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WEEK 1 – HISTORY (& ASSEMBLY, I MOVED IT AFTER ISA) 

HISTORY 

Architecture = interconnection of components 

Hardware is interconnected via “buses” (circuits) 

Software is interconnected via “interfaces” (api) 

PRE-HISTORY: CALCULATORS AND PROGRAMMABLE MACHINES (1700-

1930) 

Calculators: 

Machines of Pascal and Leibniz were mechanical devices 

• No memory or program 

• Leibniz used binary system (1705) 

• A single operation at a time 

• Only simple operations (+,-,*,/) 

Programmable machines: 

• Mechanical Music Instruments 

o Bagdad 9th Century 

o “Carillons” 

• Chess 

o Mechanical Turk (1770) (fraud, man inside a box) 

• Weaving machines 

o Jacquard Loom (Head) (1801) 

o Used Punch cards 

Difference (polynomials) engine 

• Invented by Johann Helfrich von Muller 1786 

• Extended by Charles Babbage (1822) but never finished 

Analytical Engine (First Conceptual CPU) 

• Designed by Charles Babbage (inspired by Jacquard punch cards 

and von Muller calculator) 

• Never completed, but brought the Instruction Set Architecture 

concept of a CPU: 

• Arithmetic Unit + IFs + Memory (with stored-program and 

variables) + I/O devices. 

o Program contained calculations + order sequences 

First computer programmer (for non-finished Analytical Engine): 

Ada countess of Lovelace 1840s 

• First computer algorithm: Note G, in Assembly 

• Math algorithm to generate Bernoulli Numbers 

Analog Computers: Vannevar Bush 1931. 

• First systems that enabled significant reduction of calculation time 

• Used nomograms and slide rules. Graphical tools designed to allow 

the approximate graphical computation of a mathematical 

function/operation.  

1ST GENERATION: ELECTRO-MECHANICAL (1930-1950) 

Boosted by World War 2 (1939-1945). 

Electro-mechanical devices: 

ASCC: Automatic Sequence Controlled Calculator 

• Built by Howard Aiken 1937-1944 

• First general purpose digital computer 

• 750,000 components 

• 5 tons 

• 100 times faster in theory, 3-5 times faster in practice (component 

failures) 

ENIAC: Electronic Numerical Integrator and Computer 

• Built by John Mauchly and John Presper Eckert  1943-47 

• First all-electronic computer 

• But international patent won later by John Atanasoff in 1973 

(computer already in 2nd generation). 

• 18k tubes of 5-10cm 

• 150 kW dissipation 

• 30 tons 

• 1000 bits of memory 

• 20 hours to 20 seconds. 

• 10 tubes broke on power up 

• Difficult to program 

• Not very flexible 

• Technologically complex 

• Small memory 

• Literal bugs (and origin of software bug term) would break it 

EDVAC: Electronic Discrete Variable Automatic Computer 

• Built by Mauchly and Eckert 1948-49 

• Basis of Von Neumann Architecture 

• Mean Time to Failure (MTTF) 8 hours 

 

2ND GENERATION: TRANSISTORS (1955-1975) 

Transistors: 

• Reliable 

• Less power 

• U. Manchester world's first transistorized computer 1953 

• Bell Labs 1948 

• DEC PDP-1 1959 

o Hacker culture 

o First game (Spacewar) 

• 1st Supercomputer: Cray’s CDC 6600 – 10MFLOPS 

floating point operations per second 

 

https://www.youtube.com/watch?v=FJGkFU3leY0
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3RD GENERATION: MICROPROCESSORS (1960-TODAY) 

Integrated Circuits: 

Enabled small low-cost microprocessors 

1st CPU: Intel 4004 * 108KHz 

Apple 1978 first B2B computer 

IBM 1980 Personal Computer first commercial computer 

• Blueprint for today’s PCs 

• Revolutionized the market 

• Open standards and friendliness to third-party hardware and 

software developers 

 

