):

b g e Two inverters are cross-connected to form a latch

Veupply
fp' e The latch is connected to two bit lines by transistors

i ‘ T1 and T2

e Transistors act as switches, which are controlled by
the word line. They are NMOS so the represent the exact
T, T, same value that the word line has. if low they are open
-—_— X \/ e (so latch retians its current value) if high they are closed.
| /\ | e to read the state of the SRAM cell, the word line is

Ts activated to close switches T1 and T2

e Cell = 1ifb1 high, b’ low.

- e Cell =0ifbl low, b’ high

Wordline ©® To write, the Sense/Write circuit drives bit lines b and
b’ , instead of sensing their state. It sets b and b’
- Bit lines = accordingly and actiates the word line to save it (once

disabled, the latch will keep the current value.

e Continues power is needed for the cell to retain its state.

2

CSE1400 Computer Organisation
When power is restored after an interruption, the latch settles into a stable but not necessarily the same as
the last state, this makes SRAM volatile, because their contents are lost after power is gone.
advantage: low power consumption (current flows in the cell only when the cell is being accesssed. There is
no connection between supply and ground but the state is kept. Another advantage is that they can be
accessed very quickly (ns)

DYNAMIC RAMS

Bit line

DRAMS (dynamic RAMs): Less expensive and higher density RAMs
implemented with simpler cells that can’t retain their state for a long
Word line period unless they are accessed frequently.

J_ ¢ Information is stored in a dynamic memory cell in the form of a charge
i _ (on a capacitor, but this charge can be maintained for only tens of
T e LIX& milliseconds.
T Coiv e its contents must be periodically refreshed by restoring the capacitor
= charge to its full value (this occurs when the contents of the cell are read
or written into it).
e To store information in this cell, transistor T is turned on and an
appropriate voltage is applied to the bit line
After the transistor is turned off, the charge remains stored in the capacitor, but not for long as the capacitor
begins to discharge after is totally turned off.
A sense amplifier connected to the bit line detects whether the charge stored in the capacitor is above or
below the threshold value
If the charge is above the threshold, the sense amplifier drives the bit line to the full voltage representing the
logic value 1. As a result, the capacitor is recharged to the full charge corresponding to the logic value 1.
If the sense detects the capacitor below the threshold, it pulls the bit line to ground level to discharge the
capacitor fully.
Since the word line is common to all cells in a row, all cells in a selected row are read and refreshed at the
same time after reading the contents of a single cell of that row.
Row Address Strobe (RAS signal): input control line that causes a read operation to be initiated, in which all
cells in the selected row are read and refreshed.
fast page mode feature: a block of data (often called page) transfered at a much faster rate by applying a
consecutive sequence of column addresses (CAS signals = Column Address Strobe).

SYNCHRONOUS DRAMS

A single-transistor dynamic memory cell.

address

e DRAMS syncrhonized by a clock signal.

Refresh
B e Clock sends refreshing signal to selected rows, which
{} makes the dynamic nature of these memory chips is

almost invisible to the user.

Row

address [doooger | Cell array e SDRAMs have several different modes of operation,
Row/Column which can be selected by writing control information into
a mode register
sy =] Column [ReadrWie burst operations of different lengths can be specified
address > decoder | © | circuits & latches e Dburst operations of different lengths can be specifie
New data are placed on the data lines at the rising clock
<> Clock | | | | | | | | | | |
e I Y, L
CAS —» ° Z;Zzl; o Datn_inpul Data output R/W _I I | I
1§ o] tmin conro L T T T
TS — ras || |1
e O O O A
Data CAS —I I I |
, S N T A O A
Synchronous DRAM. Address _Y R x x Co x

CSE1400 Computer Organisation

The column address is latched under control of the CAS signal

e Synchronous DRAMs can deliver data at a very high rate, because all the control signals needed are generated
inside the chip.

o Today’s SDRAMs operate with clock speeds that can exceed 1 GHz

e memory latency: time it takes to transfer the first word of a block

e memory bandwidth: performance measure: number of bits or bytes that can be transferred in one second

e Double_data_rate SDRAM: To make the best use of the available clock speed, data are transferred externally
on both the rising and falling edges of the clock

e Rambus Memory: The key feature of Rambus technology is the use of a differential-signaling technique to
transfer data to and from the memory chips.

STRUCTURE OF LARGER MEMORIES

21-bit
address
A 19-bit internal chip address
0
et]
I Py . Py . L P . ey
- — e —]] —] P o]
Ay
Ag(]_ Y l -
[-] D — e o e
— e] [~ —] e o]
— - 1 (— - - | 1
2-bit } L |
decoder
[|] = ! - 1
< = L 3 k-
// | | | |
512K x 8 V V vV A%
memory chip
D324 D33.16 Dys.g Dz

512K x 8 memory chip

19-bit ~ 8-bit data
address <—> inputfoutput

Chip-select
Organization of a 2M x 32 memory module using 512K x 8 static memory chips.

The R/W inputs of all chips are tied together to provide a common Read/Write control lin (not shown in the figure)

DYNAMIC MEMORY SYSTEMS

o Alarge memory leads to better performance, because more of the programs and data used in processing can
be held in the memory, thus reducing the frequency of access to secondary storage

e Because of their high bit density and low cost, synchronous dynamic RAMs, are widely used in the memory
units of computers

CSE1400 Computer Organisation
o They are slower than static RAMs, but they use less power and have considerably lower cost per bit
e Memory modules are commonly called SIMMs (Single In-line Memory Modules) or DIMMs (Dual In-line
Memory Modules)

MEMORY CONTROLLER

e The address applied to dynamic RAM chips is divided into two parts:
o high-order address bits: select a row in the cell array
(provided first and latched into the memory chip under control of the RAS signal)
o lower-end bits: select a column
(provided on the same address pins and latched under control of the CAS signal)
e Since a typical processor issues all bits of an address at the same time, a multiplexer is required (memory
controller circuit)

REFRESH OVERHEAD

e A dynamic RAM cannot respond to read or write requests while an internal refresh operation is taking place
o Such requests are delayed until the refresh cycle is completed
o the time lost to accommodate refresh operations is very small

consider an SDRAM 1n which each row needs to be retreshed once every 64 ms. Suppose
that the minimum time between two row accesses 1s 30 ns and that refresh operations are
arranged such that all rows of the chip are refreshed in 8K (8192) refresh cycles. Thus,
it takes 8192 x 0.050 = 0.41 ms to refresh all rows. The refresh overhead is 0.41/64 =
0.0064, which is less than 1 percent of the total time available for accessing the memory.

COMPARING RAMS

e Static RAMs (SRAM) are used where a small but very fast memory is needed (cache)

e Dynamic RAMs are cheaper and have high bit density

e Synchronous Dynamic Rams (SDRAM) are the better version of DRAM and used for the main memory
DIRECT MEMORY ACCESS

Processor

Status and control

IRQ J |— Done Main
— Bridge memory
IE R/W

PCI bus
Starting address
Disk/DMA DMA
controller controller
Word count
Disk Disk Ethernet
interface

Typical registers in a DMA controller. /_\L/

Use of DMA controllers in a computer system.

Data are transferred from an /0 device to the memory by first reading them from the I/0 device using an instruction
such as: LOAD R2, DATAIN //DST, SRC

e Considerable overhead is incurred, because several program instructions must be executed involving many
memory accesses for each data word transfered.

CSE1400 Computer Organisation

e direct memory access (DMA): An alternative approach is used to transfer blocks of data directly between the
main memory and I/0 devices, such as disks.

e The unit that controls DMA transfers is referred to as a DMA controller which performs the functions that
would normally be carried out by the processor when accessing the main memory

o Although a DMA controller transfers data without intervention by the processor, its operation must be under
the control of a program executed by the processor, usually an operating system routine.

e To initiate the transfer of a block of words, the processor sends to the DMA controller the starting address,
the number of words in the block, and the direction of the transfer.

e The DMAcontroller then proceeds to perform the requested operation. When the entire block has been
transferred, it informs the processor by raising an interrupt.

o Two registers are used for storing the starting address and the word count. The third register contains status
and control flags.

e Done flag 1 iWhen controller completes transferring a block of data and is ready to receive another command

e Bit 30 is the Interrupt-enable flag, IE. When this flag is set to 1, it causes the controller to raise an interrupt
after it has completed transferring a block of data.

e The controller sets the IRQ bit to 1 when it has requested an interrupt.

MEMORY HIERARCHY
e Anideal memory would be fast, large, and inexpensive
e a very fast memory can be implemented using static Processor
RAM chip
e these chips are not suitable for implementing large Registers
memories, because their basic cells are larger and Increasing Increasing Increasing
consume more power than dynamic RAM cells. s1ze Primary speed — cost per bit
e Although dynamic memory units with gigabyte cache Ll A

capacities can be implemented at a reasonable cost, the 4
affordable size is still small compared to the demands ¥
of large programs with voluminous data. Secondary | ,

e A solution is provided by using secondary storage, cache
mainly magnetic disks, to provide the required .
memory space. Disks are available at a reasonable cost,
and they are used extensively in computer systems. Y
However, they are much slower than semiconductor Main
memory units.

e affordable, (smaller) main memory can be built with
dynamic RAM technology. Y

e static RAM technology to be used in smaller units Y Magnetic disk

where speed is of the essence, such as in cache *ﬁé’;‘;ﬂ;}
memories. This memory, called a processor cache

holds copies of the instructions and data from the main

memory, Memory hierarchy.

o The fastestaccessis to data held in processor registers.

