
1

WEEK 1 – HISTORY (& ASSEMBLY, I MOVED IT AFTER ISA)

HISTORY

Architecture = interconnection of components

Hardware is interconnected via “buses” (circuits)

Software is interconnected via “interfaces” (api)

PRE-HISTORY: CALCULATORS AND PROGRAMMABLE MACHINES (1700-

1930)

Calculators:

Machines of Pascal and Leibniz were mechanical devices

• No memory or program

• Leibniz used binary system (1705)

• A single operation at a time

• Only simple operations (+,-,*,/)

Programmable machines:

• Mechanical Music Instruments

o Bagdad 9th Century

o “Carillons”

• Chess

o Mechanical Turk (1770) (fraud, man inside a box)

• Weaving machines

o Jacquard Loom (Head) (1801)

o Used Punch cards

Difference (polynomials) engine

• Invented by Johann Helfrich von Muller 1786

• Extended by Charles Babbage (1822) but never finished

Analytical Engine (First Conceptual CPU)

• Designed by Charles Babbage (inspired by Jacquard punch cards

and von Muller calculator)

• Never completed, but brought the Instruction Set Architecture

concept of a CPU:

• Arithmetic Unit + IFs + Memory (with stored-program and

variables) + I/O devices.

o Program contained calculations + order sequences

First computer programmer (for non-finished Analytical Engine):

Ada countess of Lovelace 1840s

• First computer algorithm: Note G, in Assembly

• Math algorithm to generate Bernoulli Numbers

Analog Computers: Vannevar Bush 1931.

• First systems that enabled significant reduction of calculation time

• Used nomograms and slide rules. Graphical tools designed to allow

the approximate graphical computation of a mathematical

function/operation.

1ST GENERATION: ELECTRO-MECHANICAL (1930-1950)

Boosted by World War 2 (1939-1945).

Electro-mechanical devices:

ASCC: Automatic Sequence Controlled Calculator

• Built by Howard Aiken 1937-1944

• First general purpose digital computer

• 750,000 components

• 5 tons

• 100 times faster in theory, 3-5 times faster in practice (component

failures)

ENIAC: Electronic Numerical Integrator and Computer

• Built by John Mauchly and John Presper Eckert 1943-47

• First all-electronic computer

• But international patent won later by John Atanasoff in 1973

(computer already in 2nd generation).

• 18k tubes of 5-10cm

• 150 kW dissipation

• 30 tons

• 1000 bits of memory

• 20 hours to 20 seconds.

• 10 tubes broke on power up

• Difficult to program

• Not very flexible

• Technologically complex

• Small memory

• Literal bugs (and origin of software bug term) would break it

EDVAC: Electronic Discrete Variable Automatic Computer

• Built by Mauchly and Eckert 1948-49

• Basis of Von Neumann Architecture

• Mean Time to Failure (MTTF) 8 hours

2ND GENERATION: TRANSISTORS (1955-1975)

Transistors:

• Reliable

• Less power

• U. Manchester world's first transistorized computer 1953

• Bell Labs 1948

• DEC PDP-1 1959

o Hacker culture

o First game (Spacewar)

• 1st Supercomputer: Cray’s CDC 6600 – 10MFLOPS

floating point operations per second

https://www.youtube.com/watch?v=FJGkFU3leY0

2

3RD GENERATION: MICROPROCESSORS (1960-TODAY)

Integrated Circuits:

Enabled small low-cost microprocessors

1st CPU: Intel 4004 * 108KHz

Apple 1978 first B2B computer

IBM 1980 Personal Computer first commercial computer

• Blueprint for today’s PCs

• Revolutionized the market

• Open standards and friendliness to third-party hardware and

software developers

PERIPHERALS (I/O DEVICE) - BOTH 2ND AND 3RD GENERATION

First monitor 1951 was US army’s display system

First mouse 1968 Doug Engelbart “X-Y Position Indicator for a Display

System”

4TH GENERATION: MULTI-COMPUTING (1969-TODAY)

Roots of the Internet:

ARPANET 1965-1969

• Leonard Kleinrock develops queuing Theory

• 4 computers at UC Santa Barbara, UC Los Angeles, Stanford, U Utah

1972 ARPANET public + Email

TCP/IP at Stanford 1974 (universal protocols between different machine

systems)

1982 ARPANET +TCP/IP = early Internet

Cloud computing (Server farms, multi-core)

File/video/… sharing; IoT; Social Media

WEEK 2 – LOGIC CIRCUITS
John Vincent Atanasoff Intermezzo. Inventor of Digital Computer

1930s. Programmable devices that compute arbitrary arithmetic or logical

operations, being able to perform more than one function. Use digital rather

than analog components.

Atanasoff’s principles of digital computers:

1. Use binary information bits

2. Use electricity and electronics instead of mechanical devices

3. Memory based on capacitors

4. Computation by Boolean algebra

Unit of Information:

Computers consist of digital (binary circuits)

bit (binary digit) 0 = off, 1 = on

Two interpretations of bits:

• Arithmetic: as data values

• Logic: as truth values (false or true)

Bit Strings: Groups of bits, which can be given a specific meaning

BOOLEAN ALGEBRA: USES 2 VALUES

A computer can transform Bit Strings (expressions) into other strings

(results). 1 + 2 = 3 -> 01 XOR 10 = 11

George Boole 1854 created this algebra that can compute regular

arithmetic.

Commutative law: x+y = y+x, x*y=y*x (order doesn’t matter)

Distributive Law: x(y+z) = xy+xz

Associative law: (x+y)+z = x+(y+z). (no bracket) Mult is also associative.

So AND and XOR are associative.

Different than school algebra: x+x = x, x*x = x (no squares, no 2)

Because an expression repeating the same (boolean 1/0) expression n times

is redundant and its truth value remains the same.

Complement: the 1-x of something, in Boolean algebra = -x (not x)

Such that: x and not x = 0 (x(1-x) = x-x^2 = x-x = 0)

x or not x = 1 (x+(1-x) = 1-0 = 1). (1-x) = NOT x = 𝑥 = ~x

Truth tables and computing functions

 Sum of products form…

x y f(x,y) = x XOR y f(x,y) = ~x*y + x*~y

0 0 0 Minterm for f(…)=0 –Don’t include--

0 1 1 Minterm for f(…)= 1 ~x*y

1 0 1 Minterm for f(…)= x*~y

1 1 0 only when listing Minterm with f(…)=1

Any polynomial function can be constructed using Boolean algebra.

Any function has a Sum of Products form.

LOGIC GATES

3

De Morgan’s Law: ~(xy) = ~x+~y (negation sign “flips” + for *)

~(x+y) = ~x*~y

KARNAUGH MAPS

Don’t cares (marked as d/x/?) are jokers, can be used as 1 or 0 according

to our needs. Used for minimization and for grouping larger more cells.

LOGIC GATES CIRCUITS

ELECTRONICS OF LOGIC GATES

Switching voltages:

On = Voltage wants to go to supply/Vout(continuation) at 5V (Vsupply)

Off = Voltage wants to go to ground and/or at 0V (Vground)

4

If electrons go to ground with voltage that is

a bad circuit because you are wasting energy

If both a circuit connected back to supply

/battery/Vout and a circuit connected to

ground/source/earth are available in

parallel electrons will go to ground

(Vout = 0) because there are more positive

charge electrons on earth than on supply,

therefore attracting the flowing negative

charged electrons and “draining” Vout from all the Voltage. If electrons go

back to voltage without resistance too much energy will travel in the circuits

causing a short circuit.

There is a Voltage threshold where the Voltage is neither logical 1 nor 0.

NMOS TRANSISTOR GATE

if +V -> closed gate (electron flow)

if 0V -> open gate (no flow)

Used for positive variables.

PULLDOWN: Conditions for Vout = 0

Va OR Vb: parallel and N-type

PMOS TRANSISTOR GATE

if +V -> open gate (no flow); if 0V -> closed gate (electron flow)

Used for negative variables.

PULLUP: Conditions for Vout = 1

~Va AND ~Vb. It would require a series connection

and a P-type transistor (it conducts when 0V).

Inverter gate: Quick read: If ~V connect to supply (and not ground),

if V connect to ground (and not to supply).

CMOS CIRCUIT:

Complementary metal-oxide semiconductor circuit. Combines PMOS and

NMOS to avoid power consumption when connecting to ground. You can

observe that the Pull up network is exactly the opposite of the

pulldown network using de Morgan’s Law.

TO MAKE AN OR GATE CONNECT A NOR WITH AN INVERTER GATE

https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=kYwNj9uauJ4
https://www.youtube.com/watch?v=kYwNj9uauJ4
https://www.youtube.com/watch?v=kYwNj9uauJ4

5

PROPAGATION DELAYS

Switching transistor states takes time (and energy).

Every network of gates has delays. The speed of the circuit depends on

the maximum number of logic gates that a signal needs to propagate

through. The optimized sum of products is implemented as digital logic.

Still, an AND gate is more efficient to implement as a NAND & NOT

than strictly making the AND Pullup and Pulldown networks from their literal

Minterms. So not all logic gates delay the same.

The number of inputs to a logic gate is called its fan-in.

The number of branches coming for next gates it’s called fan-out.

The thumb rule is to keep fan-in and fan out bellow 10.

Clock Hertz frequency calculation from:

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 𝑛𝑠 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑎𝑡𝑒𝑠

1 − 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 %

1 ns = 10^-9 seconds = 10 MHz

COMBINATORIAL CIRCUITS

Constructing a separate circuit for every function is very uneconomical

The goal is to combine Integrated (logic) Circuits that can compute

different functions by taking instruction parameters:

For 4 instructions (22), we need 2 instruction bits (p1 = 2nd bit, p0= 1st bit)

2 instruction bits & 2 operand bits A B

f(p1,p0,A,B) p1 p0 00 01 10 11 result type

Add A XOR B 00 00 01 01 00 signed int

Multiply A AND B 01 00 00 00 01 signed int

Compare A - B 10 00 11 01 00 signed int

Or A + B 11 00 01 01 01 boolean
Combinatorial circuits depend directly and

Only on the given input.

SEQUENTIAL CIRCUITS

• Depends on input parameters

• Depends on internal state (last result), “recursive”

• Stores prev data. Counter: B = 1 and Fn = Fn-1 + B

THE SR LATCH (STORE)

Electronic element that can store binary information

You can set to 1, reset to 0 or keep the current state (neither set nor reset).

Set and reset at the same time (11) is nonense. You want either, not both.

It would lead to Q=~Q=0 and if you “release” SR back to 00 one path will

randomly be faster and feed the other NOR gate and Q will vary from 11

over time. If 11 is never used, we can remember the previous states of R

and S based on the current output. You can also make NAND SR Latches.

GATED SR LATCH (ENABLED)

It is the same as the SR latch, but changes in Qt states have a fixed tempo

controlled by a binary clock. Only when clock is 1 Qt may be updated.

Clocks are essential in logic circuits to properly time the update of variables.

GATED D LATCH (ONE D AND ENABLED)

 D-latch

A single D input “samples” (sets state) of SR when clock is high and

stores/latches (keeps state) when clock is low”. Clk allows multiple changes

https://www.youtube.com/watch?v=KM0DdEaY5sY
https://www.youtube.com/watch?v=peCh_859q7Q
https://www.youtube.com/watch?v=peCh_859q7Q

6

Latch: To retain whatever output state resulted from a previous input signal

until reset by another signal.

EDGE TRIGGERING (FLIP-FLOPS)

A flip-flop is edge triggered if the output is only updated at pulses:

Positive (leading): when clock “jumps” from 0 to 1.

Negative (trailing): when clock “drops” from 1 to 0.

The edge triggered flip-flop is distinguished by the |> under D.

D FLIP-FLOP (POSITIVE EDGE TRIGGERED)

Is a D-Latch that enables changes only at the +edge start of the clock pulse.

A way to make an +edge detector consists of an AND of

2 opposites where the complement’s (opposite) inverter

propagation delay has for few ns both inputs to be 1.

That after the clock will make the circuit +edge triggered.

MASTER-SLAVE D FLIP-FLOP (NEGATIVE EDGE TRIGGERED)

The first D-Latch (master)

is enabled (and updated)

during clock 1 and

transfers the data to the

second D-latch that takes

the Output of the master

as D and waits until the

clock drops to 0 to send it.

When clock is at 0 the

slave doesn’t get new

Master data, therefore the final output is only produced at clock drops.

Positive and negative edge triggered D Flip-flops have the same icon.

T FLIP-FLOP

T flip-flop changes the state of its inside D flip-flop every clock cycle if its

input T (toggle) is equal to 1.

JK FLIP-FLOP (EDGE TRIGGERED AND 2 INPUTS)

Same as SR (store, but triggered) and it allows JK to be 11 to toggle like T’s

Alternative representation.

https://www.youtube.com/watch?v=YW-_GkUguMM
https://www.youtube.com/watch?v=F1OC5e7Tn_o

7

EXTRA, OTHER NEGATIVE FLOPS

Negative-edge-triggered D flip-flop

Master-slave that feeds its result in

XOR (addition) “IN” stands for

“inverse”. So if IN = 1 and Q = 0,

Q becomes 1. If IN = 1 and Q = 1,

Q becomes 0. If IN = 0, Qt = Qt

PRESET AND CLEAR FLIP-FLOPS

Sometimes it is desirable to force a flip-flop into a

particular known state (rather than random),

especially at PC start. Preset and Clear are

“active low”, so the opposite holds. If both are 1.

The D-latch is controlled by the clock. If clear = 0,

it starts at 0, if preset = 0, it starts at 1

REGISTERS

Arrangement of a number of

D flip-flops synchronized by

1 clock.

SHIFT REGISTER

Data are written (loaded)

into or read from all flip-

flops at the same time.

Shift registers moves the

output from the utmost left

flip-flop to the next one on

the right after each pulse

and so forth till the far right.

PARALLEL-ACCESS REGISTER

The register clock is controlled by a separate read/write signal (so all states

are on hold while on Read, until Write sign). Alternative form

8

COUNTERS (SEQUENTIAL CIRCUIT)

It’s like a shift register but instead of shifting the output Q it “enables” the

next clock signal when the last flip-flop was 0. (carry over).

A counter driven by a high-frequency clock can be used to produce

signals whose frequencies are submultiples of the original clock

frequency. Such a counter is said to be functioning as a scaler.

Ripple counter: when the flip-flops are positive edge triggered.

DECODERS (COMBINATORIAL CIRCUIT)

A circuit capable of accepting an n-variable input and generating the

corresponding output signal on one out of 2n output lines.

It will allow for easer logic if’s

circuits rather than if each

time you’d have to manually

decode it in the next circuit.

Yo could use the binary to decimal decoder to print

an electric clock. The one on the right is the BCD to

seven-segment display decoder.

MULTIPLEXERS (COMBINATORIAL)

Any one of n data inputs can be selected to appear as the output. The choice

is governed by a set of “select” inputs. Such circuits are called multiplexers.

Data inputs could be all of the n = 1MB of memory addresses of a computer,

and the multiplexer will easily allow you to select and output a specific byte

by just using 20 (220) select inputs.

The inputs of a multiplexer will be log2 𝑁 and the output will be 1.

The inputs of a decoder will be n and the output will be 2n.

Multiplexers are also used in logic functions.

9

COUNTER (COMBINATORIAL AND SEQUENTIAL)

Preset 0/1 tells multiplexer to either output the last register addition or to

start the counter at a specific value “V”. (input of multiplexer: log2 2 = 1)

R/W 0/1 read freezes the counter, write resumes it letting the register clock

to trigger data transfers from the multiplexor (inputs) to the output pins.

The ADD chips is an XOR circuit.

FULL ADDER WITH MULTIPLEXER

MEMORY

2 address pins to define via the multiplexer one of the 4 registers.

The decoder will take the 2 address bits and send the read/write signal to

the chosen register.

MOORE’S LAW

The number of transistors doubles every 1.5-2 years

Current transistor size 5nm

ROCK’S LAW

The cost of semiconductor fabs

doubles every 4 years.

Although the trend makes

computers cheaper the barriers

of entry to produce competitive

computers are higher and

therefore less parties are involved in making chips (Intel one of them).

WEEK 3 – DATA REPRESENTATION
In the past floating points conversions and the millennium bug has costed

lots of money. That’s why engineers now set up things for the long term.