PERIPHERALS (I/O DEVICE) - BOTH 2ND AND 3RD GENERATION 

First monitor 1951 was US army’s display system 

First mouse 1968 Doug Engelbart “X-Y Position Indicator for a Display 

System” 

 

4TH GENERATION: MULTI-COMPUTING (1969-TODAY) 

Roots of the Internet: 

ARPANET 1965-1969 

• Leonard Kleinrock develops queuing Theory 

• 4 computers at UC Santa Barbara, UC Los Angeles, Stanford, U Utah 

1972 ARPANET public + Email 

TCP/IP at Stanford 1974 (universal protocols between different machine 

systems) 

1982 ARPANET +TCP/IP = early Internet 

Cloud computing (Server farms, multi-core) 

File/video/… sharing; IoT; Social Media 

WEEK 2 – LOGIC CIRCUITS 
John Vincent Atanasoff Intermezzo. Inventor of Digital Computer 

1930s. Programmable devices that compute arbitrary arithmetic or logical 

operations, being able to perform more than one function. Use digital rather 

than analog components. 

Atanasoff’s principles of digital computers: 

1. Use binary information bits 

2. Use electricity and electronics instead of mechanical devices 

3. Memory based on capacitors 

4. Computation by Boolean algebra 

Unit of Information: 

Computers consist of digital (binary circuits) 

bit (binary digit) 0 = off, 1 = on 

Two interpretations of bits: 

• Arithmetic: as data values 

• Logic: as truth values (false or true) 

Bit Strings: Groups of bits, which can be given a specific meaning 

BOOLEAN ALGEBRA: USES 2 VALUES 

A computer can transform Bit Strings (expressions) into other strings 

(results). 1 + 2 = 3 -> 01 XOR 10 = 11 

George Boole 1854 created this algebra that can compute regular 

arithmetic. 

Commutative law: x+y = y+x, x*y=y*x (order doesn’t matter) 

Distributive Law: x(y+z) = xy+xz 

Associative law: (x+y)+z = x+(y+z). (no bracket) Mult is also associative. 

So AND and XOR are associative. 

Different than school algebra: x+x = x, x*x = x (no squares, no 2) 

Because an expression repeating the same (boolean 1/0) expression n times 

is redundant and its truth value remains the same. 

Complement: the 1-x of something, in Boolean algebra = -x (not x) 

Such that: x and not x = 0 (x(1-x) = x-x^2 = x-x = 0) 

x or not x = 1 (x+(1-x) = 1-0 = 1). (1-x) = NOT x = 𝑥 = ~x 

Truth tables and computing functions 

   Sum of products form… 

x y f(x,y) = x XOR y f(x,y) = ~x*y + x*~y 

0 0 0 Minterm for f(…)=0 –Don’t include-- 

0 1 1 Minterm for f(…)= 1 ~x*y 

1 0 1 Minterm for f(…)= x*~y 

1 1 0 only when listing Minterm with f(…)=1 

Any polynomial function can be constructed using Boolean algebra. 

Any function has a Sum of Products form. 

LOGIC GATES 
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De Morgan’s Law: ~(xy) = ~x+~y (negation sign “flips” + for *) 

~(x+y) = ~x*~y  

KARNAUGH MAPS 

 

Don’t cares (marked as d/x/?) are jokers, can be used as 1 or 0 according 

to our needs. Used for minimization and for grouping larger more cells. 

LOGIC GATES CIRCUITS 

 

 

 

 

ELECTRONICS OF LOGIC GATES 

Switching voltages: 

On = Voltage wants to go to supply/Vout(continuation) at 5V (Vsupply) 

Off = Voltage wants to go to ground and/or at 0V (Vground) 
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If electrons go to ground with voltage that is 

a bad circuit because you are wasting energy 

If both a circuit connected back to supply 

/battery/Vout and a circuit connected to 

ground/source/earth are available in 

parallel electrons will go to ground 

(Vout = 0) because there are more positive 

charge electrons on earth than on supply, 

therefore attracting the flowing negative 

charged electrons and “draining” Vout from all the Voltage. If electrons go 

back to voltage without resistance too much energy will travel in the circuits 

causing a short circuit. 