A primary (L1) cache is always located on the processor chip. This cache is small and its access time is comparable
to that of processor registers

Alarger, and hence somewhat slower, secondary (L2 sometimes even L3) cache is placed between the primary cache
and the rest of the memory. Often it is also housed on the processor chip.

CACHE MEMORIES

e The cache is a small very fast memory between the processor and the main memory.
o locality of referene: approach to make the main memory appear to the processor to be much faster than it is.
most of program execution time is spent in routines in which many instructions are executed repeatedly.
e arecently executed instruction is likely to be executed again very soon
6

CSE1400 Computer Organisation
instructions close to a recently executed instruction are also likely to be executed soon

o property of locality of reference: whenever an
information item, instruction or data, is first needed, this
item should be brought into the cache, because it is likely

Main

Processor |- »| Cache |= - to be needed again soon.

memer e Spatial locality suggests that instead of fetching just

one item from the main memory to the cache, it is useful

to fetch several items that are located at adjacent
addresses as wel

cache block/cache line: set of contiguous address locations of some size

mapping function: specifies the correspondence between the main memory blocks and those in the cache
replacement algorithm: cache control hardware that decides which block should be removed to create space
for the new block that contains the referenced word

cache hits: the processor without knowing whether the issued address is cached or not goes through the
cache control circuitry and if it does aread or write hit occurs.

read hit: the main memory is not involved

write hit: option 1, write-through protocol, both cache and main memory are updated. Option 2,
write-back/ copy-back: only the cache location is updated and marks the block containing it with an
associated fal bit (dirty/modified bit) and right before the cache word is going to be removed for a new block
the main memory location of the word is updated.

The write-through protocol is simpler than the write-back protocol, but it results in unnecessary Write
operations in the main memory when a given cache word is updated several times during its cache residency.
The write-back protocol also involves unnecessary Write operations, because all words of the block are
eventually written back, even if only a single word has been changed while the block was in the cache. Still
write-back is used most often as it takes advantage of the data block transfer efficency.

cache misses: when a word is not found in the cache. Which will copy the main memory words to the cache.
load-through/early restart: it first sends the word to the processor and then to the cache to reduce
processor’s waiting time at the spend of more complex circuitry.

Write miss with write-through protocol: the information is written directly into the main memory.

Write miss with write-back protocol: the block containing the addressed word is first brought into the cache,
and then the desired word in the cache is overwritten with the new information.

many processors use separate caches for instructions and data, making it possible for the two operations to
proceed in parallel.

direct mapping: block j of the main memory maps

. . . Contents of data cache after pass:
onto block j modulo 128 of the cache. Contention is

resolved by allowing the new block to overwrite Block o325 j=7]j=9i=6|i=4|i=2|i=0

position
the currently resident block. With direct mapping,

=
=z
2
=2

A0,2) | A(04) | A0,6) | A08) | A(0,6) | A04) | A(0,2) | A(O,0)

the replacement algorithm is trivial. Placement of a

block in the cache is determined by its memory

address. The direct-mapping technique is easy to
implement, but it is not very flexible.

A(0,1) | A(0,3) | A(0.5) | A0,7) | A0,9) | A0D,7) | A(0,5) | A(0.3) | A(D,])

~ o B Wk —

Tag Block Word

5 7 4

Contents of a direct-mapped data cache.

associative mapping: the most flexible mapping meppod, a main memory block can be placed into any cache
block position. It has a more fficient use of the space in the cache. When a new block is brought into the cache,

it replaces (ejects) an existing block only if the cache is full. Associative search searches the tags in parallel.
Tag Word

12 4

CSE1400 Computer Organisation

Contents of data cache after pass:
Contents of data cache after pass:

Block
b =7 =8 =0 =1 =0

position | / / ! * r j=31j=7|j=9|i=4|i=2|i=0
0 [AGD | AGY | A0S | ADS) | A0 A00) | A04) | AQ08) | A04) | AO4) | AD0)
1 AQ.1) | AQ.D) | A09) | AG,D | AG,T) AQ.D) | A(0.5) | A(0.9) | A©05) | A.5) | A1)
2 A(02) | AD2) | AD2) | A02) | A02) Set0 9 FX02) [A0.6) | A0.6) | A06) | A0.2) | AD.2)
3 A(0,3) | A(0,3) | A(0,3) | A(0,3) | A(0,3) A(0,3) | A(0,7) | A(0,7) | A(D,7) | A(0,3) | A(0,3)
4 A0,4) | A04) | A04) | A04) | A0,4)
5 A0,5) | A0,5) | A0,5) | A(0,5) | A0,5)
6 A0,6) | A0,6) | A(0,6) | A(D6) | A0.,6) Setl 9
7 A0.7) | A0.7) | A0.7) | AD.7) | A0.7)

Contents of an associative-mapped data cache. Contents of a set-associative-mapped data cache.

set associative mapping: combiation of direct and associative mapping. Main memory blocks may reside in
any set. It eases the block rplacement problem of direct mapping. Associative search is also reduced.
Tag Set Word

6 6 4

stale data: when the power is turned on, the cache contains no valid data (stale) (so all valid bits are reset to
0). A control bit (valid bit) must be provided to tell whether the block data is valid or not. The processor
fetches data from a cache block only if its valid bit is equal to 1. So as program execution proceeds, the valid
bit of a given cache block is set to 1 when a memory block is loaded into that location.

flush the cache: forces all dirty blocks to be written back to the memory before performing the transfer.
cache-coherence problem: the need to ensure that two different entities (the processor and the DMA
subsystems in this case) use identical copies of the data.

replacement algorithms:

o In a direct-mapped cache, the position of each block is predetermined by its address; hence, the
replacement strategy is trivial. For the rest:

o least recently used (LRU) replacent algorithm: overwrite the block that has gone the longest time
without being referenced (a 2-bit counter can be used for each block).

» Performance of the LRU algorithm can be improved by introducing a small amount of
randomness in deciding which block to replace.

o “oldest” block from a full set when a new block must be brought in. This algorithm does not take into
account the recent pattern of access to blocks in the cache, it is generally not as effective as the LRU
algorithm

o the simplest algorithm is to randomly choose the block to be overwritten. Interestingly enough, this
simple algorithm has been found to be quite effective in practice.

PERFORMANCE CONSIDERATIONS

Hit rate and miss penalty: Consider a system with only one level of cache. In this case, the miss penalty
consists almost entirely of the time to access a block of data in the main memory. Let h be the hit rate, M the
miss penalty, and C the time to access information in the cache. Thus, the average access time experienced
by the processor is: t4,y = hC + (1 —)M

Hit rate and miss with 2 cache: ¢4,; = h1C; + (1 — hy)(h,C; + (1 — hy)M)

number of misses in the L2 cache: (1 — h1)(1 — h2)

hy is the hitrate in the L1 caches. - (ﬁd@ v me@j FJMF
K/"\/

h> 1is the hit rate in the L2 cache.
‘7 o o ¥ e ”‘\W'

C> 18 the miss penalty to transfer information from the L2 cache toan L1 2 . ﬂ N U(M’, ¢

is th/mm enalty to transfer information from the main memory to the L2 cache. \&
0 penalty Y AN J/\ij&feie%

C; 1s the time to access information in the L1 caches.

CSE1400 Computer Organisation

o write buffer: writing tasks can be delayed and performed in bulks (buffers) because the processor doesn’t
usually need to access the written data immeditely again, for reading requests is the opposite.

o prefetching: To avoid stalling the processor, it is possible to prefetch the data into the cache before they are

needed. A special prefetch instruction may be provided in the instruction set of the processor. They can be

inserted into a program either by the programmer or by the compiler.

o lockup-free cache: prefetching can lock the entire cache room. Lockup free cache allows the processor to

access the cache and have more than one outstanding miss.

VIRTUAL MEMORY

When a program doesn’t have enough main memory to execute the programs virtual
memory will allocate the extra memory to a secondary memory space, which will
replace parts of the current main memory as the new ones are needed for execution.
It’s like caching secondary memory into main memory.

e virtual or logical addresses: binary addresses that the processor issues for
either instructions or data.

e If a virtual address refers to a part of the program or data space that is
currently in the physical memory, then the contents of the appropriate
location in the main memory are accessed immediately. Otherwise, the
contents of the referenced address must be brought into a suitable location in
the memory before they can be used.

e Memory Management Unit: special hardware unit that keeps track of which
parts of the virtual addres space are in the physical memory (main).

o When the desired data or instructions are in the main memory, the
MMU translates the virtual address into the corresponding physical
address

o Ifthe data are not in the main memory, the MMU causes the operating
system to transfer the data from the disk to the memory. Such
transfers are performed using the DMA scheme that does not directly
involve the processor

Processor

Data

Virtual address

Physical address

Cache

Data

Physical address

Main memory

DMA transfer

Disk storage

Virtual memory organization.

e Address translation: A simple method for translating virtual addresses into physical addresses is to assume

that all programs and data are composed of fixed-length units called pages.

Virtual address from processor

Page table base register I l |
| Page table address | Virtual page number | Offset |
®
PAGE TABLE
—
-
v
Control Page frame

bits n memory Page frame | Offset |

|

Physical address in main memory

Virtual-memory address translation.