RADIX (BASE) TO DECIMAL

𝑑3𝑑2𝑑1𝑑0𝑏
= 𝑑3 ∗ 𝑏3 + 𝑑2∗ ∗ 𝑏2 + 𝑑1 ∗ 𝑏1 + 𝑑0 ∗ 𝑏0

dn = nth digit, b = base.

321016 = 3 ∗ 163 + 2 ∗ 162 + 1 ∗ 16 + 0 ∗ 160 = 12816

DECIMAL TO BASE

Repeatedly subtract the largest power of BASE that fits in the number or

repeatedly divide by BASE, the n remainders (n0 = LSB) form the bit string.

10

LSB = Least Significant Bit = 0th bit. MSB = Most Significant Bit (often sign).

RADIX A TO > RADIX B (A = BM)

Large radix to small radix where big radix is a bm multiple of the smaller:

𝑑𝐴 = ∎𝑚−1𝐵
∎𝑚−2 … ∎0𝐵

658 = ([_2 _1 _0] [_2 _1 _0])2 (23 = 8)

110 101

6 5

Big to small: Split digits of the large radix into m digits of small base.

RADIX B TO < RADIX A (A = BM)

Small radix to big radix where big radix is a bm multiple of the smaller:

𝑑𝐴 = ∎𝑚−1𝐵
∎𝑚−2 … ∎0𝐵

(1010 1111 1000)2 = ([_0] [_0] [_0])16 (16 = 24)

1010 1111 1000

10(A) 15(F) __8__

Small to big: Group digits of the small radix into m digits of large base.

FULL ADDER

Concatenate full adders to add larger numbers. Carries ripple through

BINARY CODED DECIMAL (BCD)

It’s a decimal number whose digits are

represented in 4 bit binary. Pros: each

4bit group can be decoded to a digital led

number display. Cons: 5 bits are not used.

SIGN & MAGNITUD, ONE’S COMPLEMENT, TWO’S COMPLEMENT

For all systems: if MSB = 1 it’s

negative if MSB = 0 it’s positive.

All positive are the same.

S&M negative: MSB multiplies

unsigned number by -1.

S&M 0: It will also multiply 0 by -1

(-0), so 2 zeros.

S&M range: [-(2n-1 -1), 2n-1 -1]

1C negative: flip zeros and 1s

1C 0: 2 zeros (-0 = 111…1)

1C range: same as S&M

2C negative: 1C negative + 1; zero : only +0; range: : [-(2n-1), 2n-1 -1]

2C addition = subtraction. Just add numbers and ignore the last carry.

Negative overflow if + and + yield -, Positive overflow if – and – yield +

(number exceeds the number of bits and it gets “truncated”).

Addition of two different sign numbers will never yield integer overflow.

EXCESS-X

Offset of -x. 0000 = -x. 0001 = 1-x. Range: [-x, 2n-1 -x]. Offset in decimal

unless specified. Used as exponent in floats.

(Multiplication and addition in binary is the same as in decimal)

11

SIGN EXTENSION

FIXED POINT FRACTIONS

bit 2bit

-1 0.5

-2 0.25

-3 0.125

-4 0.0625

-5 0.03125

-6 0.015625

-7 0.0078125

-8 0.00390625

-9 0.001953125

-10 0.000976563

FLOATING POINT NUMBERS (IEEE-754)

Real number binary representation that assigns different meanings to

certain bits so that the user can pass the sign, the exponent and the

mantissa of a number. Changing the exponent allows the decimal point to

“float”. Float = sign * baseexponent * mantissa (like scientific notation).

Mantissa = units digit coefficient followed by the dot and the decimals

IEEE-754 float: Mantissa is always 1.something, therefore the 1. is skipped

bit sign, exponent excess-127, fraction is fixed point binary MSB start at -1

Floating-point numbers that are inverted differ only in sign bit (S&Mish)

Exponent all 0s is makes mantissa implicit 1. become 0. (making 0 possible)

Exponent all 1s is for infinite if fractions bits are all 0 otherwise NaN i.e. 0/0

Decimal to float: 1 create fixed point binary 2 Shift binary places until 1.xx

3 Number of shifts + 127 = exponent 4 remove 1. from mantissa. Fill in.

WEEK 4 – INSTRUCTION SET ARCHITECTURE (ISA)
An ISA is an abstract model of a computer that serves as the interface

between software and hardware. Which specifies: supported data types,

what state there is (main memory and registers) and their semantics

(consistency and addressing modes) instruction set, I/O model.

Multiple ISA implementations due to performance, size, and cost constraints

COMPARISION CRITERIA

Flexibility: Complexity of what the ISA can do (op and address modes)

Programmability: Complexity for programmers (code length, #registers)

Implementability: …for hardware (encoding of instr, memory consistency)

CISC (COMPLEX INSTRUCTION SET COMPUTER)

• Stack based;
• Register based;
• Long instruction word

(assembly code line);
• explicit parallelism;

• Minimal instruction Set
Computer (MISC);

• Traditional architectures
(legacy);

• Powerful instructions
(complex and too many);

• Memory to memory
operations. 68xxx and x86
family

PROS:

• Easier to program;

• Reduced code size;

• Complexity in hardware;

• Legacy (politics), its in our
PCs and servers.

CONS:

• Instruction encoding

complexity

o variable-length

instructions,

o many addressing

modes,

• Slower than RISC (stack is

slower than registers),

• Consumes more energy (not

in embedded systems,
portable devices),

• many unused and too
specific instructions).

RISC (REDUCED INSTRUCTION SET COMPUTER)

• Reduced Instruction Set
• Small number of instructions

• Load/Store from Memory

• Operations between registers
• Large register file

• Present in: PowerPC, ARM

VON NEUMANN ARCHITECTURE

12

MEMORY ORGANIZATION

Bits (D flip-flops) grouped into words (parallel access registers) grouped

into Memory chips (or SoC (system on a chip)).

Addressable by byte: 1 bit too little useful, a word too cumbersome.

1 byte (8 bits) = an ASCII character. Sweet spot.

In x64 architecture:

word = 2 bytes, long (doubleword) = 4 bytes, quad = 8 bytes

Stack Memory Addresses are 8 bytes because x64 operates on quadwords

(64 bits). Data must fit into those quads. Aligned access is easier for the

programs to push/pop things around (like an Ikea store). Often empty bits

BIG ENDIAN VS LITTLE ENDIAN

Big = Left to right (IBM, The Internet), Little != “Unit group” Right to left

but the contents of the group are still read Left to Right. (Intel)

TYPES OF INSTRUCTIONS (INTEL VANILLA)

Data Copy Operations

• Between memory and registers: [R1] <- M(LOC)

• Between memory locations: M(LOC1) <- M(LOC2)

• Between registers: [R1] <- [R2]

Arithmetic and logic operations:

• Add / - / * / % / divide… [R1] <- [R1] + [R2]

Flow control operations:

Branch_IF_[R1]>[R2] LOOP

I/O operations:

ISA LAYOUT IN MEMORY

• An instruction may

span multiple words

• #bits/specifier may

be different per

instruction type

INSTRUCTION ADDRES FORMAT

#address Operand 1 Operand 2 Operand 3 Pitfall

0 (stack) Pop destination (But slides insist its 0)

1(accumulator) Destination

(implicit acc)

2 (M-M)

 (R-M)

Source Destination Overwrite

3 (M-M-M)

 (R-R-R)

Source 1 Source 2 Destination Long in

EVOLUTION OF INSTRUCTION SETS

Name Date Addresses Example

Accumulator <1960 1 68HC11

Stack 1960-1970 0

Memory-Memory 1970-1980 2/3

Register-Memory 1970-today 2 CISC

Register-Register 1960-today 3 RISC

ACCUMULATOR (SINGLE REGISTER)

Simple design: easy to implement and program

Memory is bottleneck: can’t keep frequently accessed

data in the processor

STACK

ALU: Aritmetic and Logic

Unit (MPLXER)

TOS: Top of the stack

13

REGISTER-MEMORY (CISC)

• 16 General purpose registers

o aka register file

o growing over time

• faster than memory

• fewer address bits, so easier to encode

• Memory is bottleneck

o can’t keep frequently accessed data in the processor

R0 reserved for 0

Addressing modes:

• Direct

• Register

• Immediate

• Index

X86-64 INSTRUCTION FORMAT

ADDRESSING MODES (INTEL VANILLA)

Base with index and displacement: Base = starting memory address,

scale = bytes in word (increment between addresses), index “array

pointer”, displacement = “column” byte displacement within the word?

WEEK 1 – ASSEMBLY

X86-64 (IA-64), AT&T SYNTAX WITH GCC IN LINUX

14

ASSEMBLY STRUCTURE OF INTEL ARCHITECTURE

GENERAL PURPOSE REGISTERS

64-bit Lower 32 bits Lower 16 bits Lower 8 bits

rax eax ax al

rbx ebx bx bl

rcx ecx cx cl

rdx edx dx dl

rsi esi si sil

rdi edi di dil

rbp ebp bp bpl

rsp esp sp spl

r8 r8d r8w r8b

r9 r9d r9w r9b

r10 r10d r10w r10b

r11 r11d r11w r11b

r12 r12d r12w r12b

r13 r13d r13w r13b

r14 r14d r14w r14b

r15 r15d r15w r15b

Other important registers:

RIP = instruction pointer, points to the next instruction to be executed.

changing this register is the same as a jumps

RFLAGS = register that stores information about the last calculation

(flags) to use for conditional jumps

Variable-length instructions 1-15 bytes

Format for move and arithmetic: INSRT SRC, DST

Format for comparison: CMP OPRND1, OPRND 2

Format for Flow Control: JMP LOCATION

15

opcode operands function description

mov src,dst dst = src copy

push dst (%rsp) = dst, %rsp -= 8 pushes a value onto the stack

pop src %rsp += 8,src=(%rsp) pops a value off the stack

xchg A,B A,B = B,A switches the contents of A and B

addq src,dst dst = dst + src adds src to dst

subq src,dst dst = dst – src subtracts src from dst

inc dst dst = dst + 1 adds 1 to dst

dec dst dst = dst – 1 subtracts 1 from dst

mulq src rdx:rax = rax * src multiplies rax by src (UNSIGNED)

imulq src rdx:rax = rax * src multiplies rax by src (SIGNED)

divq src rdx:rax = rax / src divides rax by src (SIGNED)

idivq src rdx:rax = rax / src divides rax by src (SIGNED)

jmp label jumps to label (unconditional)

je label jumps to label (if equal)

jne label jumps to label (if not equal)

jg label jumps to label (if greater than)

jl label jumps to label (if less than)

jle label jumps to label (if less than or equal)

jge label jumps to label (if greater than or equal)

call label
push <current 15ddress +
1>, jmp label

calls a function

ret jmp (%rsp) returns to caller

loop label dec %rcx, jnz label

cmp A,B
A – B (answer not stored but
flags set)

compares 2 numbers. Jump instruction follows

xorq src,dst src = src xor dst bitwise xor

orq src,dst src = src and dst bitwise and

andq src,dst src = src or dst bitwise and

shlq A,dst src = src << A shift left

shrq A,dst src = src >> A shift right

not dst dst = 1111111- dst bitwise inversion of dst

neg dst dst = 0 – dst 2’s complement, result of not and add 1

leaq A, dst dst = &A load effective 15ddress (& means 15ddress of)

int int_no software interrupt (see linux system calls above, used
together with int 0x80)

16

ADDRESSING MODES (AT&T)

example name description

movq $25,%rax immediate
Loads the decimal
value into rax

movq $label,%rax
immediate
(pointer)

loads the location of
the label into rax

movq label,%rax direct
loads the quadword at
the location of the
label into rax

movq (%rbx),%rax indirect

loads the quadword at

the location pointed to

by rbx into rax

movq 8(%rbx),%rax
indirect offset
(positive)

loads the quadword 8
after the location
pointed to by rbx into
rax

movq -8(%rbx),%rax
indirect offset
(negative)

loads the quadword 8
before the location
pointed to by rbx into
rax

movq
(%rbx,%rcx),%rax

indirect variable
offset

loads the quadword at
%rcx after the location
pointed to by rbx into
rax

movq
(%rbx,%rcx,8),%rax

indirect variable
scaled offset
(negative)

loads the quadword at
%rcx*8 after the
location pointed to by
rbx into rax

movq

8(%rbx,%rcx,8),%rax

indirect variable

scaled offset

(negative)
+constant

loads the quadword at

8 after %rcx*8 after

the location pointed to
by rbx into rax

Scale s=1,2,4 or 8 disp= 8, 16,

32 or 64-bit signed number

movzb move 0 extended byte.

ASSEMBLER DIRECTIVES

directive explaination

.quad reserves space for a 64 bit number to be stored

.long reserves space for a 32 bit number to be stored

.word reserves space for a 16 bit number to be stored

.byte reserves space for a 8 bit number to be stored

.asciz
reserves space for a string of text to be stored,
automatically terminated by a 0 (NULL)

.ascii
reserves space for a string of text to be
stored, not automatically terminated by a 0 (NULL)

.skip n
skips n bytes. useful for defining arrays of data. This
should normally only be used in the .bss

.equ defines symbolic names for expressions (i.e. constants)

Nibble = 4 bits (not an assembler directive)

ASSEMBLER SECTIONS

The .text segment is intended to hold all instructions. The .text segment

is read-only. It is perfectly fine to include constants and ASCII strings in

this segment.

The .data segment is used for initialized variables (variables that receive

an initial value at the time you write your program, such as those created

with the .word directive).

The .bss segment is intended to hold uninitialised variables (variables

that receive a value only at runtime). Therefore, this section is not part of

the executable file after compilation, unlike the other two sections.

(Not a section): .global label makes label visible to other programs. The

main label must be exported because the operating system needs to know

where to start running your program.

X86 CALLING CONVENTION

The calling convention (System V AMD64 ABI) that is used on *nix systems

is as follows. for 64 bit programs only The first six integer or pointer

arguments passed in the registers in this order:

1. RDI
2. RSI

3. RDX
4. RCX

5. R8
6. R9

(with sometimes R10 as a static chain pointer in case of nested functions)

Additional arguments are to be passed on to the stack

The return values are stored in RAX (In case of a 64 bit number) and in

RDX:RAX (MSB:LSB) in case of 128 bit numbers.

17

THE STACK

You can push to the top or pop (take out) from the top of

the stack. Pushing values makes the RSP (register stack

pointer) jump a smaller address and populate it with

such value. If you want to collect the last second push

value you type 8(%rsp) 8 being the scale of the byte

addresses. In 64 architecture the jumps are 8.

Popping values would remove the value from the top of

the stack and assign it to a source and the RSP will return to its last place.

SUBROUTINES

Calling a subroutine will make a jump and remember the next instruction

address for after the return.

You can pass parameters through registers (hold on to calling conventions)

or you can push them on the stack (hard to keep RSP offsets).

Prologues and epilogues with RSBP can help you keep separate stack frames

for each subroutine.

GDB DEBUGGER

GDB is a debugger which can help find segfaults or find other mistakes in

your program. to use it compile it using the -g option (put it directly after

"gcc") and then instead of running it like ./<programname>, you run it as

gdb ./<programname>. this should launch you into a gdb environment. in

this environment you can use the following commands:

b n (or breakpoint). this sets a breakpoint on line n

print code. this prints whatever you specify in code. this can be a full c

expression, or a register name (e.g. $rdi or $rax)

x/nx p print n 32 bit words after p. p can be an adress or register. this is

useful for reading whats on the stack (e.g. x/10x $rbp)

n (or next) steps ahead one instruction. when it finds a function call it will

not step into instructions inside this function. useful to skip large functions

like c stdlib function like printf

s (or step) steps ahead one instruction. this one does go into large functions

r (or run) runs the program until the next breakpoint or the end

c (or continue) after a breakpoint, continue restarts execution like run did

until it encounters another breakpoint or the program ends. useful if a

breakpoint is in a loop and you want to go to the next iteration

start starts the program, places a breakpoint on line one so you can

imediately start using s and n

when using GDB your program must be compiled with -g and your code

must be in a .text section

CHAPTER 2 AND 9 EXTRA NOTES
Unsigned integers uses less bits than Excess because excess still represents

negative side when 000000

Exponent of the IEEE-754 has to be within -126,127 - 128 yields inf or Nan

000xxxxxxx: 3-bit & 7-bit instructions.

Max would be 2^3 – 1 + 2^(7-3). You can only have 1 opcode at a time…

CISC vs RISC assembly difference is RISC uses 3 operands in math and it

only accepts registers.