There is a Voltage threshold where the Voltage is neither logical 1 nor 0.  

 

NMOS TRANSISTOR GATE 

if +V -> closed gate (electron flow) 

if 0V -> open gate (no flow) 

Used for positive variables.  

PULLDOWN: Conditions for Vout = 0 

Va OR Vb: parallel and N-type 

 

PMOS TRANSISTOR GATE 

if +V -> open gate (no flow); if 0V -> closed gate (electron flow) 

Used for negative variables.  

PULLUP: Conditions for Vout = 1 

~Va AND ~Vb. It would require a series connection  

and a P-type transistor (it conducts when 0V). 

    

Inverter gate: Quick read: If ~V connect to supply (and not ground), 

if V connect to ground (and not to supply). 

CMOS CIRCUIT: 

Complementary metal-oxide semiconductor circuit. Combines PMOS and 

NMOS to avoid power consumption when connecting to ground. You can 

observe that the Pull up network is exactly the opposite of the 

pulldown network using de Morgan’s Law. 

  

TO MAKE AN OR GATE CONNECT A NOR WITH AN INVERTER GATE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=JXhif3E3l2s
https://www.youtube.com/watch?v=kYwNj9uauJ4
https://www.youtube.com/watch?v=kYwNj9uauJ4
https://www.youtube.com/watch?v=kYwNj9uauJ4
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PROPAGATION DELAYS 

Switching transistor states takes time (and energy). 

 

Every network of gates has delays. The speed of the circuit depends on 

the maximum number of logic gates that a signal needs to propagate 

through. The optimized sum of products is implemented as digital logic. 

Still, an AND gate is more efficient to implement as a NAND & NOT 

than strictly making the AND Pullup and Pulldown networks from their literal 

Minterms. So not all logic gates delay the same. 

The number of inputs to a logic gate is called its fan-in. 

The number of branches coming for next gates it’s called fan-out. 

The thumb rule is to keep fan-in and fan out bellow 10. 

Clock Hertz frequency calculation from: 

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 𝑛𝑠 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑎𝑡𝑒𝑠

1 − 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 %
 

1 ns = 10^-9 seconds = 10 MHz 

COMBINATORIAL CIRCUITS 

Constructing a separate circuit for every function is very uneconomical 

The goal is to combine Integrated (logic) Circuits that can compute 

different functions by taking instruction parameters: 

For 4 instructions (22), we need 2 instruction bits (p1 = 2nd bit, p0= 1st bit) 

2 instruction bits & 2 operand bits A B  

f(p1,p0,A,B) p1 p0 00 01 10 11 result type 

Add A XOR B 00 00 01 01 00 signed int 

Multiply A AND B 01 00 00 00 01 signed int 

Compare A - B 10 00 11 01 00 signed int 

Or A + B 11 00 01 01 01 boolean 
Combinatorial circuits depend directly and 

Only on the given input. 

SEQUENTIAL CIRCUITS 

• Depends on input parameters 

• Depends on internal state (last result), “recursive” 

• Stores prev data. Counter: B = 1 and Fn = Fn-1 + B 

THE SR LATCH (STORE) 

Electronic element that can store binary information 

  

You can set to 1, reset to 0 or keep the current state (neither set nor reset). 

Set and reset at the same time (11) is nonense. You want either, not both. 

It would lead to Q=~Q=0 and if you “release” SR back to 00 one path will 

randomly be faster and feed the other NOR gate and Q will vary from 11 

over time. If 11 is never used, we can remember the previous states of R 

and S based on the current output. You can also make NAND SR Latches. 

GATED SR LATCH (ENABLED) 

 

It is the same as the SR latch, but changes in Qt states have a fixed tempo 

controlled by a binary clock. Only when clock is 1 Qt may be updated. 