9

CSE1400 Computer Organisation
The cache bridges the speed gap between the processor and the main memory and is implemented in
hardware.
The virtual-memory mechanism bridges the size and speed gaps between the main memory and secondary
storage and is usually implemented in part by software techniques.
page table This information includes the main memory address where the page is stored and the current
status of the page.
virtual page number: high-order bits
offset: low-order bits (location of a particular byte or word within a page)
page frame: An area in the main memory that can hold one page
page table base register: Keeps the starting address of the page table
Translation Lookaside Buffer (TLB): Mantained within the MMU, the TLB functions as a cache for the page
table in the main memory by containing the most recently accessed pages. In addition, it includes the virtual
address of the page, which is needed to search the TLB for a particular page
Address translation proceeds as follows:
o Given a virtual address, the MMU looks in the TLB for the referenced page
o Ifthe page table entry for this page is found in the TLB, the physical address is obtained immediately
o If there is a miss in the TLB, then the required entry is obtained from the page table in the main
memory and the TLB is updated
o Itisessential to ensure that the contents of the TLB are always the same as the contents of page tables
in the memory. When the operating system changes the contents of a page table, it must
simultaneously invalidate the corresponding entries in the TLB

Virtual address from processor

l

Virtual page number Offset
TLB
Virtual page Control Page frame
number bits in memory
Page frame Offset

!

Physical address in main memory

Use of an associative-mapped TLB.

10

CSE1400 Computer Organisation

e page faults: page that is not in the main memory, a page fault is said to have occurred. So like the cache miss

o When it detects a page fault, the MMU asks the operating system to intervene by raising an exception
(interrupt)

o The operating system copies the requested page from the disk into the main memory

Concepts similar to the LRU replacement algorithm can be applied to page replacement

o It is important to note that the write-through protocol, which is useful in the framework of cache
memories, is not suitable for virtual memory. The access time of the disk is so long that it does not
make sense to access it frequently to write small amounts of data.

e system space: separated from virtual space in which user application program resides dedicated for operatig
system routines. Separate page table for each user program are arrranged. The physical main memory is thus
shared by the active pages of the system space and several user spaces. However, only the pages that belong
to one of these spaces are accessible at any given time.

o protection: No program should be allowed to destroy either the data or instructions of other
programs in the memory.

o supervisor mode: The processor is usually placed in the supervisor mode when operating system
routines are being executed and in the user mode to execute user programs.

o user mode: some machine instructions cannot be executed. These are privileged instructions. They
include instructions that modify the page table base register, which can only be executed while the
processor is in the supervisor mode.

o shared pages: Since a user program is executed in the user mode, it is prevented from accessing the
page tables of other users or of the system space. Shared pages will therefore have entries in two
different page tables

O

WEEK 7 - MEMORY LECTURE
DIRECT MEMORY ACCESS

Very simplistic co-processor with just 1 instruction, move.

A separate active entity (not the CPU!) Direct Memory Access

executes the I/0 tasks W (‘S’j’;eed " ,g
~user instructs the device about what to copy, where o ave S]’
~device takes care of data transport Compute routine

Interrupt
S Y —

« Direct Memory Access
~1 instruction: MOVE (= COPY)
«Special I/0 processors — it
~more versatile

~run their own program M[v'll
Parallel processing- to the rescue!
« DMA controller) B”fygre";;t;’"ng

~independent entity (»burst mod

~specialized in data transfer v

~block based | CPU |

Q: what & how Bus I
much is gained

4 vx(6,\1\(1/ [1/0 device #1| ... |BLINEICIES
VLN '
gw Cache will free up the bus from DMA bursts

11

CSE1400 Computer Organisation
DMA fetches the next memory block while CPU is
decoding the current one.

DMA controller

CPU < DMA interaction
Video-playback example

CPU

DMA

“Intelligent” I/O device

—>1. Issue a transfer of block N+1
from disk to memory —————» 1. Receive a command 31 30 2 1 0
2. | Start decoding block N from 2. Transfer block N+1 0x400000|(RQ [IE [[-] | [R/W|pong| STAT & CTRL
memory from disk to memory
0x400004 | | START ADDR
word by
word 0x400008 | | | WORDCOUNT
3. Handle interrupt <————— 3. Send an interrupt
4. | Finish decoding block N « Accessed as a normal I/O device
T ~signals when DONE and/or by interrupt

«Acts as a bus master when transferring data
~Sets addresses and controls lines

MEMORY ORGANIZATION

Usually, we To shuffle larger words in one go

«keep memory aligned
«work with complete words

16x8 memory organization =

\/\}Dg
1+ 1 b 4 b ; [
One bit in memory L__%/’ X ,,_l:l_ R o D
Selected for read/write by word line N7 1
B “m[yll\ I-B
! i = \
. ~'\| — <
T | - — I[T, Address - = Memory
A decoder . . . cells
T | | | T o
— X Y :’ Ay —
Ts | Bih 4 |[T, Wis l |
3 1 [1 [1
. Sense/Write Sense/Write Sense/Write o R/W
Word line cireuit circuit cireuit o
— e —— — &3
Bit lines LTI

/[CJM//}’ R ;@m{f'c F}\”

Writing to B
B v

HIGH L LOwW

HIGH

Word line

— Bil lifes —

12

Toacsoy-

T

<de I

/
by

— A
cAp

SRAM is stable (bit stays after power of

suppiy

Keeps value when disconnected

» Without consuming power!
«Known as Static Random Access Memory (SRAM)

LOW

CSE1400 Computer Organisation
DRAM: Just a capacitor and a transistor which is cheaper
Word line than the 6 transistors of SRAM. Capacitor needs to be
recharged (iff the state was 1). Charged capacitor means T =
'?! 1 (bitline = 1), empty capacitor T=0 (bit line = 0)

a1 r i IO i

1024-bit memory organization 128@

Splitting rows and columns

Bit line

I

» Dynamic Random Access Memory (DRAM)
« Leakage current enforces periodic refresh

W

Row —] WO,/ S NZK o‘ K
Address —] 5-bit = 32 by 32\0\3%\
(5bit) decoder memory
— W31 array A
7-bit address lines W
[=r] = G2
¢ 22 U2 THge

Lz -
Column = 32-to-8=Y [___R/W
ﬂlf)ss =Y MUX/DEMUX p—Cs

6 (o) (Ir/out

13

CSE1400 Computer Organisation

128x8 is more efficient than 1024x1 because you use words of 8 bits.

But 1024x1 is cheaper because it uses less pins

Row
Address
~(5bit)

1

~

bit)

5-bit
decoder

WO

32 by 32

memory

address lines

W31

array

32-tof1 }~

MUX / DEMUX

[Tn/out

More speed is more expensive (more pins)

024-bit memory organization m

Splitting rows and columns

| RW
—CS

Cost expressed in #pins

128x8 organization
« 7 address pins

- 8 data pins
«2ZR/W + CS)

« Xpower + grouncD
-

19 pins

/Zf 6%@(OL’“YD (baAA(',é)

1024x1 organization
+ 10 address pins

« 1 data pin

«2AR/W + CS)\
-ngwer + ground)
-+

15 pins /

o X €2
SORAM s

2 allo\e

yﬂu\/’fﬁb& M&

M i@hﬂ w('\/f

fieasn

m bits K bits

Address in Bank J:ERIS

21-bit
address
19-bit internal chip address
' ‘ /\ T WZA
Aw 1
A A |
— ol B ks e e
l
S0 | S=Il— il — -
|
2.hit i i l
decoder ‘
— R — K K
SI2K <8 \V4 \% {/ J\/
s A D‘l‘ll D216 Dysx D4
Memory banks vk
Flat layout “rve NP Memory banks
% its (@ts Interleaved layout
Memory
Address in Bank | 1 :4
&% I address (b,us wV\>
| | i
cs address cs address cs address | [address
Bank —| Bank —| Bank Bank
0 i n-1 0

« Consecutive addresses served by the same memory

0
1

T

s address cs address
~+| Bank “=| Bank
i n-1

+ Higher throughput (sequential access)

Wm

14

WEEK 8 - CACHE LECTURE

CSE1400 Computer Organisation

Processor-memory speed gap

power wall

100,000
CPU: Speeds 2X every 2 years \
10,000
DRAM: Speeds 2X every 7 years
1,000

Performance

Gap: 2X
every 2 years

Memory

1995
Year

2000

1990

Power wall from too much generated heat in
the circuits. Caches become more important as
the gab between the CPU and the DRAM
widens (Draining halt).

0S and hardware define which things go to
which caches

Reason latency of the disk is 10"6 whereas the
bandwidth is not that small is because the
latency calculates the time (cpu cycle unit) of
getting the first word wereas bandwidth looks
at the average time of getting x words per
cycle. Since the disk can process large words
the average per word goes down.

0S decides how much DRAM (main memory)
programs get and how much disk as well. OS
can’t decide caches.

How the cache works

READ operation:

2005

2010

Memory hierarchy

increasing increasing
speed

Cost/bit

[Primary cache: L1D, L1I | CPU 1
increasing | | | Primary cache: L2 \
size I
Secondary cache:
L3
|
Main
Memory
Hierarchy Merno:'y (L4
|
Storage ©
Hiera r? hy Disks /0
¥| Secondary memory cache

Let’s quote some (old) numbers ...