CISC doesn’t need to LOAD things into registers.

Vanilla uses LOAD for moving into a REGISTER and STORE R, (SP) for PUSH.

Store seems to be the only one that has reversed order. (store src, dst)

Loading to a memory is MOVE.

18

EXAM PREP

BYTE CONVERSION

Byte = 8 bits (2^3)

KiB = 2^10 bytes

MiB = 2^20 bytes

GiB = 2^30 bytes

TiB = 2^40 bytes

PiB = 2^50 bytes

EiB = 2^60 bytes

ZiB = 2^70 bytes

YiB = 2^80 bytes

FLOATING POINT ADDITION

1. Identify the operand with the smaller exponent

2. Make the smaller exponent equal to the larger

3. Compensate by adding zeros to the binary fraction (don’t forget

implicit 1 of the mantissa)

4. Add both mantissas

5. Present the sum in a float number with the high exponent.

FLOAT CREATION

Positive integers overflow, negative integers overflow

MULTIPLEXER ADDER (TRUTH TABLE TRICK)

How to solve: Assume all x, y, (and carry) data inputs are 0 and ignore the

select inputs. What would these incoming arrows input into the multiplexer?

If the incoming y was 0, then you’ll get the 1234 truth table of:

0

0

1

1

But the actual sum truth table is 0110.

Therefore we know 2nd and 4th must be
swapped.

19

MULTIPLEXOR Z OTPUT FORMULA

z = ~y1*~y2*~x1*~x2 + ~y1*y2*~x1*x2 + y1*~y2* x1*~x2 + y1*y2* x1*x2

BOOLEAN SIMPLIFICATION

x1~x2 + ~x2x3 + ~x1x3 = x1~x2 + x1~x2x3 + ~x1~x2x3 + ~x1x3 =

x1~x2(x3 + 1) + ~x1x3(~x2 + 1) = x1~x2 + ~x1x3

Explanation:

~x2x3 can be separated into x1~x2x3 + ~x1~x2x3, since ~x2x3 =

~x2x3(~x1 + x1) = x1~x2x3 + ~x1~x2x3.

Then we combine the terms again.

1 + anything = 1 in boolean algebra, so the terms x3 and ~x2 can be

omitted there.

KOOMEY'S LAW

Koomey's law describes a trend in the history of computing hardware: for

about a half-century, the number of computations per joule of energy

dissipated doubled about every 1.57 years

BOOLEAN LAWS

MOD-4 UP/DOWN COUNTER

20

FINITE STATE MACHINE

1. Develop an appropriate state diagram or state table.

2. Determine the number of flip-flops needed, and choose a suitable type

3. Determine the values to be stored in these flip-flops for each state in the

state diagram. This is referred to as state assignment.

4. Develop the state-assigned state table.

5. Derive the next-state logic expressions needed to control the inputs of

the flip-flops. Also, derive the expressions for the outputs of the circuit.

6. Use the derived expressions to implement the circuit.

TYPES OF COMPUTERS

Embed computers = for specific purpose in embed systems, industrial

Personal computers = consumer market and variety of purposes

Servers and Enterprise systems = network of large computers with DB

Super computers and grid computers = high performance, expensive,

demanding computations (i.e. weather forecasting), grid = high speed

network of combination of personal computers, cloud is emerging trend

MEMORY TYPES

PRIMARY

Also called main memory. Electronic. Programs are stored here. It has

distinct addresses (byte addressable usually) It includes RAM, which can be

accessed at a fast fixed time.

CACHE MEMORY

Faster than RAM, holds sections of the program currently being executed.

At start of program is empty, data fetched from main memory is copied here

to interact with the CPU (cache is usually inside cpu close to registers).

SECONDARY STORAGE

Magnetic, optical and flash memory devices that keep data even when

there’s no power.

ARITHMETIC AND LOGIC UNIT

Any arithmetic or logic operation, such as addition, subtraction,

multiplication, division, or comparison of numbers, is initiated by bringing

the required operands into the processor, where the operation is performed.

PARALLELISM

You can gain better performance (i.e. run code faster)

By doing parallel tasks, using processors with multiple cores, or using

multiple processors (and or a combination of everything).

PROBLEMS CHAPTER 1

Page 46

MULTIPLICATION

You just copy the

operand 1 or return n 0s

if the other operand’s bit

is 0 and then offset the n

number each time one bit

further.

You end up with n-1

additions with n being

the number of digits of

one of the operands.

Unless the operands have the same bit length,

there are two possible number of sums.

The Sequential Circuit Multiplier seems to use n number of additions.:

This circuit performs multiplication by using a single n-bit adder n times.

BOOTH ALGORITHM

It handles both positive and negative multipliers uniformly. Second, it

achieves some efficiency in the number of additions required when the

multiplier has a few large blocks of 1s.

21

I promise that I will not use unauthorized help from people or non-course

materials during my exam. I will create the answers on my own and I will

create them only during the allocated exam time slot. I will not provide help

to or ask help from other students during their exam.

CSE1400 Computer Organisation

1

WEEK 6 – CPU LOGIC (BEN EATER INTRO)

Assume we have a made up Assembly language

with the instructions:

LDA SRC (A) – Loads the parameter implicitly into
register A
ADD SRC (A) – Adds the parameter and saves it into

register A

OUT (A) – Outputs the contents of register A into
the decimal display

However, these instructions that we just made up
don’t tell the computer anything at all yet. We
decided that the instructions of our assembly
language are of fixed length.

4 bits for the operation code and 4 bits for the paramater (whether the parameter is interpreted as a memory
location or as an immediate value is up to the “micro routine” to decide).

For now, let’s assume that LDA has opcode 0000, ADD has opcode 0001 and OUT has opcode 1110.
Let’s also assume that we started to store the program at memory location 0000, the second line of code of that

program is at 0001 and the last one at 0010.

How do we execute the program above?
1. The program counter keeps counting/jumping to the next line of code (command) that needs to be fetch and

sent to the instruction register. At the start of the program, the program counter will be the 1st command.

2. The first thing that is going to happen when we start to execute a program (or command of a program) is
that we need to load the contents of the (first) command from the memory (via the memory data register)
and put it in the Instruction Register (it tells us which command (opcode) we are currently running). This is
the start of the fetch cycle: we fetch the instruction from memory and put it into the instruction register.

3. In order to get the contents of memory location that the program counter indicates, first we need to take the

value of the program counter and move it to the Memory Addres Register (to indicate which memory address

cpmtemts to fetch).

4. Every opcode instruction will then start with a fetch cycle, that goes throu the following control logic micro

instruction (via to the Bus):

a. ProgramCounterout, MemoryAddresRegisterin: Which means the counter outputs to the bus and the

Memory Address Register reads from the bus.

So for the progam above first

instruction LDA 14, we did

ProgramCounterout,

MemoryAddresRegisterin

in just 1 clock pulse/cycle

b. In the next clock pulse/cycle wee need to move the contents of Memory Address Register into the

Instruction register: RAMout, InstructionRegisterin

MI = MemoryAddresRegisterin

CO = ProgramCounterout

RO = RAMout

II = InstructionRegisterin

CSE1400 Computer Organisation

2

Nothing happens until the clock pulse/cycle is completed. Which lasts long enough to have

enough time to setup the control logic without conflicts and provide the desire output.

Ben Eater’s instruction register is purposefully 2 colored, the Most Significant 4 bits expect the

opcode and the 4 bits from the right expect the operand.

c. The last part of the fetch cycle is to increment the program counter, so that it will be pointing

to the next instruction we would like to load: ProgramCounterEnable (CE in Ben’s Computer)

Therefore, we need to make sure that the control logic hardware circuits know how to do:

1. ProgramCounterout, MemoryAddresRegisterin

2. RAMout, InstructionRegisterin

3. ProgramCounterEnable

Now that we’ve finally fetched the instruction. We will execute it.

From here, first we read the 4 most significant bits of the instruction register. Which is the opcode: Since the 4 MSB

= 0001 =LDA instruction, it is just moving the operand to register A. Such a thing requires us to first update the

Memory Address Register with the 4 LSB (operand that points memory address) so that we can Read the values from

that memory address and eventually load them in A:

d. Purposefully, only the least significant bits of the Instruction Register are connected to the

bus. Therefore InstructionRegisterout will output the operand to the bus. Consequently, we

want to update the Memory Addres Register to get the bus contents, so

MemoryAddresRegisterin. This gives: InstructionRegisterout, MemoryAddresRegisterin

e. Now we want to take the contents of the Ram, and move them to Regiser A:

RAMOut, RegisterAin

Each of these micro instructions (d and e) required 1 clock pulse/cycle.

Therefore, the single LDA 14 operation has been exectued with the following micro instructions (CPU Logic):
1. ProgramCounterout, MemoryAddresRegisterin

2. RAMout, InstructionRegisterin

3. ProgramCounterEnable

4. InstructionRegisterout, MemoryAddresRegisterin

5. RAMOut, RegisterAin

A total of 5 clock cycles.

The next instruction (and all instructions) start the same way:

Program Counter spits out the Next Memory Address location, and the Memory
Location Address Registers listens to the bus and updates its contents.
The RAM spits out the contents of the instruction, and the Instruction registers

takes in those contents.

Before executing the opcode, the program counter gets incremented
Then it depends on the opcode (and your hardware). What happens next. Ben’s

computer ALU uses Register A and Register B as operands. So in this case you’ll

have to do IO MI, RO B1. In ben’s computer ALU’s output is in E, so next is EO AI

CSE1400 Computer Organisation

3

8-bit CPU control logic (Ben Eater) https://www.youtube.com/watch?v=dXdoim96v5A

BPU - CHAPTER 5 (BASIC PROCESSING UNIT = BPU = CPU); RISC STYLE

The processing unit executes machine-language instructions and coordinates the activities of other units in a

computer. Such as fetching, decoding and executing such instructions. The processing unit is often called the central

processing unit CPU. The term central is not as appropiate today as it was in the past because today’s computers

often include several processing units. processor is a synonym for processing unit and CPU.

Processors that operate in parrallel have a pipelined organization where the execution of an instruction is started
before the execution of the precedeing instruction is completed.
Superscalar operation is to fetch and start the execution of several instructions at the same time.

FUNDAMENTAL CONCEPTS

The processor fetches one instruction at a time and performs the operation specified. These instructions are fetched

from successive memory locations unti la branch or a jump instruction is encountered.

The processor uses the program counter (PC) to keep track of the addres of the next instruction to be fetched and
executed. After fetching the instruction, the program counter is updated to point to the next instruction in sequence.
A branch instrucion may cause the PC to not (automatically) increase by 1 but by the address of the jump.
When an instruction is fetched it is placed in the instruction register, from where it is interpreted or decoded by the

processor’s control circuitry.

RISC-style steps for executing instructions:
1. Fetch the contents of the memory location pointed by the PC and load them into the IR (instruction fetch

phase).

IR ← [[PC]]

2. Increment the PC to point to the next instruction.

PC ← [PC] + k where k is the integer that denotes the byte difference between address1 and address2

3. Carry out the operation specified by the instruction in the IR (instruction execution phase). Which generally

consists of one or more of the following actions:

a. Read the contents of a memory location and load them into a processor register

b. Read data from one or more processor registers

c. Perform an arithmetic or logic operation and place the result ino a processor register

d. Store data from a processor register into a memory location

You LOAD registers and STORE in memory.

The processor communicates with memory through the processor-memory interface.
The instruction address generator updates the PC after each instruction is fetched

The register file is a memory unit that contains the general purpose registers
THe ALU does the computations, whose computations are stored in a rigster in the register file (For RISC) (Z in CISC)

INSTRUCTION EXECUTION

Load R5, X(R7) //DST, SRC

Which uses Index Addressing mode to load a word of data from memory location X + [R7] into register 5. By doing:
1. Fetch instruction from the memory

2. Increment program counter

3. Decode instruction to determine the operation to be performed

4. Read register R7

5. Add the Immediate value X to the contents of R7 (extra step)

6. Use the sum as the effective address of the source operand. and read the contents of that location

7. Load the data received from that location into register R5

5 STEP RISC INSTRUCTIONS

Depending on the hardware some operations can be done at the same time. Book assumes 5 steps for RISC processor.

https://www.youtube.com/watch?v=dXdoim96v5A

CSE1400 Computer Organisation

4

Load R5, X(R7)

1. Fetch the instruction and increment the program counter
2. Decode the instruction and read the contents of register R7 in the register file

3. Compute the effective addres X + [R7]

4. Read the memory source operand

5. Load the operand into the destination register R5

Add R3, R4, R5, //DST, SRC, SRC

1. Fetch the instruction and incerement the program counter
2. Decode the instruction and read the contents of source register R4 and R5

3. Compute the sum [R4] + [R5]

4. Load the result into the destination register R3

However, since it is advantageous to the hardware to execute all instructions in the same number of steps, in RISC:

1. Same
2. Same

3. Same

4. No action

5. Same

Add R3, R4, #1000

1. Same
2. Decode the instruction and read register R4

3. Compute the sum [R4] + 1000

4. Same

5. Same

Store R6, X(R8) //Store has different order, SRC, DST

1. Fetch the instruction and increment the program counter
2. Decode the instruction and read registers R6 and R8

3. Compute the effectie address X + [R8]

4. Store the contents of register R6 into effective address

5. No action

COMMON RISC INSTRUCTION 5 STAGES

1. Fetch an instruction and increment the program counter.
2. Decode the instruction and read registers from the register file.
3. Execute an ALU operation.
4. (if needed) Read or write memory data if the instruction involves a memory operand.
5. (if needed) Write the result into the destination register

In most RISC R0 = 0 and the default index registers value. When R0 is

used as the index register, the effective address of the operand is the

immediate value X. This is the Absolute addressing mode. Alternatively,

if the offset X is set to zero, the effective address is the contents of the

index register, Ri. This is the Indirect addressing mode. Thus, only one

addressing mode, the Index mode, needs to be implemented, resulting

in a significant simplification of the processor hardware.

REGISTER FILE

General purpose registers are implemented in the form of a register file

that allows two registers to be read at the same time, its contents giving

two separate outputs. The register files has 2 read addreses and 1 write

address for a third register. The addreses inputs are connected to the IR

field that specifies the DST. ports: inputs and outputs of any emory unit.

dual-ported: memory unit that has two output ports.

CSE1400 Computer Organisation

5

ALU

The Arithmetic and Logic Unit is used to manipulate data:

1. perform arithmetic operations: addition, substraction

2. logic operations: such as AND, OR, XOR

3. It may be connected directly to the register file

In CISC they’d have to go via the bus

4. The multiplexer selects either output B of the register file or

the immediate value in the IR as the second ALU operand inB

DATA PATH

Since the instructions are based on two phases, fetch and

execution, the hardware is also split in 2 corresponding sections.

The fetching section also decodes the instruction and the control

signals (between components), the other executes it: read

operands, compute and store/load results.

Each of the 5 steps take 1 clock cycle.

INTER-STAGE REGISTERS

It is necessary to insert registers between

stages. Inter-stage registers hold the results

produced in one stage so that they can be used

as inputs to the next stage during the next

clock cycle. Which leads to the processor

datapath structure on the right.

• Recall that for computational
instructions, such as an Add
instruction, no processing actions take
place in step 4. During that step,
multiplexer MuxYin selects register RZ
to transfer the result of the
computation to RY

• For Load and Store instructions, the

effective address of the memory

operand is computed by the ALU in

step 3 and loaded into register RZ

• In the case of a Load instruction, the

data read from the memory are

selected by multiplexer MuxY and

placed in register RY

• For a Store instruction, data are read

from the register file, which is part of

stage 2, and placed in register RB.

Since memory access is done in stage

4, another inter-stage register is

needed to maintain correct data flow

in the multi-stage structure. Register

RM is introduced for this purpose.

CSE1400 Computer Organisation

6

• The general purpose register that holds the return addresses is called LINK.

• The general purpose register that holds interrupts addresses is called IRA

• The return address is produced by the instruction address generator

INSTRUCTION FETCH SECTION

• The addresses used to access the memory

come from the PC when fetching instructions and

from register RZ in the datapath when accessing

instruction operands.

• MuxMA selects one of this 2 sources.

• The instruction address generator updates the

PC ater each instruction is fettched

• The instruction read from the memory is

loaded into the IR, where it stays until its execution

is completed and the next instruction is fetched.