Clocks are essential in logic circuits to properly time the update of variables. 

GATED D LATCH (ONE D AND ENABLED) 

         D-latch 

A single D input “samples” (sets state) of SR when clock is high and 

stores/latches (keeps state) when clock is low”. Clk allows multiple changes 

https://www.youtube.com/watch?v=KM0DdEaY5sY
https://www.youtube.com/watch?v=peCh_859q7Q
https://www.youtube.com/watch?v=peCh_859q7Q
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Latch: To retain whatever output state resulted from a previous input signal 

until reset by another signal. 

EDGE TRIGGERING (FLIP-FLOPS) 

A flip-flop is edge triggered if the output is only updated at pulses:  

Positive (leading): when clock “jumps” from 0 to 1. 

Negative (trailing): when clock “drops” from 1 to 0. 

The edge triggered flip-flop is distinguished by the |> under D. 

D FLIP-FLOP (POSITIVE EDGE TRIGGERED) 

Is a D-Latch that enables changes only at the +edge start of the clock pulse. 

A way to make an +edge detector consists of an AND of 

2 opposites where the complement’s (opposite) inverter  

propagation delay has for few ns both inputs to be 1. 

 

That after the clock will make the circuit +edge triggered. 

MASTER-SLAVE D FLIP-FLOP (NEGATIVE EDGE TRIGGERED) 

The first D-Latch (master) 

is enabled (and updated) 

during clock 1 and 

transfers the data to the 

second D-latch that takes 

the Output of the master 

as D and waits until the 

clock drops to 0 to send it. 

When clock is at 0 the 

slave doesn’t get new 

Master data, therefore the final output is only produced at clock drops. 

  

Positive and negative edge triggered D Flip-flops have the same icon. 

T FLIP-FLOP 

T flip-flop changes the state of its inside D flip-flop every clock cycle if its 

input T (toggle) is equal to 1. 

 

JK FLIP-FLOP (EDGE TRIGGERED AND 2 INPUTS) 

 

Same as SR (store, but triggered) and it allows JK to be 11 to toggle like T’s 

 

Alternative representation. 

https://www.youtube.com/watch?v=YW-_GkUguMM
https://www.youtube.com/watch?v=F1OC5e7Tn_o
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EXTRA, OTHER NEGATIVE FLOPS 

  

 

 

 

 

 

 

 

 

Negative-edge-triggered D flip-flop 

 

 

Master-slave that feeds its result in 

XOR (addition) “IN” stands for 

“inverse”. So if IN = 1 and Q = 0, 

Q becomes 1. If IN = 1 and Q = 1, 

Q becomes 0. If IN = 0, Qt = Qt 

 

 

PRESET AND CLEAR FLIP-FLOPS 

 

Sometimes it is desirable to force a flip-flop into a 

particular known state (rather than random), 

especially at PC start. Preset and Clear are 

“active low”, so the opposite holds. If both are 1. 

The D-latch is controlled by the clock. If clear = 0, 

it starts at 0, if preset = 0, it starts at 1 

REGISTERS 

Arrangement of a number of 

D flip-flops synchronized by 

1 clock. 

SHIFT REGISTER 

Data are written (loaded) 

into or read from all flip-

flops at the same time. 

Shift registers moves the 

output from the utmost left 

flip-flop to the next one on 

the right after each pulse 

and so forth till the far right. 

PARALLEL-ACCESS REGISTER 

 

The register clock is controlled by a separate read/write signal (so all states 

are on hold while on Read, until Write sign). Alternative form 
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COUNTERS (SEQUENTIAL CIRCUIT) 

 

It’s like a shift register but instead of shifting the output Q it “enables” the 

next clock signal when the last flip-flop was 0. (carry over). 

A counter driven by a high-frequency clock can be used to produce 

signals whose frequencies are submultiples of the original clock 

frequency. Such a counter is said to be functioning as a scaler. 

Ripple counter: when the flip-flops are positive edge triggered. 