« if not in cache (MISS), copy block into cache and

read out of cache (possibly read-through)
« if in cache (HIT), read out of cache

WRITE operation:

« if not in cache (MISS), write in main memory
« if in cache (HIT), write in cache, and either:

~ write in main memory (store through), or
~ set modified (dirty) bit, and write later

15

Latency
Registers 1cyc
CPU I
Chip Y
Level 1 Cache o0y
|
Level 2 Cache 5-10cy
Chips
- ! 30-100cy
DRAM
| Disk I 105-107cy
Mechanical L

Bandwidth

3-10 words/cycle
<1KB

1-2 words/cycle
32KB -1MB

1 word/cycle
1MB - 4MB

0.5 words/cycle
64MB - 4GB

0.01 words/cycle
4GB+

compiler managed

hardware managed

hardware managed

OS managed

OS managed

The cache is not only listening to the memory but
also to the bus, so that if the disc (DMA) decicdes to
change some words in memory the cache can be
aware of it and either get updated or remove that
cache (because it is invalid).

If cache writes something in cach only it will flag
that word and only after the disc wants to access
the equivalent memory location then will the cach

interrupt that and write it on memory

Why do caches work?

Locality of reference

« Spatial locality:
We use data that is close to each other
(e.g., arrays)

«Temporal locality:

We use the data that we have used before

(queue.ewi.tudelft.nl, many TAs read the same requests)

Performance model for L1 cache

« Parameters:
~cache hit ratio: h
~access time cache: C
»cache miss ratio: 1-h
~access time main memory: m
~Average access time:

« These parameters depend on

~application, possibly also on input (data-driven)

~cache policy

L)

CSE1400 Computer Organisation

Avg access c*h+ (1 - h) (c + m)

c+ (1 -h) *m

Design

« Transparent to
»CPU (and programmer)

« Storage to hold
~data
~administration (in/out, clean/dirty)

« Block based
~amortize admin overhead
~efficient lookup (hit or miss?)
- efficient memory access

We either read a block or write a block, we dont operate at individual (Memory) words

Memory blocks

Fundamentals

« Caches access multiple memory words at a time ~ Memory and cache are seen/structured as

} word —
} block

block e memory

block

How the cache works

« Access word w in memory block B
«Is block B in the cache?
«If NOT (MISS)

~get block B from memory

~calculate where to place it in the cache
~is position free?

~if not, evict block at B's place from the cache

~write B to its cache location
« Access w in the cache

fixed-size blocks (aka cache lines)

~word size in bytes: w

~size of main memory in bytes: N = 20

~block size in words: b = 2%

~number of blocks in main memory: 2"%(= N/ b)

»number of blocks in cache: B
»cache size: Bx b xw

»Example: n=16 (N=64KB), k=4 (b=16)
Where to place blocks in the cache?

« Cache is smaller than memory (by design)
~multiple memory blocks map to the same cache block

« Mapping can be
- static (direct mapped)
~dynamic (fully associative)
~mixed (x-way set associative)

« Cache performance (hit ratio) determined by
»mapping strategy
~locality of reference

CSE1400 Computer Organisation

Cache 26
. blocks large
Direct Mapped Cache
A B CD M N O P wXxyz ° Main memory — Library
. - Cache — Bookcase at home
1% « Block — Book
f s - Byte — Line

Word “address”: Author I_.angendo@\lin 6027
hr—l
tag block byte

+ Easy to look up books (blocks) in the bookcase (cache), so fast.

» Not flexible. Can lead to high thrashing: replacing blocks in
cache that you still need. Books from authors ‘Koen’ and

‘Langendoen’ take the same place in the cache, so cannot be in

the cache at the same time.

(Fully) Associative Cache

L —1

Word “address”: Author I;angendoeti, line|6027
X

A-Z

tag byte
« Difficult to look up books (blocks) in the bookcase (cache), so
slow. We need to check all labels (in parallel).
« Very flexible. Can lead to high a hit ratio. Any book (block) can be
anywhere in the bookcase (cache). Books from authors ‘Koen" and
‘Langendoen’ can now be in the cache at the same time!

Cache 26
blocks large

Set Associative Cache Sway

associative

— |
Word “address”: Author _Langendoiﬂ\lin 6027

l—'—l
tag set byte

» Trade-off between performance and flexibility.

+ Books from authors ‘Koen’ and ‘Langendoen’ can now be in the
cache at the same time, but adding a third book from author
‘Stefan’ requires one of the other two books to be evicted from
the bookcase (cache).

17

Everything goes to the same pile but you have to scan
all the blocks to find them as there is no specific order
other than pushing things.

Hardware still allows you to do searches in parallel at
a not so high expense (just more gates).

Combines Direct Mapped and Fully Associative. It
allows for groups of sets where same set different
tag elements can be store.

Back to reality... Direct Mapped

Example:

+ 16 bit memory address

+ 16 bytes in a block (4 bits to address)
+ 128 blocks in cache (7 bits to address)

Word “address”: Author I_.angendo

line| 6027
tag block byte

s

16-7-4=5 bits 7 bits 4 bits

16 bit memory address

Back to reality... Set Associative

Example:

+ 16 bit memory address

+ 16 bytes in a block (4 bits to address)
« 32 sets in cache (5 bits to address)

Word “address”: Author gangendo@in 6027
_'_I

/ ‘tag/ set byte
16-5-4=7 bits 5 bits 4 bits

16 bit memory address

What happens if we take a x-way set-associative cache

where:
1. x=1
2. X = |blocks in cache|

CSE1400 Computer Organisation

Back to reality... Fully Associative

Example:

+ 16 bit memory address

+ 16 bytes in a block (4 bits to address)

+ 4K blocks in memory (12 bits to address)

Word “address”: Author I__angendoer], line|6027

/ tag /byte
16-4=12 bits 4 bits

16 bit memory address

x tells us how many blocks there are.

4-way set-associatve cache = 4 blocks per set

x = 1 means direct map cache (only 1 book per shelf,
only 1 block per set)

as many items in the set as many blocks in the cache means k*k = fully associative

Direct Mapped Cache

which »
blue —> |ta_g Word 0 __BLOCK 0
block Word 1 SOk
- \ BLOCK 127
tag jlo-cCsi oy g
BLOCK 128
Brogh BLOCK 129
tag 3
BLOCK 255
CACHE | BLOCK2 BLOCK 256
- BLOCK 257

main memory

18

Transcript:

So we have colors for each block. Direct Mapped Cache
takes the tag and the byte.

The bits in the middle (block), decide where to go in
the cache

Con: If program wants to repeat using block 0 over and
over, cache wont be able to store them all at the same
time. It wil leither store 0 xor 128 xor 256

(Fully) Associative Cache

thch_Jb

[teg]

Word 0

block

Word 1

BLOCK 0

Itag

BLOCK 1

tag

CACHE

BLOCK 2

L

R R
|| =
[elR1e]
Ollo
~|ll =
=l o

Set-Associative Cache

5 bits

set o[L2

BLOCK 0

[tag

BLOCK 1

tag

BLOCK 2

or |
Q
(=]

BLOCK 3

tag

BLOCK 4

[tag|

CACHE

BLOCK 5

128 blocks, 64 sets

N

BLOCK 127
BLOCK 128
BLOCK 129

main memory

BLOCK 255
BLOCK 256
BLOCK 257

BLOCK 0
BLOCK 1

BLOCK 127
BLOCK 128
BLOCK 129

BLOCK 255
BLOCK 256

main memory

19

CSE1400 Computer Organisation

Anything can go anywhere (same collor)
As long as the number of blocks is not larger than the
cache then we're fine

You can (opposite to direct maping) store more than 1
block in a set (2-way set)

CSE1400 Computer Organisation

CHAPTER 6 - PIPELINING

The five-stage processor of RISC and the corresponding datapath allow instructions to be fetched and executed one
at a time. Therefore it takes five clock cycles to complete the execution of each instruction.

This could be pipelined so the fetch, decode, compute, memory and write stages can be done in parallel.
1. Instruction Ijis fetched in the first cycle and moves through the remaining stages
2. Inthe second cycle instruction Ij;1 is fetched while Ijis on stage 2
3. Inthe third sycle instruction Ij4; is fetched while Ijis on stage 3 and Ij+1 is on stage 2, and so forth.