• The contents of the IR are examined by the

control circuitry to generate the signals needed to

controll all the processor’s hardware. They are alos

used by the block labeled Immediate.

• A 16 bit IV can be extended to 32 bits, which

will be used either as an ALU operand or as an index

to compute the effective addres of an operand.

• The IV is sign extended or “padded” with zeros for arithmetic operations and logic instructions respectively.

• The IV also is used to compute the target address of branch instructions.

INSTRUCTION ADDRES GENERATOR

The Addres Generator Circuit on the right,

• Uses an adder to increment the PC value by 4

(4 byte difference in addresses)

• but it also computes the branch values.

• MuxINC selects constant 4 or branch

• MuxPC selects Adder result or RA

• PC-Temp holds tempraryily the PC contents due

to interrupts or subroutine saves

INSTRUCTION FETCH AND EXECUTION STEPS

Add R3, R4, R5

Using the registers of datapath graph:
1. Memory address ← [PC],

Read memory,
IR ← Memory data,
PC ← [PC] + 4

2. Decode instruction,
RA ← [R4],
RB ← [R5]

3. RZ ← [RA] + [RB]
4. RY ← [RZ]
5. R3 ← [RY]

CSE1400 Computer Organisation

7

Load R5, X(R7)

1. Memory address ← [PC], Read memory, IR ← Memory data, PC ← [PC] + 4
2. Decode instruction, RA ← [R7]

3. RZ ← [RA] + Immediate value X

4. Memory address ← [RZ], Read memory, RY ← Memory data

5. R5 ← [RY]

Store R6, X(R8)

1. Memory address ← [PC], Read memory, IR ← Memory data, PC ← [PC] + 4
2. Decode instruction, RA ← [R8], RB ← [R6]

3. RZ ← [RA] + Immediate value X, RM ← [RB]

4. Memory address ← [RZ], Memory data ← [RM], Write memory

5. No action

Note: a memory Read or Write operation can be completed in one clock cycle when the data involved are available
in the cache. When the operation requires access to the main memory, the processor must wait for that operation to
be completed.

Source register addresses are specified using the same bit positions in all instructions. The hardware reads the
registers whose addresses are in these bit positions once the instruction is loaded into the IR

BRANCHING

The standard PC increment continues until a branch or subroutine call instruction loads a new address into the PC.

Subroutine call instructions also save the return address. Interrupts from I/O devices and software interrupt are

handled in a similar manner.

Branch instructions specify the branch target address relative (i.e. +5 or -3 lines back), A branch offeset given as an
immediate value in the instruction is added to the current contents of the PC. The number of bits used for this offset
is less than the word length of the computer. Therefore the range of addresses is limited. Subroutine call instructions
reach a larger range of addresses as they have more available bits to specify the target addres and the RISC
computers ahve jump and call instructions that use general-purpose registers to specify a full 32-bit address.

. In processors that do not use condition-code flags, the branch instruction specifies a compare-and-test operation
that determines the branch condition. For example

A simpler and faster comparator circuit can examine the contents of registers RA and RB and produce the required
condition signals though. The comparator is usually inside the ALU and therefore not explicitly shown in graphs.

CSE1400 Computer Organisation

8

Subroutine calls and returns are implemented in a similar manner to branch instructions. The address of the

subroutine may either be computed using an immediate value given in the instruction or it may be given in full in

one of the general-purpose registers

WAITING FOR MEMORY

The role of the processor-memory interface circuit is to control data transfers between the processor and the

memory. Most of the times the instructions are found in the cache, which in that case the operation is compeleted in

one clock cycle. When the information is not in the cache and has to eb fetched from the main memory several clock

cycles may be needed. The interface circuit must inform the processor control circuitry to delay subsequent

execution steps until the memory operation is completed. To do so there is a signal that needs to be checked, Memory

Function Completed (MFC). When MFC is received, the processor proceeds to the next step. Step 1 of the execution

sequence of any instruction involves fetching the instruction from the memory. Therefore, it must include a Wait for

MFC command, as follows:

The Wait for MFC command is also needed in step 4 of Load and Store instructions.

CONTROL SIGNALS

• The processor hardware components

are governed by control signals, which

determine which multiplexer input is

selected, what operation is perfomed by the

ALU, and whether to read or write a memory

location or register.

• In each clock cycle (one for each step
of the 5th step structure), intermediate results
are stored in inter-stage registers RA, RB, RZ,
RM, RY and PC-Temp, which are always
enabled. The other registers must be enabled
only when necessary and via control signals.

• The register file has three 5-bit address inputs, allowing access to 32 general-purpose registers. Two of these

inputs, Address A and Address B, determine which registers are to be read. They are connected to fields

IR31−27 and IR26−22 in the instruction register.

• The third address input, Address C, selects the destination register, into which the input data at port C are to

be written.

• Multiplexer MuxC selects the source of that addres. 0 and 1 represent 2 possible IR slots for addresses.

• The third input of the multiplexer is the address of the link register used in subroutine linkage instructions

• New data are loaded into the selected register only when the control signal RF_write is asserted

• Multiplexers are controlled by signals that select which input data appear at the multiplexer’s output

CSE1400 Computer Organisation

9

• The operation performed by the ALU is determined by a k-bit

control code.

• The comparator generates condition signals that indicate the

result of the comparison. These signals are examined by the

control circuitry during the execution of conditional branch

instructions to determine whether the branch condition is true

or false.

• Two signals, MEM_read and MEM_write

are used to initiate a memory Read or a

memory Write operation.

• When the requested operation has been

completed, the interface asserts the MFC

signal

• The instruction register has a control signal,

IR_enable, which enables a new instruction to be loaded

into the register. When fetching it must be activated only

after the MFC signal is asserted.

• The immediate value can be 1. sign extended 16-bit,

zero-extended 16-bit, and a special 26-bit value. Hence

its control signal Extend needs 2 bits.

• The INC_select signal selects the value to be added to

the PC, either the constant 4 or the branch offset specified

in the instruction.

• The PC_select signal selects either the updated

address or the contents of register RA to be loaded into

the PC when the PC_enable control signal is activated

HARDWIRED CONTROL

There are 2 approaches to generate the control signals: hardwired control (RISC) and microprogrammed control

(CISC). In hardwire control, the setting of the control signals depends on:

• Contents of the step counter

• Contents of the instruction register

• The result of a computation or a comparison operation

• External input signals, such as interrupt requests

CSE1400 Computer Organisation

10

• Instruction decoder interprets the OP-codeand he

addressing mode information of the IR

• Instruction decoder sends the corresponding INSi output to

the control signal generator

• After each clock cycle the step counter signals either one of

T1 to T5.

DEALING WITH MEMORY DELAY

• The timing signals T1 to T5 are asserted in sequence as the

step counter is advanced. Most of the time, the step counter

is incremented at the end of every clock cycle.

• When MEM_read or a MEM_write command is issued does

not end until the MFC signal is asserted.

• To extend the duration of an execution step to more than

one clock cycle, we need to disable the step counter:

Counter_enable = WMFC̅̅ ̅̅ ̅̅ ̅̅ ̅ + MFC

• A new value is loaded into the PC at the end of any clock

cycle in which the PC_enable signal is activated.

The PC is incremented only once when an execution step is extended for more than one clock cycle. When fetching

an instruction, the PC should be enabled only when MFC is received. It is also enabled in step 3 of instructions that

cause branching (BR = instructions in branch group):

PC_enable = T1 · MFC + T3 · BR

CISC STYLE (BOOK INTRO)

CISC-style instruction sets are more

complex because they allow much greater

flexibility in accessing instruction

operands. Unlike RISC-style instruction

sets, where only Load and Store

instructions access data in the memory,

CISC instructions can operate directly on

memory operands. Also, they are not

restricted to one word in length.

Therefore, CISC-style instructions require

a different organization of the processor

hardware. Possible CISC processor

suggested by the book on the left.

The main difference between this

organization and the five-stage structure

discussed earlier is that the Interconnect

block, which provides interconnections

among other blocks, does not prescribe

any particular structure or pattern of data

flow. It provides paths that make it

possible to transfer data between any two

components, as needed to implement

instruction. Inter stage registers are not

needed but some registers are needed to hold intermediate results during instruction execution.

CSE1400 Computer Organisation

11

CIS STYLE (LECTURES)

ISAs are needed to be standard so programs (and devices) are portable among different machines.

INSTRUCTION EXECUTION

• Divide and conquer: split the problem into multiple pieces solve them seperately and connect them.

RISC used 5 steps (page 4), CISC is flexible.

Since different parts of the hardware are allocated
to different steps. You can start the fetching of the
next instruction before the current one has been
executed. The ALU is involved in load/store
instructions in index addressing.

CIS CPU

Same components except for the CPU bus, the

Register file is generally smaller (less registers) and

the Control Circuitry includes bus behaviour.

CISC HAS 6 STAGES

Although it really depends on each computer. It

generally will take more stages than RISC because

there are more complex instructions that require

more steps.

Parts involved in fetching an instruction:

1. Lookup Memory Address Register

2. Increase/update program counter

3. Wait till Memory Data Register content arrives

4. Send Instruction to Instruction Register

The bus connects all the different components.

ADD $16, R2, R4 // SRC, SRC, DST
Stage 1. (already done, fetched the instruction and increased the program counter)

Stage 2. Decode instruction (Control Circuitry) (logic gates that look at the instruction and prepare things)

i. Load constant/immediate value of 16 the ALU

ii. Load Register in ALU with R2

Stage 3. (Skip) Reserved for fetching operands from memory/complex addressing

Stage 4. Execute and load the ALU result in Z register (Z is a necessary register to keep the results)

Stage 5. (Skip) Reserved for reading from memory

Stage 6. Move the register Z value to Register 4 accross the bus

Stage 7. (Skip) Reserved for writing to memory

INTERACTING WITH MAIN MEMORY AND THE BUS

The control circuitry must disconnect all the other components not using the bus to avoid 1. data corruption and 2.

interfering electronic signals (noise).

CSE1400 Computer Organisation

12

The tri-state gates/buffer wrapping register Z are the control
circuit gates that refer to whether Z should be listening (in)
or writing (out) to the bus.

Z = high resistance ≈ disconnecting from bus.
X I assume is the last value on the Bus.

REGISTER FILE

You do it like this instead of adding an Rin Rout n times for each Register. Otherwise the mictro instruction length
would be too long and the suggested architecture is actually pretty efficient for moving contents between registers.

STORE R2, (R1) // SRC, DST indirect addressing mode, R1 contains the value of the memory address
Stage 1. Fetch

a. PCout

b. MARin

c. Read

d. WMFC (till here one cycle)

e. MDRout

f. IRin (another cycle?)

Stage 2. Decode instruction

g. R1out

h. MARin (one cycle)

i. R2out

j. MDRin (another cycle)

Stage 7. Write to memory

k. Write

l. WMFC (last cycle)

In CISC we can skip stages if we dont need them.

To improve CPU performance you can duplicate components (such as the bus, which would allow to parallel

transfers), (the ALU or the register files could also be duplicated) and/or pipeline parts of instructions.

CSE1400 Computer Organisation

13

CONTROL CIRCUITRY

Manipulates the control lines (tri-state gates that control the in/out behaviour of the registers connected to the bus)

STORE R2, (R1)
1. PC_out, MAR_in, read, WMFC

2. MDR_out, IR_in

3. R1_out, MAR_in

4. R2_out, MDR_in, write, WMFC

Fixed format per opcode in RISC (every instruction has virtually the same operands)

and for CISC the look up table regards the different possible addressing modes.

1. First fetch the next instruction.

2. Then decode what needs to be done
3. Then execute the thing

4. Then write the results back at the right place
The step counter regards each of those steps above

T = step (tick). Counter below

An example of a flag that changes the program behaviour

is the WMFC and status flags in register for comparistion

and branches, zero flag.

HARDWIRED CONTROL

Dedicated circuitry that makes up the

box in the middle. which takes inputs

from the step counter, instruction

register decoder, condition signals and

external inputs.

The counter is controlled by the MFC
and WMFC signals:

Counter_enable = WMFC̅̅ ̅̅ ̅̅ ̅̅ ̅ + MFC

To write anything you always need to be on tick T5 and (ALU or Load or Call) were executed

CSE1400 Computer Organisation

14

Calling an address requires to write/load the return addres on LINK register and occasionall mess with the stack

pointer so depending on how you implement call you have to write 1 or 2 registers

Programmable Logic Array on the left. You defnie which

2 signals need to be “ANDed”

The end array generates the ANDs. AND the OR array

takes all elements of the AND to make a sum of products

BPLA = Programmable Logic Array = Hardware Approach to generate control signals

MICRO PROGRAMMED CONTROL

A little processor instide the processor. So. in practice, an opcode is nothing but a menonic that stands for a set of

micro instructions, which enable/disable the tri-state gates that wrap the components interacting with the bus.

The rows represent the steps/ticks of an opcode. In CISC that would be 5 (fetch, decode, alu, r/w memory, w register)

whereas in CISC 7 (fetch, decode, fetch complex addressing operands, alu, r memory, move registers, w memory).

After fetching we can branch
to a standard address of
sum, substr, call etc.
operations.
Micro instructions in CISC,

unlike the instructions, are

of fixed length.

A CPU inside a CPU ->
Compared to hardwire, this
uses branching instead of
sequencing.
Comapred to a full CPU,

there’s no ALU nor registers

CSE1400 Computer Organisation

15

Don’t forget the external inputs and
conditions signals.

END bit: It is generally cheaper to have 1
bit in each microinstruction than to have
a full word dedicated to a jump/call
function to end the program.
1 bit * 5 or 7 ticks is less than 1 * 23ish bit

word length.

Remember that jumps are relative not absolute so jump 10 means jump to instruction +10.

If Z=0 then go to address 0
The number of control lines doesn’t change if the
registers are 64 bits or 32 bits, the number of control lines
regard the components connected to the bus.

CSE1400 Computer Organisation

16

CIS STYLE (BOOK WRAP UP)

A bus consists of a set of lines to which several devices may be connected, enabling data to be transferred from any
one device to any other. A logic gate that sends a signal over a bus line is called a bus driver, which can be only 1. A
flip-flops make the Rin and Rout registers.

Alternative bus architecture by using 3 buses.

MICROPROGRAMMED CONTROL

Control signals are generated for each

execution step based on the instruction

in the IR and they control what happens

on the bus. To do so there is a

microprogram stored on the processor

chip in a small and fast memory called

the microprogram memory or the

control store. . Let each control signal be

represented by a bit in an n-bit word,

which is often referred to as a control

word or a microinstruction. (bit such us

the one of a component either reading or listening from the bus, PC enable, WMFC, etc).

CSE1400 Computer Organisation

17

The sequence of microinstructions corresponding to a given machine instruction constitutes the microroutine that
implements that instruction. The microprogrammed control unit is shown below.

Furthermore, the address generator uses a microprogram counter.

Microprogrammed control is simple to implement and provides considerable
flexibility in controlling the execution of machine instructions. But, it is slower than
hardwired control.
Modern processors have a multi-stage organization because this is a structure that

is wellsuited to pipelined operation.

Solved problems at page 209 of the book

CSE1400 Computer Organisation

1

CHAPTER 3 AND 7: INPUT/OUTPUT

MEMORY-MAPPED I/O

• The idea of using addresses to access various locations in the memory

and registers can be extended to accessing various devices.

• Each I/O device must appear to the processor as consisting of some

addressable locations, just like the memory.

• memory-mapped I/O: Some addresses in the address space of the

processor are assigned to these I/O locations, rather than to the main

memory.

• These locations are usually implemented as bit storage circuits (flip-

flops) organized in the form of “I/O registers”

Load R2, DATAIN //DST, SRC: reads the data from the DATAIN register and loads them into processor register R2.

Store R2, DATAIN //SRC, DST: sends the contents of register R2 to location DATAOUT, which is a I/O register.

I/O DEVICE INTERFACE

• An I/O device is connected to the
interconnection network by using a
circuit, called the device interface.
• The interface includes some registers

among them data, status, and control

registers whcih are accessed by program

instructions as if they were memory

locations.

PROGRAM-CONTROLLED I/O

• Consider a task that reads characters

typed on a keyboard, stores these data in

the memory, and displays the same

characters on a display screen. A simple

way of implementing this task is to write

a program that performs all functions

needed to realize the desired action.

• Responeses from the keyboard must be done in a
timely manner.