DECODERS (COMBINATORIAL CIRCUIT) 

A circuit capable of accepting an n-variable input and generating the 

corresponding output signal on one out of 2n output lines. 

  

It will allow for easer logic if’s 

circuits rather than if each 

time you’d have to manually 

decode it in the next circuit. 

 

 

 

 

 

 

Yo could use the binary to decimal decoder to print 

an electric clock. The one on the right is the BCD to 

seven-segment display decoder. 

 

MULTIPLEXERS (COMBINATORIAL) 

Any one of n data inputs can be selected to appear as the output. The choice 

is governed by a set of “select” inputs. Such circuits are called multiplexers. 

 

Data inputs could be all of the n = 1MB of memory addresses of a computer, 

and the multiplexer will easily allow you to select and output a specific byte 

by just using 20 (220) select inputs. 

 

The inputs of a multiplexer will be log2 𝑁 and the output will be 1. 

The inputs of a decoder will be n and the output will be 2n. 

Multiplexers are also used in logic functions. 
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COUNTER (COMBINATORIAL AND SEQUENTIAL) 

 

Preset 0/1 tells multiplexer to either output the last register addition or to 

start the counter at a specific value “V”. (input of multiplexer: log2 2 = 1) 

R/W 0/1 read freezes the counter, write resumes it letting the register clock 

to trigger data transfers from the multiplexor (inputs) to the output pins. 

The ADD chips is an XOR circuit. 

FULL ADDER WITH MULTIPLEXER 

 

 

MEMORY 

 

2 address pins to define via the multiplexer one of the 4 registers. 

The decoder will take the 2 address bits and send the read/write signal to 

the chosen register. 

MOORE’S LAW 

The number of transistors doubles every 1.5-2 years 

Current transistor size 5nm 

ROCK’S LAW 

The cost of semiconductor fabs 

doubles every 4 years. 

Although the trend makes 

computers cheaper the barriers 

of entry to produce competitive 

computers are higher and 

therefore less parties are involved in making chips (Intel one of them). 

WEEK 3 – DATA REPRESENTATION 
In the past floating points conversions and the millennium bug has costed 

lots of money. That’s why engineers now set up things for the long term. 

RADIX (BASE) TO DECIMAL 

𝑑3𝑑2𝑑1𝑑0𝑏
= 𝑑3 ∗ 𝑏3 + 𝑑2∗ ∗ 𝑏2 + 𝑑1 ∗ 𝑏1 + 𝑑0 ∗ 𝑏0 

dn = nth digit, b = base. 

321016 = 3 ∗ 163 + 2 ∗ 162 + 1 ∗ 16 + 0 ∗ 160 = 12816 

DECIMAL TO BASE 

Repeatedly subtract the largest power of BASE that fits in the number or 

repeatedly divide by BASE, the n remainders (n0 = LSB) form the bit string. 
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LSB = Least Significant Bit = 0th bit. MSB = Most Significant Bit (often sign). 

RADIX A TO > RADIX B (A = BM) 

Large radix to small radix where big radix is a bm multiple of the smaller: 

𝑑𝐴 = ∎𝑚−1𝐵
∎𝑚−2 … ∎0𝐵

  

658 = ([_2 _1 _0] [_2 _1 _0])2  (23 = 8) 

110 101 

6    5 

Big to small: Split digits of the large radix into m digits of small base. 

RADIX B TO < RADIX A (A = BM) 

Small radix to big radix where big radix is a bm multiple of the smaller: 

𝑑𝐴 = ∎𝑚−1𝐵
∎𝑚−2 … ∎0𝐵

  

(1010 1111 1000)2 = ([_0] [_0] [_0])16 (16 = 24) 

1010  1111  1000 

10(A) 15(F) __8__ 

Small to big: Group digits of the small radix into m digits of large base. 