Although any one instruction takes five cycles to complete its execution, instructions are completed, ideally at the
rate of one per cycle (after the first 4). However, if the source register of Ij;1 is the destination register of a memory
writing operation of an instruction at I; the operands of Ij;1 won’t be ready until stage 6, (opposite to the ideal
scenario where they would be ready in stage 3). Which means Ij;1 is stalled in the Decode stage for 3 cycles.
Consquently Ij4» is also stalled and so forth.

e hazard: Any condition that causes the pipeline to stall
—= Time Since register and things are

Clock cycle 1 2 3 1 5 6 7 being moved around at the same
time it is necessary to save this
I Fetch Decode | Compute | Memory Write information in interstage

buffers. These include registers

[P Fetch Decode | Compute | Memory Write RA, RB, RM, RY and RZ
]}. 0 Fetch Decode | Compute | Memory Write
Pipelined execution—the ideal case. Instruction
fetch
:
| Interstage buffer B1 |
The interstage buffers are used as follows:

o Interstage buffer B1 feeds the Decode stage with a Register | Instruction
newly-fetched instruction file decode

o Interstage buffer B2 feeds the Compute stage with the l l
two operands read from the register file, the [orstage buffer B2 |
source/destination register identifiers, the immediate
value derived from the instruction, the incremented l
PC value used as the return address for a subroutine Compute
call, and the settings of control signals determined by
the instruction decoder. l

o Interstage buffer B3 holds the result of the ALU | Interstage buffer B3
operation, which may be data to be written into the
register file or an address that feeds the Memory stage, Memory
and it also holds the incremented PC value passed access
from the previous stage, in case it is needed as the l

return address for a subroutine-call instruction

o Interstage buffer B4 feeds the Write stage with a value I
to be written into the register file. This value may be
the ALU result from the Compute stage, the result of

Interstage buffer B4

. Datapath operands Source/destination Control signals
the Memory access stage, or the incremented PC value and results register identifiers for different stages
that is used as the return address for a subroutine-call and other information
instruction

A five- stage pi pe|ine,

CSE1400 Computer Organisation

DATA DEPENDENCIES
— Time Execution of:
Clock cycle 1 2 3 4 5 5 7 8 9
ek exe T Add R2, R3 #100

Add R2.R3. £100 | - [b] C | v I v] Substract R9, R2, #30

data hazard introduced in the previous page.
Subtract RO, R2. #30 l v] D I P I M | W | The Subtract instruction is stalled for three

cycles to delay reading register R2 until cycle
Figure 6.3 Pipeline stall due to data dependency. 6 when the new value becomes available.

e The control circuit must first recognize the data dependency when it decodes the Subtract instruction in
cycle 3 by comparing its source register identifier from interstage buffer B1 with the destination register
identifier of theAdd instruction that is held in interstage buffer B2.

e Subtract instruction must be held in interstage buffer B1 during cycles 3 to 5

e Add instruction proceeds through the remaining pipeline stages.

e control signals can be set in interstage buffer B2 for an implicit NOP (No-operation) instruction that does not
modify the memory or the register file.

e Each NOP creates one clock cycle of idle time, called a bubble.

OPERAND FORWARDING

Pipeline stalls due to data dependencies can be alleviated through the use of operand forwarding. Considering the
previous add and substract instructions.

— Time o Instead of substract to wait for stage 6 to

Clock cycle I 2 3 4 5 6 decode the instruction with the register addresses,
it could use the already available value computed
Add R2,R3,#100 F D C M | W at the end of stage 3.

e This value can be loaded into register RZ and
rather than stall the Subtract instruction, the
hardware can forward the value from register RZ
to where it is needed in cycle 4

Subtract R9, R2, #30 F D C M W

Avoiding a stall by using opemnd forwurding,

C A new multiplexer, MuxA, is inserted before input InA of the ALU, and
the existing multiplexer MuxB is expanded with another input. The
multiplexers select either a value read from the register file in the
normal manner, or the value available in register RZ.

. b HANDLING DATA DEPENDENCIES IN SOFTWARE

I RA | I RB I Clock cycle 1 5 3 4 5 p ; . —9- ime

Register
file

Immediate value Add R2,R3,#100 | F I D | C [M I W |

=

NoP Lrfofclum]w]
[v
ENEN

[c]v]w]

=4

NOP IF|D|C|_\-

@]

7]

o

Subtract R9, R2, #30 | F [

Insertion of NOP instructions for a data dependency (done by the
compiler) NOP takes 1 cycle, stalling it manually. This simplifies the
Modification of the datapath of Figure 5.8 fo support daila NArdware implementation at the expense of having larger code size.
borwording from register RZ to the ALU inpus. Execution time is still longer than operand forwarding

2

CSE1400 Computer Organisation

The compiler can attempt to optimize the code to improve performance and reduce the code size by reordering
instructions to move useful instructions into the NOP slots

MEMORY DELAYS

A memory access may take ten or more cycles (3 in the figure for simplicity) a cache miss causes all subsequent

instructions to be delayed. Consider:
Load

R2, (R3)

Substract R9, R2, #30

Operand forwarding cannot be done with memory as it takes more than one cycle to be fetched and wont be available
until it is loaded into register RY in stage 5 (check BPU summary page 5 datapath structure).

Clock cycle 1 2

——» Time
4 5 6 7 8 9

L Load R2RY) | F | D[c|m [w]
L1 IF|DIC Ilel
bea Lrlo EEIER

Stall caused by a memory access de|ﬂy for a Load instruction.

The compiler can eliminate the one-cycle stall for this type of data dependency by reordering instructions to insert
a useful instruction between the Load instruction and the instruction that depends on the data read from the
memory. The inserted instruction fills the bubble that would otherwise be created. If a useful instruction cannot be
found by the compiler, then the hardware introduces the one-cycle stall automatically. If the processor hardware
does not deal with dependencies, then the compiler must insert an explicit NOP instruction.

BRANCH DELAYS

—= Time
Clock cycle 1 2 3 4 5 6 7 8
]J,-: Branch to I, | F I D I C I I |
L | F I b I I I I
]_,r'+2 | F I I | I]
I [Flpfc]m]w]
——
Branch penalty

Branch penalty when the target address is determined in the Compute
stage of the pipeline.

Clock cycle 1 2 3 4 5 6 7

I;: Branch to I I F I D I I I I

b Ll [[[|
N S EN K

|
Branch penalty

Branch penuhy when the target address is determined in the
Decode stage of the pipe|ine.

J branch penalty: Delay from branching
UNCONDITIONAL BRANCHES

o With a two-cycle branch penalty, the relatively high

frequency of branch instructions could increase the

execution time for a program by as much as 40 percent.

o Reducing the branch penalty requires the branch

target address to be computed earlier in the pipeline. Rather

than wait until the Compute stage.

o it is possible to determine the target address and

update the program counter in the Decode stage

) Thus, instruction Ik can be fetched one clock cycle

earlier, reducing the branch penalty to one cycle.

o A second adder is needed in the Decode stage to

compute a branch target address for every instruction

o When the instruction decoder determines that the
instruction is indeed a branch instruction, the computed
target address will be available before the end of the cycle. It
can then be used to fetch the target instruction in the next
cycle.

CONDITIONAL BRANCHES
Branch_if_[R5]=[R6] LOOP
o The result of the comparison in the third step
determines whether the branch is taken.
o The branch condition must be tested as early as

possible to limit the branch penalty (he comparator that tests
the branch condition can also be moved to the Decode stage).

3

CSE1400 Computer Organisation
Moving the branch decision to the Decode stage ensures a common branch penalty of only one cycle for all
branch instructions

THE BRANCH DELAY SLOT
Add R7. R8. RO e In all cases, the instruction immediately following the branch
Branch_if [R3]=0 TARGET instruction is always fetched.
_I“' e delayed branching: To reduce branch penalty the branch delay slot
: technique attempts to find a suitable instruction to occupy the delay slot
TARGET: Lt of the branch instruction, one that needs to be executed even when the
(a) Original sequence of instructions containing branch is taken.

a conditional branch instruction

e It can do so by moving one of the instructions preceding the branch
instruction to the delay slot (as long as data dependencies are

TARGET:

Branch_if [R3]=0 TARGET preserved).
Add R7, RS, RO

Ll If a useful instruction is found, then there will be no branch penalty.
Jj+

e If no useful instruction can be placed in the delay slot because of
constraints arising from data dependencies, a NOP must be placed there
instead.

I

b) Placing the Add instruction in the branch delay

slot

where it is always executed e The effectiveness of delayed branching depends on how often the

compiler can reorder instructions to usefully fill the delay slot (70%).
Filling the branch delay slot with a useful instruction.

BRANCH PREDICTION

BT - Branch taken
BNT - Branch not taken

ST - Strongly likely to be taken

LT - Likely to be taken

LNT - Likely not to be taken

SNT - Strongly likely not to be taken

Making the branch decision in cycle 2 of the execution of a branch instruction reduces the branch penalty.
the instruction immediately following the branch instruction is still fetched in cycle 2 and may have to be
discarded.

decision to fetch this instruction is actually made in cycle 1, when the PC is incremented while the branch
instruction itself is being fetched

to reduce the branch penalty further, the processor can anticipate an instruction being fetched is a branch
instruction and predict its outcome to determine which instruction should be fetched in the next cycle.
Static branch prediction: Assume that the branch will not be taken and fetch the next instruction in sequential
order. There will only be penalty when the prediction is incorrect. Assuming randomness, this gives 50%
accuracy. However backward branches at the end of a loop are taken most of the time, for such a loop is
better to assume that the branch is gonna be taken. The processor can determine the static prediction by
checknig the sign of the branch offset. Alternatively, the machine encoding of a branch instruction may
include a bit that indicates how to predict the instruction.

Dynamic Branch Prediction: The processor hardware keeps track of branch history to make better
predections. Simplest form is to use the last result as prediction. Works well inside program loops. The track
history can be expanded to more than just the last one, i.e. 4-state algorithm vs 2-state algorithm.