• The rate of data transfer from the keyboard to a

computer is limited by the typing speed of the

user, which is unlikely to exceed a few characters

per second

• The rate of output transfers from the computer to

the display is determined by the rate at which

characters can be transmitted to and displayed on

the display device, typically several thousand

characters per second.

• The difference in speed between I/O devices

creates the need to syncronize data transfer

between them

CSE1400 Computer Organisation

2

• signaling protocol: On output, the processor sends the first character and then waits for a signal from the

display that the next character can be sent. Then sends the second character, and so on.

• On input: The processor waits for a signal indicating that a key has been pressed and that a binary code that

represents the corresponding character is available in an I/O register associated with the keyboard. Then

the processor proceeds to read that value.

• Polling: The processor reads a status flag (such as KIN = key has been pressed) which is part of an 8 bit status

register (KBD_STATUS)

• If the registers in I/O interfaces are to be accessed as if they are memory locations, each register must be

assigned a specific address that will be recognized by the interface circuit.

• All addresses should be word-aligned. This makes the I/O registers accessible in a program executed by the

processor

Assume that the initial state of KIN is 0 and the initial state of DOUT is 1, which is normally performed by

the device control circuits when power is turned on

• Read the character pressed to register 5: READWAIT Read the KIN flag

Branch to READWAIT if KIN=0

 Transfer data from KBD_DATA to R5

• To display the character from register 5: WRITEWAIT Read the DOUT flag

Branch to WRITEWAIT if DOUT = 0

Transfer data from R5 to DISP_DATA

The wait loop is executed repeatedly until the status flag DOUT is set to 1 by the display when it is free to receive a

character. Then, the character from R5 is transferred to DISP_DATA to be displayed, which also clears DOUT to 0.

• In computers that use memory-mapped I/O you could implement it as follows (RISC-style)

Recall that KIN is b1 (10base 2 = 2)and DOUT is b2 (100base2 = 4)

INTERRUPTS

When the processor is polling in a loop like in the example above

it cannot perform other tasks. Instead, we can arrange for the I/O

device to alert the processor when it becomes ready by sending a

hardware signal called an interrupt request to the processor. An

example solution is to sperate the computation and I/O routines,

and let the processor compute most of the time and occasionally

jump to the I/O routines. Such jump is the interrupt.

• The routine executed in response to an interrupt request
is called the interrupt-service routine, which are similar
to subroutine calls.

• When the interrupt occurs, the PC saves the current PC

value in temp register LINK or IPS, then PC is updated

with the interrupt adddress, the procesor executes it, then resumes the previous routine.

• As part of handling interrupts, the special control signal “intterupt acknolwedge” from the processor informs

the device that its request has been recognized so that it may remove its interrupt-request signal. It is sent

to the device through the interconnection network.

• Before starting execution of the interruptservice routine, status information and contents of processor

registers that may be altered in unanticipated ways during the execution of that routine must be saved.

CSE1400 Computer Organisation

3

• Return-from-interrupt instruction: The saved information is restored before execution of the interrupted

program is resumed. In this way, the original program can continue execution without being affected (except

delay) by the interruption.

• interrupt latency: delay from the register savings before executing interrupt. Typically, the processor saves

only the contents of the program counter and the processor status register

• Some computers provide two types of interrupts. One saves all register contents, and the other does not.

• shadow registers: a different set of registers can be used by the interrupt-service routine, thus eliminating

the need to save and restore registers.

• real-time processing: The concept of interrupts used in operating systems and in control applications where

processing of certain routines must be accurately timed relative to external events.

ENABLING AND DISABLING INTERRUPTS

It must still be within the programmers power to control whether interrupts are enabled or not. It should be possible

to enable/disable interrupts both at processors and I/O device ends. To do so we use control bits in registers that

can be accessed by program instructions.

• status register (PS): processor registor that contains information about its current state or operation, when
1, interrupt is allowed, when 2 interrupts are ignored.

• The I/O devices also have a control register that contain the information about how themselves should be

operated.

• When a device activates the interrupt-request signal, it keeps this signal activated until it learns that the
processor has accepted its request.

• It is essential to ensure that this active request signal does not lead to successive interruptions, causing the

system to enter an infinite loop from which it cannot recover.

• A good choice is to have the processor automatically disable interrupts before starting the execution of the

interrupt-service routine.

• The processor saves the contents of the program counter and the processor status register.

• After saving the contents of the PS register, with the IE bit equal to 1, the processor clears the IE bit in the PS

register, thus disabling further interrupts.

• Then interrupt-service routine starts, followed by the Return-from-interrupt instruction

• Which restores the contents of the PS registe, sets the IE bit back to 1, and therefore interrupts are again

enabled (but not looped, it is still up to the processor to decide when to pick up the request).

1. The device raises an interrupt request.

2. The processor interrupts the program currently being executed and saves the contents of the PC and PS

registers.

3. Interrupts are disabled by clearing the IE bit in the PS to 0.

4. The action requested by the interrupt is performed by the interrupt-service routine, during which time the

device is informed that its request has been recognized, and in response, it deactivates the interrupt-request

signal

5. Upon completion of the interrupt-service routine, the saved contents of the PC and PS registers are restored

(enabling interrupts by setting the IE bit to 1), and execution of the interrupted program is resumed.

HANDLING MULTIPLE DEVICES

Multiple devices, that are operationally independent, sending interrupt requests are not syncrhonised. To fix this:

• When an interrupt request is received it is necessary to identify the particular device that raised the request
• if two devices raise interrupt requests at the same time, it must be possible to break the tie and select one of

the two requests for service (and then execute the other).

• The information needed to determine whether a device is requesting an interrupt is available in its status

register. When the device raises an interrupt request, it sets to 1 a bit in its status register, which we will call

the IRQ bit.

• The simplest way to identify the interrupting device is to have the interrupt-service routine poll all I/O

devices in the system

CSE1400 Computer Organisation

4

• The first device encountered with its IRQ bit set to 1 is the device that should be serviced. (first-in-first-out)

VECTORED INTERRUPTS

The main disadvantage of the previous last step is the time spent interrogating the IRQ bits of devices that may not

be requesting any service.

• vectored interrupts: interrupt-handling schemes where teh device identifies iteself t othe processor rather
than the processor polling for devices.

• A device requesting an interrupt can identify itself if it has its own interrupt-request signal, or if it can send

a special code to the processor through the interconnection network

• interrupt-vector table: permanently allocated area in the memory to hold the addresses of interrupt-service

routines, these addresses are alos called interrupt vectors.

INTERRUPT NESTING

• Generally, interrupts should be disabled during the execution of an interrupt-service routine, to ensure that

a request from one device will not cause more than one interruption (aka. interrupt himself).

• Hower sometimes it is desired that high priority devices may be able to interrupt lower prioiritiy devices.

• A processor priority level can be assigned, which can be encoded in a few bits of the processor status register

• For each nested interrupt service routine the stack must save the program counter and the status register,

which has to be done before the interrupt-service routines enables nesting.

CONTROLLING I/O DEVICE BEHAVIOUR

• control register: register in the device interface that hodls information needed to control the device

• The control register is accessed as an addressable location, just like the data and status registers. In a 32-bit

processor, the control registers are 32 bits long.

• interrupt-enable: bit in the control register of the device that stores whether the processor will recognise it

• *IRQ: bit that is set to 1 if an interrupt request has been rised but not yet serviced

PROCESSOR CONTROL REGISTERS

• To deal with interrupts, besides the status register (PS) with the intterupt-enable bit (IE), other registers

and bits shall be used. The IPS saves the content of PS when an interrupt request is received and accepted.

• After the interrupt-service routine, the previous state of the processor is restored from IPS to PS. If nested

interrupts are used then IPS must use the stack.

• IENABLE: allows the processor to slectively respond to individual I/O devices, where a bit is assigned for

each device.

• IPENDING: register that indicates the active interrupt requests (usefol for when multiple devices make

requests at the same time).

• control registers cannot be accessed in the same way as the general-purpose registers. They cannot be

accessed by arithmetic and logic instructions, nor by Load and Store in the same enconding format.

• Therefore they have their own dedicated special instructions:

MoveControl R2, PS //DST, SRC

CISC INTERRUPTS

• CISC can test status bits of I/O registers directly.“TestBit” instruction is used to test the status flag.

• SetBit and ClearBit will make it 1 and 0 respectively.

EXCEPTIONS

• An interrupt is an event that causes the execution of one program to be suspended and the execution of

another program to begin

• exception: refers to any event that causes an interruption, which is not limited to just I/O interrupts

o recovery from errors: If an error occurs (in the hardware), the control hardware detects it and

informs the processor by raising an interrupt. For example, The OP-code field of an instruction may

not correspond to any legal instruction, or an arithmetic instruction may attempt a division by zero.

CSE1400 Computer Organisation

5

▪ when an interrupt is caused by an error associated with the current instruction, that

instruction cannot usually be completed, and the processor begins exception processing

immediately

o debuggings: A debugger usex exceptions to allow trace mode and breakpoints features, which

interrupt the instructions at specific points.

o operating system: the OS software may use exceptions to communicate/control with the execution

of user programs. It also uses hardware interrupts to perform I/O operations.

BUS STRUCTURE

The bus is the interconnection network that is used to transfer data among the processor, memory, and I/O devices.

• Only one source/destination pair of units can use this bus to
transfer data at any one time.
• The bus consists of three sets of lines used to carry: address,

data and control signals

• Each I/O device is assigned a unique set of addresses for the

registers in its interface.

• When the processor places a particular address on the address
lines, it is examined by addres decoders of all devices on the bus.

• The device that recognizes this address responds to

the commands issued on the control lines.

• The processor uses the control lines to request either

a Read or a Write operation

• The requested data are transferred over the data

lines.

• When I/O devices and the memory share the same

address space, the arrangement is called memory-

mapped I/O

• interface circuit: the device’s address decoder, data

and status registers, and the control circuitry required to coordinate I/O transfers.

BUS OPERATION

• bus protocol: set of rules that govern how the bus is used by verious devices. It defines when a device may

place information on the bus, when it may load data on the bus, etc. all done by control signals (such as R/W̅)

• The bus control lines also carry timing information. They specify the times at which the processor and the

I/O devices may place data on or receive data from the data lines. There syncronous and asyncrhonous.

• master: devide that initates data transfer by issuing Read or Write commands on the bus. (often the CPU)

• slave: the deviced addressed by the master.

SYNCHRONOUS BUS

• clock cycle: clock signal’s two phases: the high level

followed and the low level that follows.

• clock pulse: first half of the cycle (the high part).

• diamond: means change in value.

• halfway line: unreliable/ignored data.

CSE1400 Computer Organisation

6

Read operation:
1. Master places the slave address on the addres lines and sends a command on the control lines.
2. The clock bus period from t0 to t1 > the maximum propagation delay over the bus. (long enough to allow

step 3).
3. All devices decode the address and control signals, and only the slave places at t1 the requested input data

on the data lines.

4. At the end of the clock cycle, at time t2, the master loads the data on the data lines into one of its registers.

The clock bus periodf from t1 to t2 > (t0 to t1) + setup time of the master’s register.

Write operation:

1. Master places the slave address on the addres lines a command on the control lines and the data on the data
line.

2. The clock bus period from t0 to t1 > the maximum propagation delay over the bus. (long enough to allow
step 3).

3. All devices decode the address and control signals, and only the slave, at t1 loads the output data on into its

data register

4. The clock bus periodf from t1 to t2 > (t0 to t1) + setup time of the slave’s register.

Because of propagation delays on bus wires and in the circuits of the devices, while the clock changes are assumed

to be seen at the same time by all devices connected to the bus:

• a given signal transition is seen by different devices at different times.

• This forces all devices to operate at the speed of the slowest device.

• solution: bus incorporates control signals (Slave-ready) that represent the response from the device. These

signals inform the master that the slave has recognized its address and that it is ready to participate in a data

transfer operation. The number of clock cycles will vary from one device to another.

• The master, which has been waiting for this signal, loads the data into its register at the end of the clock cycle

• Save removes its data signal from the bus and returns its slave-ready signal to the low level by end of cycle T

• the master may send new address and command signals to start a new transfer in clock cycle T+1

• If the addressed device does not respond at all, the master waits for some predefined maximum number of

clock cycles, then aborts the operation (i.e. wrong address or device malfunction)

CSE1400 Computer Organisation

7

ASYNCHRONOUS BUS

Aka handshake protocol: exchange of command and response

signals between the master and the salve (so no need for

Slave-ready & clock (negative) edge). A control line Master-

ready is asserted by the master to indicate that it is ready to

start a data transfer.

1. The master places the address and command information

on the bus.

2. Then it indicates to all devices that it has done so by

activating the Master-ready line.

3. This causes all devices to decode the address

4. The selected slave performs the required operation and

informs the processor that it has done so by activating the

Slave-ready line.

5. The master waits for Slave-ready to become asserted

before it removes its signals from the bus. In the case of a

Read operation, it also loads the data into one of its

registers.

• fully interlocked/full handshake: a change in one signal is always in resonse to a chinge in the other. Highest

degree of flexibility and reliabilit

• advantage: the handshake protocol eliminates the need for distribution of a single clock signal whose edges

should be seen by all devices at about the same time (simplifies the design), plus delays are flexible, whereas

in synchronous you will be bottlenecked by the slowest device.

• disadvantage: it is only advantageous when there are slow devices. If all devices are within the same range

it is better to use a synchronous clock because you will only need to accomadate a one round trip delay

instead of two.

ARBITRATION

• bus driver: A logic gate that places data on the bus.

• arbitrer circuit (round robin scheme): circuit that decides who uses a specific resource request by multiple

entities at once. The arbitrer associates priorities with individual requests. It will grant it to higher priority

first. Once the driver is done, it deactivates its Bus-grant.

I/O LECTURE

Interface: Information exchange protocol between

elements, ISA is an interface between hardware and

software.

Interfaces are portable, so that the same protocol works
with different elements.
The difference between the Memory – CPU interface and

the Device CPU interface is that the Devices have registers

inside them, so that the CPU can access them just as if they

were normal registers, thouse would be mapped registers.

CSE1400 Computer Organisation

8

• Black thick lines are buses

• North bridge focuses on performance (it has
quick access to the CPU) Main memory and GPU
are there.
• South bridge is for all other devices

(connectivity, USB, ethernet, keyboard,

periferals) and provides felxibility

• North and South combined = computer
chipset. Component on the mother board that
connects the CPU to all the other devices that we
could potentially connect to.
• You can’t plug any CPU in any chipset as these
work with a very unique chemistry (to gain
efficency) there is not a fixed interface between a
CPU and a general chipset.
• However, the chipset itself is compatible with
a lot of devices

Only when the address match will the slave device

respond to the command in the control lines.

1. Data registers:

Store incoming and outgoing data

2. Status and control registers

Certify status of the defice

to control transfer

3. Address decoder

to detect if data is for the device

CSE1400 Computer Organisation

9

• set up time (lots of gates to change values)

• propogation delay

• drawback: slowest device sets the delay adjustment clock speed for all devices

faster devices need fewer cycles to respond

signal completed to CPU

Explicit handshaking (vs synchronous clock)

Timing must account for signal propagation skew, caused

by detours (longer paths (wire length and gates))

CSE1400 Computer Organisation

10

Not all of the 2^64 bits of the main memory addresses

will be used so some are allocated to device registers.

So you will map specific addresses, in hex generally
Therefore the same move command can be used

interchangeably with registers both inside and outside

the CPU

Programming I/O routines:

Actively wait in a loop until the bit is 1.
Keeps the CPU busy with this loop.

Unconditional I/O. The device is constantly sending data but the CPU reads it whenever he wants. You get racing the

beam issue: The pixels are displayed when the CPU wants, so half of the image has old pixels the other half new pixels

Passive signaling (polling) : Similar as buys waiting, but instead of every cycle it is every x seconds
Active signaling: removes control from the cpu.

The CPU may not be interrupted when it is executing an instruction, these are atomic. The interrupt will sneak in the

PC after the current instruction is completed.

CSE1400 Computer Organisation

11

Shared interrupt line hardware to the CPU, which

the CPU cant ignore.

1. A Device sends interrupt signal via the IRQ

2. CPU sends Grant signal back to (all) devices

via GRANT (different when prioritizing)

3. Device sends ID on data bus

4. CPU calls ISR from interrupt vector [ID]

The interrupt vector information is usually in the
device drivers.