FULL ADDER 

 

Concatenate full adders to add larger numbers. Carries ripple through 

BINARY CODED DECIMAL (BCD) 

It’s a decimal number whose digits are 

represented in 4 bit binary. Pros: each 

4bit group can be decoded to a digital led 

number display. Cons: 5 bits are not used. 

SIGN & MAGNITUD, ONE’S COMPLEMENT, TWO’S COMPLEMENT 

For all systems: if MSB = 1 it’s 

negative if MSB = 0 it’s positive. 

All positive are the same. 

S&M negative: MSB multiplies 

unsigned number by -1. 

S&M 0: It will also multiply 0 by -1 

(-0), so 2 zeros.  

S&M range: [-(2n-1 -1), 2n-1 -1] 

1C negative: flip zeros and 1s 

1C 0: 2 zeros (-0 = 111…1) 

1C range: same as S&M 

2C negative: 1C negative + 1; zero : only +0; range: : [-(2n-1), 2n-1 -1] 

2C addition = subtraction. Just add numbers and ignore the last carry. 

Negative overflow if + and + yield -, Positive overflow if – and – yield + 

(number exceeds the number of bits and it gets “truncated”). 

Addition of two different sign numbers will never yield integer overflow. 

EXCESS-X 

Offset of -x. 0000 = -x. 0001 = 1-x. Range: [-x, 2n-1 -x]. Offset in decimal 

unless specified. Used as exponent in floats. 

(Multiplication and addition in binary is the same as in decimal) 
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SIGN EXTENSION 

FIXED POINT FRACTIONS 

bit 2bit 

-1 0.5 

-2 0.25 

-3 0.125 

-4 0.0625 

-5 0.03125 

-6 0.015625 

-7 0.0078125 

-8 0.00390625 

-9 0.001953125 

-10 0.000976563 
 

 

FLOATING POINT NUMBERS (IEEE-754) 

Real number binary representation that assigns different meanings to 

certain bits so that the user can pass the sign, the exponent and the 

mantissa of a number. Changing the exponent allows the decimal point to 

“float”. Float = sign * baseexponent * mantissa (like scientific notation). 

Mantissa = units digit coefficient followed by the dot and the decimals 

IEEE-754 float: Mantissa is always 1.something, therefore the 1. is skipped 

 

bit sign, exponent excess-127, fraction is fixed point binary MSB start at -1 

Floating-point numbers that are inverted differ only in sign bit (S&Mish) 

Exponent all 0s is makes mantissa implicit 1. become 0. (making 0 possible) 

Exponent all 1s is for infinite if fractions bits are all 0 otherwise NaN i.e. 0/0 

Decimal to float: 1 create fixed point binary 2 Shift binary places until 1.xx 

3 Number of shifts + 127 = exponent 4 remove 1. from mantissa. Fill in. 

WEEK 4 – INSTRUCTION SET ARCHITECTURE (ISA) 
An ISA is an abstract model of a computer that serves as the interface 

between software and hardware. Which specifies: supported data types, 

what state there is (main memory and registers) and their semantics 

(consistency and addressing modes) instruction set, I/O model. 

Multiple ISA implementations due to performance, size, and cost constraints 

COMPARISION CRITERIA 

Flexibility: Complexity of what the ISA can do (op and address modes) 

Programmability: Complexity for programmers (code length, #registers) 

Implementability: …for hardware (encoding of instr, memory consistency) 

CISC (COMPLEX INSTRUCTION SET COMPUTER) 

• Stack based; 
• Register based; 
• Long instruction word 

(assembly code line); 
• explicit parallelism; 

• Minimal instruction Set 
Computer (MISC); 

• Traditional architectures 
(legacy); 

• Powerful instructions 
(complex and too many); 

• Memory to memory 
operations. 68xxx and x86 
family 

PROS: 

• Easier to program; 

• Reduced code size; 

• Complexity in hardware; 

• Legacy (politics), its in our 
PCs and servers. 