Branch taken (BT)

o o o N

Branch not taken (BNT)

BNT

(a) A 2-state algorithm 4 (b) A 4-state algorithm

CSE1400 Computer Organisation
e Branch Target Buffer: small fast memory that contains the extra information that the processor needs to keep
for dynamic branch prediction. The branch target buffer contains a lookup table for each branch with:
o the address of the branch instruction.
o one or two state bits for the branch prediction algorithm
o the branch target address
o the table has a limited size (1024ish entries), containing information for only the most recently executed
branch instructions
e (notnecessarily branch) speculative execution: subsequent instructions based on an unconfirmed prediction
are fetched, dispatched, and possibly executed, but are labeled as being speculative so that they and their
results may be discarded if the prediction is incorrect
e reservation stations: buffer for sepeculative execution, they hold information and operands relevant to each
dispatched instruction

PERFORMANCE EVALUATION

e non-pipelined processor - basic performance equation:

o T:execution time

o N:Dynamic Instruction Count

o S: Average number of clock cycles to fetch and execute one instruction

o R:clockrate in cycles per second

N xS
R

¢ instruction throughput (non-pipelined): Number of instructions executed per second

R
Pnp =§

RISC, when there are no cache misses, uses 5 cycles to execute all instructions. So S =5
Pipelining improves performance by overlapping the execution of successive instructions

e instruction throughput (platonic pipelined): In the abscence of stalls
P,=R
Remember that there are millions of instructions so the first 4 that are not 100% overlapped are insignificant. So a

n-stage pipeline can potentially increase the throughput by a factor of n. In reality there are diminishing returns but
recent processor implementations ahve 20 stages with clock rates of several GHz
DELAYS
The operations with the longest delay dictate the cycle time, and hence the clock rate R.
o &san: increased difference from S, where S = 1 in an ideal world.
Ostan = Dynamic Instructions % * Dependent Instructions (of the dynamic) % * 1
e instruction throughput pipelined (with stalls): <
P 1+ 5stall
e The compiler can improve performance by reducing the number of times that a Load instruction is
immediately followed by a dependent instruction.
e Astall is eliminated each time the compiler can safely move a nearby instruction to a position between the
Load instruction and the dependent instruction
e mispredicting branches: Assume target address are determined in the Decode stage of the pipeline

Obranch_penaity = Standard branch penalty (1) = branch % * average prediction
e cache misses:
Omiss = (Mg * d * mg) * py

Where p,,, = stalled pipeline cycles from cache misses; m; = instruction miss %; d = load and store instructions %
(that involve the cache) and m; = operand miss %

CSE1400 Computer Organisation
SUPERSCALAR OPERATION

Fetch
unit

The maximum throughput of a pipelined
processor is one instruction per clock cycle.
Superscalar procesor can acheive more than
LI 1 instruction per clock cycle by equipping

Instruction queue the processor with “multiple-issue”
multiple execution units (each could be also
pipelined).

. a superscalar processor has a more
elaborate fetch unit that fetches two or

Arithmetic more instructions per cycle before they are
1 unit needed and places them in an instruction
Dispatch queue
e Write

unit o dispatch unit: takes two or more

results . ;
instructions from the front of the queue,
Load/Store decodes them, and sends them to the
- —— . . .
umit appropriate execution units.

. At the end of the pipeline, another unit
is responsible for writing results into the
register file.

It incorporates two execution units, one for arithmetic instructions and another for Load and Store
instructions.

An arithmetic instruction and a Load or Store instruction must obtain all their operands from the register
file when they are dispatched in the same cycle to the two execution units. The register file must now have
four output ports instead of the two output ports needed in the simple pipeline.

A superscalar processor with two execution units.

an arithmetic instruction and a Load instruction must write their results into the register file when they
complete in the same cycle. Thus, the register file must now have two input ports instead of the single input
port for the simple pipeline.

the register file allows two results to be written in the same cycle because the destination registers are
different.

Otherwise, one instruction is stalled to ensure that results are written into the destination register in the
same order as in the original instruction sequence of the program

As long as such dependencies are handled correctly, there is no reason to delay the execution of an unrelated
instruction. If there is no dependency between a pair of instructions, the order in which execution is
completed does not matter. However exceptions will lead to a processor executing the second instruction,
which may have had relied on the first one not having an exception, this is called an impricese exceptions.
precise exceptions: delaying or buffering instructions to give room for exceptions at the expense of more
complex hardware

comittment step: moving the temporary registers to the permanent ones. The effect of an instruction cannot
be reserved after this point.

register renaming: a temporary register takes the role of a permanent register during a period of time. There
may be as many temporary registers as there are permanent registers.

commitment unit: sepcial control unit that uses a separate queue called the reorder buffer to determine
which instruction(s) should be committed next (if out of order execution is allowed), this guarantees in-
order commitment. Instructions are retired after the temporary registers have been moved to the fixed ones.
dispatch order operations: the dispatch unit must ensure that all the resources needed for the execution of
an instruction are available.

deadlock: a situation that can arise when two units, A and B, use a shared resource and both of them are
waiting for the other in a vicious circle so that neither can complete its execution

CSE1400 Computer Organisation

WEEK 8 - PIPELINING LECTURE

Remember: without caching there’s no possible DMA

Boosting cache performance

Harvard architecture

« Exploit difference in locality
~instructions — spatial + temporal
~data — temporal + spatial

address

data memory dita

PC

program memory data

Performance

oddress| OV « Separate data and
" instruction paths

e Harvard architecture treats data and
instructions differently.

e This structure allows to fetch data and
instructions at the same time

e It also allows us to use different cache
mappings for data and program memory.

e Programs are typically sequential, so they
respond better to direct mapping.

e Data is all over the place, responds better to
associative case.

Latency (L)

« the time for one instruction to finish
s lower is better

Pipelining aims to increase the throughput. Which is optimal for
general purpouse computing (rather than dedicated circuitry).

Improving CPU performance

« Increase clock frequency - latency boost
»problem: power wall

» Multiple threads & cores - throughput boost

Throughput (T)
«the #instructions per time unit
« higher is better

«the time per instruction decreases,
but only on average

Pipelining

Basic idea

~problem: parallel programming

« Pipeline execution - throughput boost
»problem: limited effect

» Dedicated circuitry - latency boost
~problem: one-trick pony

Time —
Fetch Execute Execute
CPU Instruction | Instruction | Instruction | Instruction

1

1

2

Time —
Fetch Fetch Fetch Fetch

Fetch Instruction | Instruction | Instruction | Instruction

1 2 3 4
CPU
Execute Execute Execute

Execute Instruction | Instruction | Instruction

1 2 3

CSE1400 Computer Organisation

Instruction stages Pipelined execution
1 stage / cycle

« Fetch instruction 1 2 3 4 5 6 7
« Decode instruction and fetch operands 11 [f lot] el wi
« Execute operation
« Write result 12 E2 D2 E2 | w2
I3 F3 | D3 | E3 | w3

_Il_lﬁte: thit_;, iska simplified mociljelI witl?] %nly 4 stages.
e textbook presents a model with 5 stages.
The pipelining principle is the same. 14 F4 | D4 | B4 [W4

We need to modify our hardware from the previous BPU architecture as it was not designed to do these stages in
parallel. So we need buffers.

Hardware organization Buffer content
CPU internals At start of cycle 4

« Insert buffers to allow pipeline stages to act «B1 (F->D):
independently »instruction I3
W

B1 B2 *B2 (D ->E):

Bl B2
»the source operands of 12 |
) »the operation
Fetch | | | | Decode | | | | Exec | | | | ‘Yrte F w
unit unit unit unit
L J

~the result of the execution of 11

Hardware organization 3
Example: RISC machine

Pipeline logic —
«data path

« operands specifier
« control signals

There is a trade-off between aiming for a high throughput with lots of stages and increasing the risk of longer pipeline
stalls.

Pipeline stalls

: £

3 4 5 6 7

11|F1|DI|E1|W1|

12 |

F2 , [02 [E2 w2 |

13 LAMNG NS | F3 | o3| Es|ws]

TH fw)bhﬁ

Pipeline stalls

Data dependencies

MUL R2,R3,R4
ADD R5,R4,R6

/* R4 destination */

/* R4 source */

data dependency

11 I F1 I D1 I El IW]. I':n between W1 and D2

D2 | E2 [w2 |

D3 [€3 [W3]

MUL

ADD

| F4 | D4 | E4 | w4 |

« Add fast path from ALU output

| F1 | b1 [E1 | wi |

12 [F2 |
13 f
- Q: how is the data
dependency detected?
Data forwarding
HW to the rescue
to input
ADD R1, R2
ADD R2, R3

Pipeline stalls

Branching

BGZ LOOP
MOV R3, SUM

11 [H

D1 | E1

12

Bl

[F2 [p2 | E2 | w2]

target known after
execution finished

F2

[D2 [E2 [w2] 22

branch penalty

« For unconditional branches
~target known after decoding
~branch penalty reduces to 1 cycle

BGZ LOOP

CSE1400 Computer Organisation

Pipeline stalls
Hazards (causes)

>0 (R
« Cache miss [fetch, decode] {YC\W/%

« Dependency between instructions [decode]
~e.g., data output of one instruction is input for next

« Branching [exec]

» Long operation [exec]
»e.g., division

In the decoding stage you can actually see the data
dependency between instruction [2 and instruction I1.

Solution: The output of the current instruction is ready
with forwarding in the next stage so that we can execute
instructions back to back instead of waiting for the write
step.