Daisy chaining = hooking up multiple devices in a sequence.

When multiple devices raise a grant signal the
priority will go from the closest device to the CPU
to the furthest. (Because you are the first to
receive the grant signal).

If the high priority device didnt raise the interrupt
it will pass the grant on to the next devices.

CSE1400 Computer Organisation

1

CHAPTER 8 MEMORY (SOLVED PROBLEMS PAGE 324)

The memory of a computer comprises a hirearchy, including a cache, the main memory, and secondary storage.

Direct memory access is a mechanism to transfer data between an I/O device, such as a disk, and the main memory
with minimal involvement from the processor.
Caches decrease memory access times.

BASIC CONCEPTS

• The maximum size of the memory that can be used in any computer is determined by the addressing scheme.

• 16-bit addresses can have 2^16 memory locations.

• Memory is usally designed to store and retrieve data in word-length quantities. From now own, assume 32-

bit addresses for byte addressable memories. The high order 30 bits determine which word is specified. the
low order 2 bits of the address specify which byte location is involved.

o A word is 2 bytes.

o long is 4 bytes

o quad is 8 bytes

• The connection between the CPU and memory consist of:

o addres

o data

o control lines

• The processor uses the addres lines to specify the

memory location involved in a data transfer operation

• The processor uses the data liens to transfer the data at

such specific address

• The control lines carry the command indicating a Read or

Write operation and whether a byte or a word is to be

transferred.

• Control lines also provide the timing information by asserting MFC

• memory access time: speed of memory unit that elapses the time between initation of an operation to

transfer a word of data and the completion of that operation.

• memory cycle time: minimum time delay required between the initation of two successive memory

operations (i.e. time between 2 successive reads). Cycle time is usually shorter than access time.

• random-access memory (RAM): if the access time to any location is the same, independent of the location’s

address. Which is different to other type of memories such as disc, where certain data is located at places

that take longer for the disc to read. The cycle times range from 100ns to less than 10ns

CACHE AND VIRTUAL MEMORY

• Memory access time is the bottleneck in the CPU as decoding and processing the instruction take less time

than fetching the instruction from memory.

• cache memory: small fast memory inserted between the larger (slower) main memory and the processor. It

holds the currently active portions of a program and its data.

• virtual memory: only the active portions of a program are stored in the main memory, and the remainder is

tored on the much larger secondary device. Sections of the program are transferred back and forth. Therefore

the application sees a memory that is much larger than the computer’s actual main memory.

• block transfers: Data is transfered in blocks involving tens to thousands of words

Semiconductor RAM Memories

INTERNAL ORGANIZATION OF MEMORY CHIPS

• Memory cells are commonly organized in the form of an array, where each cell stores 1 bit of data

• Each row constitues a memory word

• word line: cells of a row are connected to a common line. Driven by the address decoder on the chip

CSE1400 Computer Organisation

2

• columns are connected to a Sense/Write circuit by 2 bit lines which are connected to the data input/output

lines of the chip. Depending on the Read/Write signals the Sense/Write will either output the cells contents

or listen to the input and write it on the cell.

16 words of 8 bits each (it is still up to the architect to define how many bits a word contains). This is refered to as a
16x8 organization. The configuration above stores 128 bits (16*8) and reqiores 14 external connections for address,
data and control lines. It also needs 2 lines for power supply and ground conections.

1024 cells, organized as a 128x8 memory. Requires a total of 19 external connections.
1kx1 setting would be a 10 bit address, with only one data line, resulting in 15 external connections

a 1G-bit chip may have a 256M × 4 organization, in which case a 28-bit address is needed and 4 bits are transferred

to or from the chip

STATIC MEMORIES

static memories: memories that consist of circuits capable of retaining their state as long as power is applied.

SRAM (static RAM cell below, CMOS style):
• Two inverters are cross-connected to form a latch

• The latch is connected to two bit lines by transistors

T1 and T2

• Transistors act as switches, which are controlled by

the word line. They are NMOS so the represent the exact

same value that the word line has. if low they are open

(so latch retians its current value) if high they are closed.

• to read the state of the SRAM cell, the word line is
activated to close switches T1 and T2
• Cell = 1 if b1 high, b’ low.

• Cell = 0 if b1 low, b’ high
• To write, the Sense/Write circuit drives bit lines b and

b’ , instead of sensing their state. It sets b and b’

accordingly and actiates the word line to save it (once

disabled, the latch will keep the current value.

• Continues power is needed for the cell to retain its state.

CSE1400 Computer Organisation

3

• When power is restored after an interruption, the latch settles into a stable but not necessarily the same as

the last state, this makes SRAM volatile, because their contents are lost after power is gone.

• advantage: low power consumption (current flows in the cell only when the cell is being accesssed. There is

no connection between supply and ground but the state is kept. Another advantage is that they can be

accessed very quickly (ns)

DYNAMIC RAMS

DRAMS (dynamic RAMs): Less expensive and higher density RAMs

implemented with simpler cells that can’t retain their state for a long

period unless they are accessed frequently.

• Information is stored in a dynamic memory cell in the form of a charge
on a capacitor, but this charge can be maintained for only tens of
milliseconds.
• its contents must be periodically refreshed by restoring the capacitor

charge to its full value (this occurs when the contents of the cell are read

or written into it).

• To store information in this cell, transistor T is turned on and an

appropriate voltage is applied to the bit line

• After the transistor is turned off, the charge remains stored in the capacitor, but not for long as the capacitor

begins to discharge after is totally turned off.

• A sense amplifier connected to the bit line detects whether the charge stored in the capacitor is above or

below the threshold value

• If the charge is above the threshold, the sense amplifier drives the bit line to the full voltage representing the

logic value 1. As a result, the capacitor is recharged to the full charge corresponding to the logic value 1.

• If the sense detects the capacitor below the threshold, it pulls the bit line to ground level to discharge the

capacitor fully.

• Since the word line is common to all cells in a row, all cells in a selected row are read and refreshed at the

same time after reading the contents of a single cell of that row.

• Row Address Strobe (RAS signal): input control line that causes a read operation to be initiated, in which all

cells in the selected row are read and refreshed.

• fast page mode feature: a block of data (often called page) transfered at a much faster rate by applying a

consecutive sequence of column addresses (CAS signals = Column Address Strobe).

SYNCHRONOUS DRAMS

• DRAMS syncrhonized by a clock signal.

• Clock sends refreshing signal to selected rows, which
makes the dynamic nature of these memory chips is
almost invisible to the user.
• SDRAMs have several different modes of operation,

which can be selected by writing control information into

a mode register

• burst operations of different lengths can be specified

New data are placed on the data lines at the rising clock

CSE1400 Computer Organisation

4

• The column address is latched under control of the CAS signal
• Synchronous DRAMs can deliver data at a very high rate, because all the control signals needed are generated

inside the chip.

• Today’s SDRAMs operate with clock speeds that can exceed 1 GHz

• memory latency: time it takes to transfer the first word of a block

• memory bandwidth: performance measure: number of bits or bytes that can be transferred in one second

• Double_data_rate SDRAM: To make the best use of the available clock speed, data are transferred externally

on both the rising and falling edges of the clock

• Rambus Memory: The key feature of Rambus technology is the use of a differential-signaling technique to

transfer data to and from the memory chips.

STRUCTURE OF LARGER MEMORIES

The R/W inputs of all chips are tied together to provide a common Read/Write control lin (not shown in the figure)

DYNAMIC MEMORY SYSTEMS

• A large memory leads to better performance, because more of the programs and data used in processing can

be held in the memory, thus reducing the frequency of access to secondary storage

• Because of their high bit density and low cost, synchronous dynamic RAMs, are widely used in the memory

units of computers

CSE1400 Computer Organisation

5

• They are slower than static RAMs, but they use less power and have considerably lower cost per bit

• Memory modules are commonly called SIMMs (Single In-line Memory Modules) or DIMMs (Dual In-line

Memory Modules)

MEMORY CONTROLLER

• The address applied to dynamic RAM chips is divided into two parts:

o high-order address bits: select a row in the cell array

(provided first and latched into the memory chip under control of the RAS signal)
o lower-end bits: select a column

(provided on the same address pins and latched under control of the CAS signal)
• Since a typical processor issues all bits of an address at the same time, a multiplexer is required (memory

controller circuit)

REFRESH OVERHEAD

• A dynamic RAM cannot respond to read or write requests while an internal refresh operation is taking place

• Such requests are delayed until the refresh cycle is completed

• the time lost to accommodate refresh operations is very small

COMPARING RAMS

• Static RAMs (SRAM) are used where a small but very fast memory is needed (cache)

• Dynamic RAMs are cheaper and have high bit density

• Synchronous Dynamic Rams (SDRAM) are the better version of DRAM and used for the main memory

DIRECT MEMORY ACCESS

Data are transferred from an I/O device to the memory by first reading them from the I/O device using an instruction
such as: LOAD R2, DATAIN //DST, SRC

• Considerable overhead is incurred, because several program instructions must be executed involving many

memory accesses for each data word transfered.

CSE1400 Computer Organisation

6

• direct memory access (DMA): An alternative approach is used to transfer blocks of data directly between the

main memory and I/O devices, such as disks.

• The unit that controls DMA transfers is referred to as a DMA controller which performs the functions that

would normally be carried out by the processor when accessing the main memory

• Although a DMA controller transfers data without intervention by the processor, its operation must be under

the control of a program executed by the processor, usually an operating system routine.

• To initiate the transfer of a block of words, the processor sends to the DMA controller the starting address,

the number of words in the block, and the direction of the transfer.

• The DMAcontroller then proceeds to perform the requested operation. When the entire block has been

transferred, it informs the processor by raising an interrupt.

• Two registers are used for storing the starting address and the word count. The third register contains status

and control flags.

• Done flag 1 iWhen controller completes transferring a block of data and is ready to receive another command

• Bit 30 is the Interrupt-enable flag, IE. When this flag is set to 1, it causes the controller to raise an interrupt

after it has completed transferring a block of data.

• The controller sets the IRQ bit to 1 when it has requested an interrupt.

MEMORY HIERARCHY

• An ideal memory would be fast, large, and inexpensive

• a very fast memory can be implemented using static

RAM chip

• these chips are not suitable for implementing large

memories, because their basic cells are larger and

consume more power than dynamic RAM cells.

• Although dynamic memory units with gigabyte

capacities can be implemented at a reasonable cost, the

affordable size is still small compared to the demands

of large programs with voluminous data.

• A solution is provided by using secondary storage,

mainly magnetic disks, to provide the required

memory space. Disks are available at a reasonable cost,

and they are used extensively in computer systems.

However, they are much slower than semiconductor

memory units.

• affordable, (smaller) main memory can be built with

dynamic RAM technology.

• static RAM technology to be used in smaller units

where speed is of the essence, such as in cache

memories. This memory, called a processor cache

holds copies of the instructions and data from the main

memory,

• The fastest access is to data held in processor registers.

A primary (L1) cache is always located on the processor chip. This cache is small and its access time is comparable
to that of processor registers
A larger, and hence somewhat slower, secondary (L2 sometimes even L3) cache is placed between the primary cache
and the rest of the memory. Often it is also housed on the processor chip.

CACHE MEMORIES

• The cache is a small very fast memory between the processor and the main memory.

• locality of referene: approach to make the main memory appear to the processor to be much faster than it is.
• most of program execution time is spent in routines in which many instructions are executed repeatedly.

• a recently executed instruction is likely to be executed again very soon

CSE1400 Computer Organisation

7

• instructions close to a recently executed instruction are also likely to be executed soon

• property of locality of reference: whenever an

information item, instruction or data, is first needed, this

item should be brought into the cache, because it is likely

to be needed again soon.

• Spatial locality suggests that instead of fetching just

one item from the main memory to the cache, it is useful

to fetch several items that are located at adjacent

addresses as wel

• cache block/cache line: set of contiguous address locations of some size

• mapping function: specifies the correspondence between the main memory blocks and those in the cache

• replacement algorithm: cache control hardware that decides which block should be removed to create space

for the new block that contains the referenced word

• cache hits: the processor without knowing whether the issued address is cached or not goes through the

cache control circuitry and if it does a read or write hit occurs.

• read hit: the main memory is not involved

• write hit: option 1, write-through protocol, both cache and main memory are updated. Option 2,

• write-back/ copy-back: only the cache location is updated and marks the block containing it with an

associated fal bit (dirty/modified bit) and right before the cache word is going to be removed for a new block

the main memory location of the word is updated.

• The write-through protocol is simpler than the write-back protocol, but it results in unnecessary Write

operations in the main memory when a given cache word is updated several times during its cache residency.

• The write-back protocol also involves unnecessary Write operations, because all words of the block are

eventually written back, even if only a single word has been changed while the block was in the cache. Still

write-back is used most often as it takes advantage of the data block transfer efficency.

• cache misses: when a word is not found in the cache. Which will copy the main memory words to the cache.

• load-through/early restart: it first sends the word to the processor and then to the cache to reduce

processor’s waiting time at the spend of more complex circuitry.

• Write miss with write-through protocol: the information is written directly into the main memory.

• Write miss with write-back protocol: the block containing the addressed word is first brought into the cache,

and then the desired word in the cache is overwritten with the new information.

• many processors use separate caches for instructions and data, making it possible for the two operations to

proceed in parallel.

• direct mapping: block j of the main memory maps

onto block j modulo 128 of the cache. Contention is

resolved by allowing the new block to overwrite

the currently resident block. With direct mapping,

the replacement algorithm is trivial. Placement of a

block in the cache is determined by its memory

address. The direct-mapping technique is easy to

implement, but it is not very flexible.

• associative mapping: the most flexible mapping meppod, a main memory block can be placed into any cache

block position. It has a more fficient use of the space in the cache. When a new block is brought into the cache,

it replaces (ejects) an existing block only if the cache is full. Associative search searches the tags in parallel.

CSE1400 Computer Organisation

8

• set associative mapping: combiation of direct and associative mapping. Main memory blocks may reside in

any set. It eases the block rplacement problem of direct mapping. Associative search is also reduced.

• stale data: when the power is turned on, the cache contains no valid data (stale) (so all valid bits are reset to

0). A control bit (valid bit) must be provided to tell whether the block data is valid or not. The processor

fetches data from a cache block only if its valid bit is equal to 1. So as program execution proceeds, the valid

bit of a given cache block is set to 1 when a memory block is loaded into that location.

• flush the cache: forces all dirty blocks to be written back to the memory before performing the transfer.

• cache-coherence problem: the need to ensure that two different entities (the processor and the DMA

subsystems in this case) use identical copies of the data.

• replacement algorithms:

o In a direct-mapped cache, the position of each block is predetermined by its address; hence, the

replacement strategy is trivial. For the rest:

o least recently used (LRU) replacent algorithm: overwrite the block that has gone the longest time

without being referenced (a 2-bit counter can be used for each block).

▪ Performance of the LRU algorithm can be improved by introducing a small amount of
randomness in deciding which block to replace.

o “oldest” block from a full set when a new block must be brought in. This algorithm does not take into

account the recent pattern of access to blocks in the cache, it is generally not as effective as the LRU

algorithm

o the simplest algorithm is to randomly choose the block to be overwritten. Interestingly enough, this

simple algorithm has been found to be quite effective in practice.

PERFORMANCE CONSIDERATIONS

• Hit rate and miss penalty: Consider a system with only one level of cache. In this case, the miss penalty

consists almost entirely of the time to access a block of data in the main memory. Let h be the hit rate, M the

miss penalty, and C the time to access information in the cache. Thus, the average access time experienced

by the processor is: 𝑡𝑎𝑣𝑔 = ℎ𝐶 + (1 − ℎ)𝑀

• Hit rate and miss with 2 cache: 𝑡𝑎𝑣𝑔 = ℎ1𝐶1 + (1 − ℎ1)(ℎ2𝐶2 + (1 − ℎ2)𝑀)

• number of misses in the L2 cache: (1 − h1)(1 − h2)

CSE1400 Computer Organisation

9

• write buffer: writing tasks can be delayed and performed in bulks (buffers) because the processor doesn’t
usually need to access the written data immeditely again, for reading requests is the opposite.

• prefetching: To avoid stalling the processor, it is possible to prefetch the data into the cache before they are

needed. A special prefetch instruction may be provided in the instruction set of the processor. They can be

inserted into a program either by the programmer or by the compiler.