PR —

EY TS T—

||:||~=I~J |
e i W HE
Ay

" S—
1
b
L L
[| [hw
(

[S
e
(R rTe

LGNk

unconditional: It the branch is just a jump instruction, there’s
no need for the ALU/comparator to execute anything, so the
result is known right after decoding (just 1 bubble)

conditional prediction: Instead of going to the
ALU/comparator, we could also assume a-priori the result of
the loop and jump (or not) directly.

CSE1400 Computer Organisation

Branch delay slot ..
8W to the rescue Branch prediction

Statistics matter
ADD R6,R7,R8 —

BGZ R3 LOOP » Static prediction

MOV R8, SUM »backwards branches likely to be taken (loops)
branching occurs often: »forward branches mostly skipped (rule vs. exception)

«Penalty = 1 cycle 20% of instruction count »sign bit (or compiler directed)

« Use idle slot

BGZ R3 LOOP_ » Dynamic prediction

ADD R6 R7 RS branch delay slot: always executed »maintain info per branch instr. (branch target buffer)

I ’ ’ I <: before the branch effects ~do as before

MOV R8, SUM
SEbE 1004 P~ Peca ?HSGAL Branch taken (BT)

BNT BT
finite state machine ->

. R . B h not taken (BNT
For long operations such as divisions since they appear ranch not taken ()

rarely the don’t require our attention as they don’t
have an impact on performance. (@) A 2-state algorithm

Performance effects
A simple model

« Execution time of a program: T

« Instruction count: M

« #cycles per instruction, CPI: S (e.q., 4)

« Clock rate: R (e.g., 1 GHz)
Without pipelining: T=(NxS)/R
With an n-stage pipeline: T=T/n

CHAPTER 12 - PARALLEL PROCESSING AND PERFORMANCE
HARDWARE MULTITHREADING

e Operating system (0S) software enables multitasking of different programs in the same processor by
performing context switches among programs

e Processes (any information that describes the current state of the program execution) may be associated
with applications such as Web-browsing, word-processing, and music-playing programs that a user has
opened in a computer. Each process has a corresponding thread.

e itispossible for multiple threads to execute portions of one program and run in parallel as if they correspond
to separate programs. But all threads that are part of a single program run in the same address space and are
associated with the same process.

e hardware multithreading: To deal with multiple threads efficiently, a processor is implemented with several
identical sets of registers, including multiple program counters.

o The state of the previously active thread is preserved in its own set of registers.

e coarse-grained multithreading: an about to stall processor quickly switches to a different thread and
continue to fetch and execute other instruction.

10

CSE1400 Computer Organisation
e fine-grained orinterleavedmultithreading: switch after every instruction is fetched. Throughput may be
increased by interleaving instructions from many threads, but it takes longer for a given thread to complete

all of its instructions.

VECTOR (SIMD) PROCESSING

e vector: array of elements usch as integers or floating-point numbers.

e vectorinstructions / single-instruction multiple-data (SIMD) instructions: A processor can be enhanced with
multiple ALUs. In such a processor, it is possible to operate on multiple data elements in parallel using a
single instruction. Can only be used when the operations performed in parallel are independent. This is
known as data parallelism.

e vectorregisters: they can hold several data elements. L. = vector length = number of data elements = number
of operations that can be performed in parallel with multiple ALUs

e VectorAdd.S Vi, Vj, Vk: just a vector sum that takes vector registers operands and saves it in a vector register

e storing and loading vectors just places elelements consecutively in the destination and read consequitive
elements into a vector.

e vectorizable: such as high-level integer arrays. Where operations for all elements of the array can be done in
parallel

e Vectorizable loops exist in programs for applications such as computer graphics and digital signal processing.

GRAPHICS PROCESSING UNITS (GPUS)

e The primary purpose of GPUs is to accelerate the large number of floating-point calculations needed in high-
resolution three-dimensional graphics, such as in video games
e operations involved in these calculations are often independent
e alarge GPU chip contains hundreds of simple cores with floating-point ALUs to perform them in parallel
e A GPU chip and a dedicated memory for it are included on a video card
e A small program is written for the processing cores in the GPU chip
e Alarge number of cores execute this program in parallel
e The cores execute the same instructions on parallel, but operate on different data elements.
o Before initiating the GPU computation, the program in the host computer must first transfer the data needed
by the GPU program from the main memory into the dedicated GPU memory
e After the computation is completed, the resulting output data in the dedicated memory are transferred back
to the main memory
o There’s a C extension to deal with NVIDIA’s GPU so that an entire program can be written in C.
o The compiler will partion the final object into machine instructions for the GPU and CPU
o An open standard called OpenCL has been proposed by industry as a programming framework for
systems that include GPU chips from any vendor

SHARED MEMORY MULTIPROCESSORS

e Implementing a large memory in a single module would create a bottleneck when many processors make
requests to access the memory simultaneously

e [t can be alleviated by distributing memory across multiple modules so that simultaneous requests from
different processors are more likely to access different memory modules

e Aninterconnection network enables any processor to access any module that is a part of the shared memory

e (UMA) Uniform Memory Access multiprocessor: A system which

Processors

has the same network latency for all accesses from the o .
processors to the memory modules. ' ’ -
e (NUMA) Non-Uniform Memory Access multiprocessors: For I UM

better performance, they place a memory module close to each

processor, resulting in a collection of nodes that have different < Interconnection network >

latencies.
AT i S

Memories
Interconnection network

CSE1400 Computer Organisation
INTERCONNECTION NETWORKS

o))
Upper ring -
Lower rings ’ .
&j Cﬁ 1 J1)1)

The interconnection network must allow information transfer between any pair of nodes in the system
The traffic in the network consists of requests (such as read and write) and data transfers
bandwidth: capacity of a transmission link to transfer data bytes per second.
effective throughput: rate of data transfer, which is less than the available bandwidth because a link must
carry information that coordinates the transfer of data.
packets: information transfers through the network, of a fixed length and specified format
Ideally, a complete packet would be handled in parallel in one clock cycle at any node or switch in the
network. But to reduce complexity a packet is divided into smaller pieces, each of which is eventually
transfered in one clock cycle.

Interconnection networks:
(simple) bus: set of wires that provide a single shared path for information transfer. Often used in UMA
multiprocessors. Arbitration is necessary to ensure that only one of many possible requesters is granted use
of the bus at any time. A simple bus does not allow a new request to appear on the bus until the response for
the current request has been provided
split-transaction bus: a request and its corresponding response are treated as separate events and other
transfers may take place between them. This is usually handled by associating a unique tag with each request
that appears on the bus. Each response then appears with the appropriate tag so that the source can match
it to its original request.
ring: A ring network is formed with point-to-point connections between nodes. A long single ring results in
high average latency for communication between any two nodes.
bidirectional ring: halves the latency and doubles the bandiwdth by adding a second ring in the opposite
direction, at the expense of more complex communications.
hirearchy of rings: The average latency is reduced without traversing the entire rings, just a section.

G D

(a) Single ring P, J ’) ’ e J ’

(b) Hierarchy of rings M, My| o o o M,

Ring-based interconnection networks. Crosshar interconnection network.

crossbar: network that provides a direct link between any pair of units connected to the network. It is
typically used in UMA multiprocessors to connect processors to memory modules. For n processors and k
memories, n X k switches are needed.

mesh: o o

Nodes in the boundaries and corners have fewer connections,

torus: mesh with wraparound connections between nodes at opposite
boundaries of the mesh. So all nodes in a torus have 4 connections (average
latency is reduced at the expense of more complexity).

o O 12

CSE1400 Computer Organisation

e snoopy cache: use of directories in each memory module to indicate which nodes may hace copies of a given
block in the shared state. Small multiprocessors, including current multicore chips, typically use snooping.

e mesagge-passing multicomputers: implementing each node in the system as a complete computer with its

own memory. Data that need to be shared are exchanged by sending messages from one computer to another.

PARALLEL PROGRAMMING FOR MULTIPROCESSORS

o The compiler cannot automatically identify independent high-level (programming) tasks that could be
executed in parallel, it has its limitations detecting and exploiting parallelism.

e [t is therefore the responsibility of the programmer to explicitly partition the overall computation in the
source program into tasks and to specify how they are to be executed on multiple processors.

e create_thread: routine library that supports parallel programming. An operating system service is invoked
by the library routine to create a new thread with a distinct stack, so that it may call other subroutines and
have its own local variables. All global variables are shared among all threads.

e get my_thread_id: library routine that returns a unique integer between 0 and p-1 for each thread. A thread
can determine the appropriate subset of the overall computation for which it is responsible

e barrier: thread synchronization method that forces a thread to enter into a busy-wait loop until all threads
have reached a specific point in the program. This ensures that the threads have completed their respective
computations preceding the barrier call.