• lockup-free cache: prefetching can lock the entire cache room. Lockup free cache allows the processor to

access the cache and have more than one outstanding miss.

VIRTUAL MEMORY

When a program doesn’t have enough main memory to execute the programs virtual

memory will allocate the extra memory to a secondary memory space, which will

replace parts of the current main memory as the new ones are needed for execution.

It’s like caching secondary memory into main memory.

• virtual or logical addresses: binary addresses that the processor issues for
either instructions or data.

• If a virtual address refers to a part of the program or data space that is

currently in the physical memory, then the contents of the appropriate

location in the main memory are accessed immediately. Otherwise, the

contents of the referenced address must be brought into a suitable location in

the memory before they can be used.

• Memory Management Unit: special hardware unit that keeps track of which

parts of the virtual addres space are in the physical memory (main).

o When the desired data or instructions are in the main memory, the

MMU translates the virtual address into the corresponding physical

address

o If the data are not in the main memory, the MMU causes the operating

system to transfer the data from the disk to the memory. Such

transfers are performed using the DMA scheme that does not directly

involve the processor

• Address translation: A simple method for translating virtual addresses into physical addresses is to assume

that all programs and data are composed of fixed-length units called pages.

CSE1400 Computer Organisation

10

• The cache bridges the speed gap between the processor and the main memory and is implemented in
hardware.

• The virtual-memory mechanism bridges the size and speed gaps between the main memory and secondary
storage and is usually implemented in part by software techniques.

• page table This information includes the main memory address where the page is stored and the current

status of the page.

• virtual page number: high-order bits

• offset: low-order bits (location of a particular byte or word within a page)

• page frame: An area in the main memory that can hold one page

• page table base register: Keeps the starting address of the page table

• Translation Lookaside Buffer (TLB): Mantained within the MMU, the TLB functions as a cache for the page

table in the main memory by containing the most recently accessed pages. In addition, it includes the virtual

address of the page, which is needed to search the TLB for a particular page

• Address translation proceeds as follows:

o Given a virtual address, the MMU looks in the TLB for the referenced page

o If the page table entry for this page is found in the TLB, the physical address is obtained immediately

o If there is a miss in the TLB, then the required entry is obtained from the page table in the main

memory and the TLB is updated

o It is essential to ensure that the contents of the TLB are always the same as the contents of page tables

in the memory. When the operating system changes the contents of a page table, it must

simultaneously invalidate the corresponding entries in the TLB

CSE1400 Computer Organisation

11

• page faults: page that is not in the main memory, a page fault is said to have occurred. So like the cache miss
o When it detects a page fault, the MMU asks the operating system to intervene by raising an exception

(interrupt)

o The operating system copies the requested page from the disk into the main memory

o Concepts similar to the LRU replacement algorithm can be applied to page replacement

o It is important to note that the write-through protocol, which is useful in the framework of cache

memories, is not suitable for virtual memory. The access time of the disk is so long that it does not

make sense to access it frequently to write small amounts of data.

• system space: separated from virtual space in which user application program resides dedicated for operatig

system routines. Separate page table for each user program are arrranged. The physical main memory is thus

shared by the active pages of the system space and several user spaces. However, only the pages that belong

to one of these spaces are accessible at any given time.

o protection: No program should be allowed to destroy either the data or instructions of other

programs in the memory.

o supervisor mode: The processor is usually placed in the supervisor mode when operating system

routines are being executed and in the user mode to execute user programs.

o user mode: some machine instructions cannot be executed. These are privileged instructions. They

include instructions that modify the page table base register, which can only be executed while the

processor is in the supervisor mode.

o shared pages: Since a user program is executed in the user mode, it is prevented from accessing the

page tables of other users or of the system space. Shared pages will therefore have entries in two

different page tables

WEEK 7 – MEMORY LECTURE

DIRECT MEMORY ACCESS

Very simplistic co-processor with just 1 instruction, move.

 Cache will free up the bus from DMA bursts

CSE1400 Computer Organisation

12

DMA fetches the next memory block while CPU is
decoding the current one.

MEMORY ORGANIZATION

To shuffle larger words in one go

SRAM is stable (bit stays after power off)

CSE1400 Computer Organisation

13

DRAM: Just a capacitor and a transistor which is cheaper

than the 6 transistors of SRAM. Capacitor needs to be

recharged (iff the state was 1). Charged capacitor means T =

1 (bit line = 1), empty capacitor T=0 (bit line = 0)

CSE1400 Computer Organisation

14

128x8 is more efficient than 1024x1 because you use words of 8 bits.

But 1024x1 is cheaper because it uses less pins

More speed is more expensive (more pins)

CSE1400 Computer Organisation

15

WEEK 8 – CACHE LECTURE

Power wall from too much generated heat in
the circuits. Caches become more important as
the gab between the CPU and the DRAM
widens (Draining halt).

OS and hardware define which things go to

which caches

Reason latency of the disk is 10^6 whereas the

bandwidth is not that small is because the

latency calculates the time (cpu cycle unit) of

getting the first word wereas bandwidth looks

at the average time of getting x words per

cycle. Since the disk can process large words

the average per word goes down.

OS decides how much DRAM (main memory)

programs get and how much disk as well. OS

can’t decide caches.

The cache is not only listening to the memory but
also to the bus, so that if the disc (DMA) decicdes to
change some words in memory the cache can be
aware of it and either get updated or remove that
cache (because it is invalid).

If cache writes something in cach only it will flag
that word and only after the disc wants to access
the equivalent memory location then will the cach
interrupt that and write it on memory

CSE1400 Computer Organisation

16

Avg access = c * h + (1 - h)(c + m)

 = c + (1 - h) * m

We either read a block or write a block, we dont operate at individual (Memory) words

CSE1400 Computer Organisation

17

Everything goes to the same pile but you have to scan
all the blocks to find them as there is no specific order
other than pushing things.

Hardware still allows you to do searches in parallel at
a not so high expense (just more gates).

Combines Direct Mapped and Fully Associative. It
allows for groups of sets where same set different
tag elements can be store.

CSE1400 Computer Organisation

18

x tells us how many blocks there are.
4-way set-associatve cache = 4 blocks per set

x = 1 means direct map cache (only 1 book per shelf,

only 1 block per set)

as many items in the set as many blocks in the cache means k*k = fully associative

Transcript:

So we have colors for each block. Direct Mapped Cache
takes the tag and the byte.
The bits in the middle (block), decide where to go in

the cache

Con: If program wants to repeat using block 0 over and

over, cache wont be able to store them all at the same

time. It wil leither store 0 xor 128 xor 256

CSE1400 Computer Organisation

19

Anything can go anywhere (same collor)
As long as the number of blocks is not larger than the

cache then we’re fine

You can (opposite to direct maping) store more than 1
block in a set (2-way set)

CSE1400 Computer Organisation

1

CHAPTER 6 – PIPELINING

The five-stage processor of RISC and the corresponding datapath allow instructions to be fetched and executed one

at a time. Therefore it takes five clock cycles to complete the execution of each instruction.

This could be pipelined so the fetch, decode, compute, memory and write stages can be done in parallel.
1. Instruction Ij is fetched in the first cycle and moves through the remaining stages

2. In the second cycle instruction Ij+1 is fetched while Ijis on stage 2

3. In the third sycle instruction Ij+2 is fetched while Ij is on stage 3 and Ij+1 is on stage 2, and so forth.

Although any one instruction takes five cycles to complete its execution, instructions are completed, ideally at the

rate of one per cycle (after the first 4). However, if the source register of Ij+1 is the destination register of a memory

writing operation of an instruction at Ij the operands of Ij+1 won’t be ready until stage 6, (opposite to the ideal

scenario where they would be ready in stage 3). Which means Ij+1 is stalled in the Decode stage for 3 cycles.

Consquently Ij+2 is also stalled and so forth.

• hazard: Any condition that causes the pipeline to stall
Since register and things are
being moved around at the same
time it is necessary to save this
information in interstage
buffers. These include registers
RA, RB, RM, RY and RZ

The interstage buffers are used as follows:

• Interstage buffer B1 feeds the Decode stage with a
newly-fetched instruction

• Interstage buffer B2 feeds the Compute stage with the

two operands read from the register file, the

source/destination register identifiers, the immediate

value derived from the instruction, the incremented

PC value used as the return address for a subroutine
call, and the settings of control signals determined by

the instruction decoder.

• Interstage buffer B3 holds the result of the ALU

operation, which may be data to be written into the

register file or an address that feeds the Memory stage,

and it also holds the incremented PC value passed

from the previous stage, in case it is needed as the

return address for a subroutine-call instruction

• Interstage buffer B4 feeds the Write stage with a value

to be written into the register file. This value may be

the ALU result from the Compute stage, the result of

the Memory access stage, or the incremented PC value

that is used as the return address for a subroutine-call

instruction

CSE1400 Computer Organisation

2

DATA DEPENDENCIES

Execution of:

Add R2, R3 #100
Substract R9, R2, #30

data hazard introduced in the previous page.

The Subtract instruction is stalled for three

cycles to delay reading register R2 until cycle

6 when the new value becomes available.

• The control circuit must first recognize the data dependency when it decodes the Subtract instruction in

cycle 3 by comparing its source register identifier from interstage buffer B1 with the destination register
identifier of theAdd instruction that is held in interstage buffer B2.

• Subtract instruction must be held in interstage buffer B1 during cycles 3 to 5

• Add instruction proceeds through the remaining pipeline stages.

• control signals can be set in interstage buffer B2 for an implicit NOP (No-operation) instruction that does not

modify the memory or the register file.

• Each NOP creates one clock cycle of idle time, called a bubble.

OPERAND FORWARDING

Pipeline stalls due to data dependencies can be alleviated through the use of operand forwarding. Considering the

previous add and substract instructions.

• Instead of substract to wait for stage 6 to

decode the instruction with the register addresses,

it could use the already available value computed

at the end of stage 3.

• This value can be loaded into register RZ and

rather than stall the Subtract instruction, the

hardware can forward the value from register RZ

to where it is needed in cycle 4

A new multiplexer, MuxA, is inserted before input InA of the ALU, and
the existing multiplexer MuxB is expanded with another input. The
multiplexers select either a value read from the register file in the
normal manner, or the value available in register RZ.

HANDLING DATA DEPENDENCIES IN SOFTWARE

Insertion of NOP instructions for a data dependency (done by the
compiler) NOP takes 1 cycle, stalling it manually. This simplifies the
hardware implementation at the expense of having larger code size.
Execution time is still longer than operand forwarding

CSE1400 Computer Organisation

3

The compiler can attempt to optimize the code to improve performance and reduce the code size by reordering

instructions to move useful instructions into the NOP slots

MEMORY DELAYS

A memory access may take ten or more cycles (3 in the figure for simplicity) a cache miss causes all subsequent

instructions to be delayed. Consider:

Load R2, (R3)
Substract R9, R2, #30

Operand forwarding cannot be done with memory as it takes more than one cycle to be fetched and wont be available
until it is loaded into register RY in stage 5 (check BPU summary page 5 datapath structure).

The compiler can eliminate the one-cycle stall for this type of data dependency by reordering instructions to insert
a useful instruction between the Load instruction and the instruction that depends on the data read from the
memory. The inserted instruction fills the bubble that would otherwise be created. If a useful instruction cannot be
found by the compiler, then the hardware introduces the one-cycle stall automatically. If the processor hardware
does not deal with dependencies, then the compiler must insert an explicit NOP instruction.

BRANCH DELAYS

• branch penalty: Delay from branching

UNCONDITIONAL BRANCHES
• With a two-cycle branch penalty, the relatively high
frequency of branch instructions could increase the
execution time for a program by as much as 40 percent.
• Reducing the branch penalty requires the branch

target address to be computed earlier in the pipeline. Rather

than wait until the Compute stage.

• it is possible to determine the target address and

update the program counter in the Decode stage

• Thus, instruction Ik can be fetched one clock cycle

earlier, reducing the branch penalty to one cycle.

• A second adder is needed in the Decode stage to

compute a branch target address for every instruction

• When the instruction decoder determines that the
instruction is indeed a branch instruction, the computed
target address will be available before the end of the cycle. It
can then be used to fetch the target instruction in the next
cycle.

CONDITIONAL BRANCHES
Branch_if_[R5]=[R6] LOOP

• The result of the comparison in the third step
determines whether the branch is taken.
• The branch condition must be tested as early as

possible to limit the branch penalty (he comparator that tests

the branch condition can also be moved to the Decode stage).

CSE1400 Computer Organisation

4

• Moving the branch decision to the Decode stage ensures a common branch penalty of only one cycle for all

branch instructions

THE BRANCH DELAY SLOT

• In all cases, the instruction immediately following the branch

instruction is always fetched.

• delayed branching: To reduce branch penalty the branch delay slot

technique attempts to find a suitable instruction to occupy the delay slot

of the branch instruction, one that needs to be executed even when the

branch is taken.

• It can do so by moving one of the instructions preceding the branch

instruction to the delay slot (as long as data dependencies are

preserved).

• If a useful instruction is found, then there will be no branch penalty.
• If no useful instruction can be placed in the delay slot because of

constraints arising from data dependencies, a NOP must be placed there

instead.

• The effectiveness of delayed branching depends on how often the

compiler can reorder instructions to usefully fill the delay slot (70%).

BRANCH PREDICTION

• Making the branch decision in cycle 2 of the execution of a branch instruction reduces the branch penalty.

• the instruction immediately following the branch instruction is still fetched in cycle 2 and may have to be
discarded.

• decision to fetch this instruction is actually made in cycle 1, when the PC is incremented while the branch

instruction itself is being fetched

• to reduce the branch penalty further, the processor can anticipate an instruction being fetched is a branch

instruction and predict its outcome to determine which instruction should be fetched in the next cycle.

• Static branch prediction: Assume that the branch will not be taken and fetch the next instruction in sequential

order. There will only be penalty when the prediction is incorrect. Assuming randomness, this gives 50%

accuracy. However backward branches at the end of a loop are taken most of the time, for such a loop is
better to assume that the branch is gonna be taken. The processor can determine the static prediction by

checknig the sign of the branch offset. Alternatively, the machine encoding of a branch instruction may

include a bit that indicates how to predict the instruction.

• Dynamic Branch Prediction: The processor hardware keeps track of branch history to make better
predections. Simplest form is to use the last result as prediction. Works well inside program loops. The track
history can be expanded to more than just the last one, i.e. 4-state algorithm vs 2-state algorithm.

BT - Branch taken
BNT - Branch not taken

ST - Strongly likely to be taken

LT - Likely to be taken

LNT - Likely not to be taken

SNT - Strongly likely not to be taken

CSE1400 Computer Organisation

5

• Branch Target Buffer: small fast memory that contains the extra information that the processor needs to keep
for dynamic branch prediction. The branch target buffer contains a lookup table for each branch with:

o the address of the branch instruction.

o one or two state bits for the branch prediction algorithm

o the branch target address

• the table has a limited size (1024ish entries), containing information for only the most recently executed

branch instructions

• (not necessarily branch) speculative execution: subsequent instructions based on an unconfirmed prediction

are fetched, dispatched, and possibly executed, but are labeled as being speculative so that they and their

results may be discarded if the prediction is incorrect

• reservation stations: buffer for sepeculative execution, they hold information and operands relevant to each

dispatched instruction

PERFORMANCE EVALUATION

• non-pipelined processor - basic performance equation:

o T: execution time

o N: Dynamic Instruction Count

o S: Average number of clock cycles to fetch and execute one instruction

o R: clock rate in cycles per second

𝑻 =
𝑵 ∗ 𝑺

𝑹

• instruction throughput (non-pipelined): Number of instructions executed per second

𝑃𝑛𝑝 =
𝑅

𝑆

RISC, when there are no cache misses, uses 5 cycles to execute all instructions. So S = 5
Pipelining improves performance by overlapping the execution of successive instructions

• instruction throughput (platonic pipelined): In the abscence of stalls

Pp = R

Remember that there are millions of instructions so the first 4 that are not 100% overlapped are insignificant. So a
n-stage pipeline can potentially increase the throughput by a factor of n. In reality there are diminishing returns but
recent processor implementations ahve 20 stages with clock rates of several GHz

DELAYS
The operations with the longest delay dictate the cycle time, and hence the clock rate R.

o δstall: increased difference from S, where S = 1 in an ideal world.
δstall = Dynamic Instructions % * Dependent Instructions (of the dynamic) % * 1

• instruction throughput pipelined (with stalls):

𝑃𝑝 =
𝑅

1 + 𝛿𝑠𝑡𝑎𝑙𝑙

• The compiler can improve performance by reducing the number of times that a Load instruction is

immediately followed by a dependent instruction.