PERFORMANCE MODELING

e The mostimportant measure of the performance of a computer is how quickly it can execute programs
e execution time:
o0 Torig = current execution time
o fenn = fraction of execution time affected by enhancent
0 funenh = 1 - fenn compliment (fraction of execution time not affected by enhancement)
0 P = fenn * Torig = portion of time reduced thanks to enhancement
Thew = Torig * (funenh + fenh/p)
o speedup = Torig/Tnew = Amdahl’s Law = 1/(funenh + fenn/p)
o the benefit of a given performance enhancement increases if it affects a larger portion of the
execution time
e upper bound on the possible speedup: 1/unenh
o p — oo reduction of the fraction fenh of execution time to zero
o the unenhanced portion of the original execution time can significantly limit the achievable speedup,
even if the enhanced portion is improved by an arbitrarily large factor

WEEK 9 - PARALLEL & VIRTUAL MEMORY LECTURE

Superscalar Processors . Superscalar execution: multiple components doing
Multiple execution units multiple things on paralle
. Floating point unit bottleneck is removed but fetching
instruction queue instructions becomes harder
Felch " |—— P [T] . instruction que is a bunch of instructions which each

can be executed on parallel

L

I— FP Unit {
Dispatch _J—)
Unit
L Integer
Unit

Write

13

Superscalar processors

Parallel execution

I, Fadd [f1[D1 El w1
I, Add F2|[D2|E2 | «—— [W2
I, Fsub | F3 D3 E3 w3
I, Sub F4 D4 | E4 [«— [W4

« In-order issuing of instructions
» Program-order completion

Parallelization basics

Parallelization can:

« Increase throughput
« Latency stays the same!
« Reduce program runtime T

However:

« Parallel programming is difficult

«Not all code can be parallelized
~data dependencies
~sequential algorithms

would be our speedup?”

f, = parallel % = .8

fs = sequential % = 1-.8 = .2

Tgrig - TS - 10

Thew = Tp = 10%(.2+.8/4) = 4

Or just speed up = 1/(funenh + fenn/p) =1/(.2+.8/4) =1/4 =125

Flynns taxonomy:

lim 1/

p—00

e Single Instruction, Single Data (SISD)
o Conventional system
e Single Instruction, Multiple Data (SIMD)
o one instruction on multiple data streams
e Multiple Instruction, Multiple Data (MIMD)

completed

wait until prior
instruction has

Amdahl’s Law

Data dependencies, some algorithms cant be run on parallel either
(min, max, median, which need to check all data)
Only a fraction of a program can be parallelized

CSE1400 Computer Organisation
e In-order issued instructions may be
completed at different clock cycles. Therefore
there is an extra variant that we add called
“program order completion”
e Which will make instructions wait so that the
first in first out instruction fetching order is
mantained

Amdahl’s law

Time to execute a program sequentially:

Ts

Time to execute a program using p processors:

_ £)
Tp—Tsx<fs+p

Speedup = Torig/Tnew = Amdahl.s LaW = 1/(funenh + fenh/p)
“It takes 10 second to execute sequentially, if we can parallelize 80% of a program and run it on 4 processors what

max speedup = 1/f;
(fs +%> =1/(f;+0) = 1/f

14

o Multiple instruction streams on multiple
data streams
Multiple Instrucion Single Data (MISD)
o Multiple instruction streams on single
data stream

CSE1400 Computer Organisation

e We can work on parallel with data
e We can have multiple computers (execution units)

Flynn’s Taxonomy

Classification of computers SISD: Simple 1 core machine

SIMD (Array, Vector) Processors

Single Multiple
Instruction Instruction
Stream Stream
l ll ii lL Data array
Single
Data — 3 SISD MISD -
Stream
Multiple > Processing Units | PU|PU|PU|PU|PU|PU|PU|PU
Data > SIMD MIMD
Stream —Su

UNIFORM MEMORY ACCESS

We have memory and processors. And whenever

MIMD Uniform Memory Access (UMA) we want to grab something from memory the

architecture (trans processors go through the interconnection
1sparently) :
Any processor can access directly any memory. network (bus, ring, mesh etc)
P P P Problem arise when 2 processors want to access
1 2 m the same memory. Therefore we are

sequentialising the access to the memory. Eery
cache miss goes over the same bus, not efficient.

So here everything can borrow from the common
pool but only one at a time.

M, M, M,
Uniform Memory Access (UMA) computer
MIMD Non-Uniform Memory Access
(NUMA) architecture

(transparently) someone elses (processor), I can but it goes slow.
Any processor can access directly any memory.
But not at the same speed.

I can read my own memory very fast, if [want to read

It should be up to the program to optimize which
memory belongs to which CPU.

(—\
P, LI P I\ 0002000020
------ OO0
) i f"\‘]um.uum |

\ M2 / Mm
terconnection network >

realization in hardware or
in software (distributed shared memory)

15

but not shared

MIMD

Distributed ‘memory architecture

Any processor can access any memory,
but sometimes through another processor (via messages).

(so, not transparently)

d P2.Mem(0)

£ b f
P, |Eo (6 ocoooocog
) L2 oJfrmmmme—' Prn |4 ccooocm
ZImnmn
M, M

N

—> message

CSE1400 Computer Organisation

Here processor can request memory from another
one, but it is not available by default unless the
other accepts the request. It’s like the internet

m

@nnection networl>

Message Passing architectures

Interconnection networks
(I/O between processors)

Difficulty in building systems
with many processors:
the interconnections

Important parameters:

Diameter: Maximal distance
between any two processors

Degree: Maximal number of connections per
processor

Total number of connections (Cost)

Bisection width: Largest number of simultaneous
messages

»

Message Passing architectures

crogspar)
l

p |
P)
N P —
N2 switches
B .
M M M

Cross-bar interconnection network

16

Multiple bus

Bus 1

™

Bus 2

(Multiple) bus structures

N parallel paths between processors and memory
Simple but still lots of wires

Only works for low scale parallel processing

Hypercubes (1/3)
Non-uniform delay, so for NUMA architectures.
10 11

n x 2"~' connections

n=2
maximum distance n hops
00 0 Connected processors differ
011 —111 by 1 bit
/ / ? Routing:
000 -> 111 :
+ scan bits from right to left
010 110 « if different, send to
fi=3 neighbor with same bit
001 101 different
+ repeat until end
000 100

CSE1400 Computer Organisation

Virtual memory [t makes handling large files easier.

Why?

Virtual memory

Pretend that there is more memory

«Divide address space in chunks
« Store most chunks on disk
«When chunk is needed, move to main memory

4G

MAR
Address space
o] 4GB\
Installed] Read word
Memory

Virtual memory

Similarity with caching

Caching Virtual Memory
Blocks Pages

Cache miss Page fault

Tag field Page number
Byte/word field Page offset
Mapping function Page table

Virtual memory

Hardware/software support Pravae

«Memory Management Unit

- mapping of pages in memory D Ml

~access control

«Operating System la

- set up translation s Poicad addver

- handle misses

Mot

e

VoY
ABASRRINEN Z}b

We want to give the programmer the illusion that
he is always to write on all those 4GB although we
only have 2GB available.

We would need to map the 4gb pages into the 2GB
page table

Processor
Bus Virtual address
MMU
Bus Physical address
Cache
Physical address

Main Memory

DMA controller
Disk storage

Caches do everything with hardware, Virtual memory also has software support. It gives us more flexibility

17

CSE1400 Computer Organisation

Demand paging

=T VBMLQ% ’D\@(

Logical address

« covers complete
address space

« From virtual address
« through page table L[
« to physical address

Page table
«stored in main

- memory (0S) . cpy contains special

[v | wen | «translates virtual register that stores

hﬁ# Bﬂ?ii&?”gggg —— the starting location

frame of the page table

[P LT p—

1. We start with a logical/virtual address where the program thinks he can store anything
Page table provides us with a mapping in the page addres table register
3. Because you need to have this table available for each program and you dont want them to overwrite
memories across so one page table is created per running program.
4. There is a control bit for writing confirmation.
a. Generally we will not copy things to the disk every time, just before closing the program.

N

. . TLB st th tt lati f virtual
Translation Lookaside Buffer (TLB) e oy VI

memory to physical memory like a cache.
Locality of reference

o s |0 So instead of having to look up the whole page

« Special cache for table in main memory every time, you have the
small part of the y TLB quickly by hand.
page table [= |

«Look up virtual page 1 - |
number to find page . O - - .
frame | —1 i

¢ - \

404 Page Frame Not Found

« If page frame not found in TLB
~regular cache miss

« If page frame not found in page table
- page fault!
Where is the page? The page is on Disk, it was virtual... So it is the job of the

OS to bring the page from disk to main memory into the page table because we have now a new mapping.
and Disk stuff is moved via the DMA (and its bus).

18

Handling page faults

«MMU issues a trap (software interrupt)

«CPU
- aborts the instruction
- switches to kernel mode

«0S

-searches for a free page frame
-loads the requested page from disk into memory

- updates the page table

- restarts the aborted instruction

CSE1400 Computer Organisation

« Caches sometimes use write-through.
- Would you use the same technique for the page table

to disk? Why?

NO! We want to minimize the number of times we talk to the disk because the disk is extremly slow

8 GB of word addressable RAM, and an OS that
supports memory up to 32 GB and uses pages of

4 KB.

~~How many bits for the (virtual) page frame? =2 %

Page table for each process

Operating System loads correct page
table for each process

«0S maps only what is allowed

« Other parts of the memory become
unreachable!

Separate 'kernel’ mode for OS

processes

+Gives access to special instructions:
-access ‘page-table base register’, ...

physical memory

| [DRLs

b(\(,B z,L° z

11/0
| space

- ————

PTBR = page table for each process ensures that the allocated
pages for a program are fixed and a program cant mess with
the pages of another program, such us the 0S, which is very
protected. Furthermore, only the OS should be allowed to
write the page table base register.

19