• A stall is eliminated each time the compiler can safely move a nearby instruction to a position between the

Load instruction and the dependent instruction

• mispredicting branches: Assume target address are determined in the Decode stage of the pipeline

𝛿𝑏𝑟𝑎𝑛𝑐ℎ_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑏𝑟𝑎𝑛𝑐ℎ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (1) ∗ 𝑏𝑟𝑎𝑛𝑐ℎ % ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

• cache misses:

𝛿𝑚𝑖𝑠𝑠 = (𝑚𝑖 ∗ 𝑑 ∗ 𝑚𝑑) ∗ 𝑝𝑚

Where 𝑝𝑚 = stalled pipeline cycles from cache misses; 𝑚𝑖 = instruction miss %; d = load and store instructions %
(that involve the cache) and 𝑚𝑑 = operand miss %

CSE1400 Computer Organisation

6

SUPERSCALAR OPERATION

The maximum throughput of a pipelined

processor is one instruction per clock cycle.

Superscalar procesor can acheive more than

1 instruction per clock cycle by equipping

the processor with “multiple-issue”
multiple execution units (each could be also

pipelined).

• a superscalar processor has a more
elaborate fetch unit that fetches two or
more instructions per cycle before they are
needed and places them in an instruction
queue
• dispatch unit: takes two or more

instructions from the front of the queue,

decodes them, and sends them to the

appropriate execution units.

• At the end of the pipeline, another unit

is responsible for writing results into the

register file.

• It incorporates two execution units, one for arithmetic instructions and another for Load and Store

instructions.

• An arithmetic instruction and a Load or Store instruction must obtain all their operands from the register

file when they are dispatched in the same cycle to the two execution units. The register file must now have

four output ports instead of the two output ports needed in the simple pipeline.

• an arithmetic instruction and a Load instruction must write their results into the register file when they
complete in the same cycle. Thus, the register file must now have two input ports instead of the single input
port for the simple pipeline.

• the register file allows two results to be written in the same cycle because the destination registers are

different.

• Otherwise, one instruction is stalled to ensure that results are written into the destination register in the

same order as in the original instruction sequence of the program

• As long as such dependencies are handled correctly, there is no reason to delay the execution of an unrelated

instruction. If there is no dependency between a pair of instructions, the order in which execution is

completed does not matter. However exceptions will lead to a processor executing the second instruction,

which may have had relied on the first one not having an exception, this is called an impricese exceptions.

• precise exceptions: delaying or buffering instructions to give room for exceptions at the expense of more

complex hardware

• comittment step: moving the temporary registers to the permanent ones. The effect of an instruction cannot
be reserved after this point.

• register renaming: a temporary register takes the role of a permanent register during a period of time. There

may be as many temporary registers as there are permanent registers.

• commitment unit: sepcial control unit that uses a separate queue called the reorder buffer to determine

which instruction(s) should be committed next (if out of order execution is allowed), this guarantees in-

order commitment. Instructions are retired after the temporary registers have been moved to the fixed ones.

• dispatch order operations: the dispatch unit must ensure that all the resources needed for the execution of

an instruction are available.

• deadlock: a situation that can arise when two units, A and B, use a shared resource and both of them are

waiting for the other in a vicious circle so that neither can complete its execution

CSE1400 Computer Organisation

7

WEEK 8 – PIPELINING LECTURE

Remember: without caching there’s no possible DMA

• Harvard architecture treats data and
instructions differently.
• This structure allows to fetch data and
instructions at the same time
• It also allows us to use different cache

mappings for data and program memory.

• Programs are typically sequential, so they
respond better to direct mapping.
• Data is all over the place, responds better to
associative case.

Pipelining aims to increase the throughput. Which is optimal for
general purpouse computing (rather than dedicated circuitry).

CSE1400 Computer Organisation

8

We need to modify our hardware from the previous BPU architecture as it was not designed to do these stages in
parallel. So we need buffers.

There is a trade-off between aiming for a high throughput with lots of stages and increasing the risk of longer pipeline

stalls.

CSE1400 Computer Organisation

9

In the decoding stage you can actually see the data

dependency between instruction I2 and instruction I1.

Solution: The output of the current instruction is ready

with forwarding in the next stage so that we can execute

instructions back to back instead of waiting for the write

step.

unconditional: It the branch is just a jump instruction, there’s
no need for the ALU/comparator to execute anything, so the
result is known right after decoding (just 1 bubble)

conditional prediction: Instead of going to the
ALU/comparator, we could also assume a-priori the result of
the loop and jump (or not) directly.

CSE1400 Computer Organisation

10

finite state machine ->

For long operations such as divisions since they appear
rarely the don’t require our attention as they don’t

have an impact on performance.

CHAPTER 12 - PARALLEL PROCESSING AND PERFORMANCE

HARDWARE MULTITHREADING

• Operating system (OS) software enables multitasking of different programs in the same processor by

performing context switches among programs

• Processes (any information that describes the current state of the program execution) may be associated

with applications such as Web-browsing, word-processing, and music-playing programs that a user has

opened in a computer. Each process has a corresponding thread.

• it is possible for multiple threads to execute portions of one program and run in parallel as if they correspond

to separate programs. But all threads that are part of a single program run in the same address space and are

associated with the same process.

• hardware multithreading: To deal with multiple threads efficiently, a processor is implemented with several

identical sets of registers, including multiple program counters.

• The state of the previously active thread is preserved in its own set of registers.

• coarse-grained multithreading: an about to stall processor quickly switches to a different thread and

continue to fetch and execute other instruction.

CSE1400 Computer Organisation

11

• fine-grained orinterleavedmultithreading: switch after every instruction is fetched. Throughput may be

increased by interleaving instructions from many threads, but it takes longer for a given thread to complete

all of its instructions.

VECTOR (SIMD) PROCESSING

• vector: array of elements usch as integers or floating-point numbers.

• vector instructions / single-instruction multiple-data (SIMD) instructions: A processor can be enhanced with

multiple ALUs. In such a processor, it is possible to operate on multiple data elements in parallel using a

single instruction. Can only be used when the operations performed in parallel are independent. This is

known as data parallelism.

• vector registers: they can hold several data elements. L = vector length = number of data elements = number

of operations that can be performed in parallel with multiple ALUs

• VectorAdd.S Vi, Vj, Vk: just a vector sum that takes vector registers operands and saves it in a vector register

• storing and loading vectors just places elelements consecutively in the destination and read consequitive

elements into a vector.

• vectorizable: such as high-level integer arrays. Where operations for all elements of the array can be done in

parallel

• Vectorizable loops exist in programs for applications such as computer graphics and digital signal processing.

GRAPHICS PROCESSING UNITS (GPUS)

• The primary purpose of GPUs is to accelerate the large number of floating-point calculations needed in high-

resolution three-dimensional graphics, such as in video games

• operations involved in these calculations are often independent

• a large GPU chip contains hundreds of simple cores with floating-point ALUs to perform them in parallel

• A GPU chip and a dedicated memory for it are included on a video card

• A small program is written for the processing cores in the GPU chip

• A large number of cores execute this program in parallel

• The cores execute the same instructions on parallel, but operate on different data elements.

• Before initiating the GPU computation, the program in the host computer must first transfer the data needed

by the GPU program from the main memory into the dedicated GPU memory

• After the computation is completed, the resulting output data in the dedicated memory are transferred back

to the main memory

• There’s a C extension to deal with NVIDIA’s GPU so that an entire program can be written in C.

o The compiler will partion the final object into machine instructions for the GPU and CPU

o An open standard called OpenCL has been proposed by industry as a programming framework for

systems that include GPU chips from any vendor

SHARED MEMORY MULTIPROCESSORS

• Implementing a large memory in a single module would create a bottleneck when many processors make

requests to access the memory simultaneously

• It can be alleviated by distributing memory across multiple modules so that simultaneous requests from

different processors are more likely to access different memory modules

• An interconnection network enables any processor to access any module that is a part of the shared memory

• (UMA) Uniform Memory Access multiprocessor: A system which

has the same network latency for all accesses from the

processors to the memory modules.

• (NUMA) Non-Uniform Memory Access multiprocessors: For

better performance, they place a memory module close to each

processor, resulting in a collection of nodes that have different

latencies.

CSE1400 Computer Organisation

12

INTERCONNECTION NETWORKS

• The interconnection network must allow information transfer between any pair of nodes in the system

• The traffic in the network consists of requests (such as read and write) and data transfers

• bandwidth: capacity of a transmission link to transfer data bytes per second.

• effective throughput: rate of data transfer, which is less than the available bandwidth because a link must

carry information that coordinates the transfer of data.

• packets: information transfers through the network, of a fixed length and specified format

• Ideally, a complete packet would be handled in parallel in one clock cycle at any node or switch in the

network. But to reduce complexity a packet is divided into smaller pieces, each of which is eventually

transfered in one clock cycle.

Interconnection networks:

• (simple) bus: set of wires that provide a single shared path for information transfer. Often used in UMA

multiprocessors. Arbitration is necessary to ensure that only one of many possible requesters is granted use

of the bus at any time. A simple bus does not allow a new request to appear on the bus until the response for

the current request has been provided

• split-transaction bus: a request and its corresponding response are treated as separate events and other

transfers may take place between them. This is usually handled by associating a unique tag with each request

that appears on the bus. Each response then appears with the appropriate tag so that the source can match

it to its original request.

• ring: A ring network is formed with point-to-point connections between nodes. A long single ring results in

high average latency for communication between any two nodes.

• bidirectional ring: halves the latency and doubles the bandiwdth by adding a second ring in the opposite

direction, at the expense of more complex communications.

• hirearchy of rings: The average latency is reduced without traversing the entire rings, just a section.

• crossbar: network that provides a direct link between any pair of units connected to the network. It is

typically used in UMA multiprocessors to connect processors to memory modules. For n processors and k

memories, n × k switches are needed.

• mesh:

Nodes in the boundaries and corners have fewer connections,

torus: mesh with wraparound connections between nodes at opposite

boundaries of the mesh. So all nodes in a torus have 4 connections (average

latency is reduced at the expense of more complexity).

CSE1400 Computer Organisation

13

• snoopy cache: use of directories in each memory module to indicate which nodes may hace copies of a given

block in the shared state. Small multiprocessors, including current multicore chips, typically use snooping.

• mesagge-passing multicomputers: implementing each node in the system as a complete computer with its

own memory. Data that need to be shared are exchanged by sending messages from one computer to another.

PARALLEL PROGRAMMING FOR MULTIPROCESSORS

• The compiler cannot automatically identify independent high-level (programming) tasks that could be

executed in parallel, it has its limitations detecting and exploiting parallelism.

• It is therefore the responsibility of the programmer to explicitly partition the overall computation in the
source program into tasks and to specify how they are to be executed on multiple processors.

• create_thread: routine library that supports parallel programming. An operating system service is invoked

by the library routine to create a new thread with a distinct stack, so that it may call other subroutines and

have its own local variables. All global variables are shared among all threads.

• get_my_thread_id: library routine that returns a unique integer between 0 and p-1 for each thread. A thread

can determine the appropriate subset of the overall computation for which it is responsible

• barrier: thread synchronization method that forces a thread to enter into a busy-wait loop until all threads

have reached a specific point in the program. This ensures that the threads have completed their respective

computations preceding the barrier call.

PERFORMANCE MODELING

• The most important measure of the performance of a computer is how quickly it can execute programs

• execution time:

o Torig = current execution time

o fenh = fraction of execution time affected by enhancent

o funenh = 1 – fenh compliment (fraction of execution time not affected by enhancement)

o p = fenh * Torig = portion of time reduced thanks to enhancement

Tnew = Torig * (funenh + fenh/p)

• speedup = Torig/Tnew = Amdahl’s Law = 1/(funenh + fenh/p)
o the benefit of a given performance enhancement increases if it affects a larger portion of the

execution time

• upper bound on the possible speedup: 1/unenh

o p → ∞ reduction of the fraction fenh of execution time to zero

o the unenhanced portion of the original execution time can significantly limit the achievable speedup,

even if the enhanced portion is improved by an arbitrarily large factor

WEEK 9 - PARALLEL & VIRTUAL MEMORY LECTURE

• Superscalar execution: multiple components doing

multiple things on paralle

• Floating point unit bottleneck is removed but fetching

instructions becomes harder

• instruction que is a bunch of instructions which each

can be executed on parallel

.

CSE1400 Computer Organisation

14

• In-order issued instructions may be

completed at different clock cycles. Therefore

there is an extra variant that we add called

“program order completion”

• Which will make instructions wait so that the

first in first out instruction fetching order is

mantained

Amdahl’s Law

Data dependencies, some algorithms cant be run on parallel either
(min, max, median, which need to check all data)
Only a fraction of a program can be parallelized

speedup = Torig/Tnew = Amdahl’s Law = 1/(funenh + fenh/p)

“It takes 10 second to execute sequentially, if we can parallelize 80% of a program and run it on 4 processors what

would be our speedup?”

fp = parallel % = .8

fs = sequential % = 1-.8 = .2
Torig = Ts = 10

Tnew = Tp = 10*(.2+.8/4) = 4

Amdals law = Torig / T new= 10/4 = 2.5
Or just speed up = 1/(funenh + fenh/p) = 1/(.2+.8/4) = 1/.4 = 2.5

max speedup = 1/fs

lim
𝑝→∞

1/ (𝑓𝑠 +
𝑓𝑝

𝑝
) = 1/(𝑓𝑠 + 0) = 1/𝑓𝑠

Flynns taxonomy:
• Single Instruction, Single Data (SISD)

o Conventional system

• Single Instruction, Multiple Data (SIMD)

o one instruction on multiple data streams

• Multiple Instruction, Multiple Data (MIMD)

o Multiple instruction streams on multiple

data streams

• Multiple Instrucion Single Data (MISD)

o Multiple instruction streams on single

data stream

CSE1400 Computer Organisation

15

• We can work on parallel with data
• We can have multiple computers (execution units)

SISD: Simple 1 core machine

UNIFORM MEMORY ACCESS

We have memory and processors. And whenever

we want to grab something from memory the

processors go through the interconnection

network (bus, ring, mesh etc)

Problem arise when 2 processors want to access

the same memory. Therefore we are

sequentialising the access to the memory. Eery

cache miss goes over the same bus, not efficient.

So here everything can borrow from the common

pool but only one at a time.

I can read my own memory very fast, if I want to read
someone elses (processor), I can but it goes slow.

It should be up to the program to optimize which

memory belongs to which CPU.

CSE1400 Computer Organisation

16

Here processor can request memory from another

one, but it is not available by default unless the

other accepts the request. It’s like the internet

N parallel paths between processors and memory
Simple but still lots of wires

Only works for low scale parallel processing

CSE1400 Computer Organisation

17

It makes handling large files easier.

Same concept as cache

We want to give the programmer the illusion that

he is always to write on all those 4GB although we

only have 2GB available.

We would need to map the 4gb pages into the 2GB

page table

Processor

Bus Virtual address

MMU
Bus Physical address

Cache

 Physical address
Main Memory

 DMA controller

Disk storage

Caches do everything with hardware, Virtual memory also has software support. It gives us more flexibility

CSE1400 Computer Organisation

18

1. We start with a logical/virtual address where the program thinks he can store anything

2. Page table provides us with a mapping in the page addres table register

3. Because you need to have this table available for each program and you dont want them to overwrite

memories across so one page table is created per running program.

4. There is a control bit for writing confirmation.

a. Generally we will not copy things to the disk every time, just before closing the program.

TLB stores the recent translations of virtual
memory to physical memory like a cache.

So instead of having to look up the whole page
table in main memory every time, you have the
TLB quickly by hand.

 Where is the page? The page is on Disk, it was virtual... So it is the job of the
OS to bring the page from disk to main memory into the page table because we have now a new mapping.
and Disk stuff is moved via the DMA (and its bus).

CSE1400 Computer Organisation

19

NO! We want to minimize the number of times we talk to the disk because the disk is extremly slow

PTBR = page table for each process ensures that the allocated
pages for a program are fixed and a program cant mess with
the pages of another program, such us the OS, which is very
protected. Furthermore, only the OS should be allowed to
write the page table base register.