CONS: 

• Instruction encoding 

complexity 

o variable-length 

instructions, 

o many addressing 

modes, 

• Slower than RISC (stack is 

slower than registers), 

• Consumes more energy (not 

in embedded systems, 
portable devices), 

• many unused and too 
specific instructions). 

 

RISC (REDUCED INSTRUCTION SET COMPUTER) 

• Reduced Instruction Set 
• Small number of instructions 

• Load/Store from Memory 
 

• Operations between registers 
• Large register file 

• Present in: PowerPC, ARM 

VON NEUMANN ARCHITECTURE 
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MEMORY ORGANIZATION 

Bits (D flip-flops) grouped into words (parallel access registers) grouped 

into Memory chips (or SoC (system on a chip)). 

Addressable by byte: 1 bit too little useful, a word too cumbersome. 

1 byte (8 bits) = an ASCII character. Sweet spot. 

In x64 architecture: 

word = 2 bytes, long (doubleword) = 4 bytes, quad = 8 bytes 

 

Stack Memory Addresses are 8 bytes because x64 operates on quadwords 

(64 bits). Data must fit into those quads. Aligned access is easier for the 

programs to push/pop things around (like an Ikea store). Often empty bits 

BIG ENDIAN VS LITTLE ENDIAN 

Big = Left to right (IBM, The Internet), Little != “Unit group” Right to left 

but the contents of the group are still read Left to Right. (Intel) 

TYPES OF INSTRUCTIONS (INTEL VANILLA) 

Data Copy Operations 

• Between memory and registers: [R1]    <- M(LOC) 

• Between memory locations:  M(LOC1) <- M(LOC2) 

• Between registers:   [R1]    <- [R2] 

Arithmetic and logic operations: 

• Add / - / * / % / divide…   [R1] <- [R1] + [R2] 

Flow control operations: 

Branch_IF_[R1]>[R2] LOOP 

I/O operations: 

ISA LAYOUT IN MEMORY 

• An instruction may 

span multiple words 

• #bits/specifier may 

be different per 

instruction type 

 

INSTRUCTION ADDRES FORMAT 

#address Operand 1 Operand 2 Operand 3 Pitfall 

0 (stack) Pop destination (But slides insist its 0)  

1(accumulator) Destination 

(implicit acc) 

   

2 (M-M) 

   (R-M) 

Source Destination  Overwrite 

3 (M-M-M) 

   (R-R-R) 

Source 1 Source 2 Destination Long in 

EVOLUTION OF INSTRUCTION SETS 

Name Date Addresses Example 

Accumulator <1960 1 68HC11 

Stack 1960-1970 0  

Memory-Memory 1970-1980 2/3  

Register-Memory 1970-today 2 CISC 

Register-Register 1960-today 3 RISC 

ACCUMULATOR (SINGLE REGISTER) 

Simple design: easy to implement and program 

Memory is bottleneck: can’t keep frequently accessed 

data in the processor 

 

STACK 

   

 

 

 

 

 

ALU: Aritmetic and Logic 

Unit (MPLXER) 

TOS: Top of the stack  
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REGISTER-MEMORY (CISC) 

• 16 General purpose registers 

o aka register file 

o growing over time 

• faster than memory 

• fewer address bits, so easier to encode 

• Memory is bottleneck 

o can’t keep frequently accessed data in the processor 

R0 reserved for 0 

 

 

 

 

Addressing modes: 

• Direct 

• Register 

• Immediate 

• Index 

 

 

 

 

 

 

 

X86-64 INSTRUCTION FORMAT 

 

ADDRESSING MODES (INTEL VANILLA) 

  

Base with index and displacement: Base = starting memory address, 

scale = bytes in word (increment between addresses), index “array 

pointer”, displacement = “column” byte displacement within the word? 

WEEK 1 – ASSEMBLY 

X86-64 (IA-64), AT&T SYNTAX WITH GCC IN LINUX 
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ASSEMBLY STRUCTURE OF INTEL ARCHITECTURE 

 

 

 

GENERAL PURPOSE REGISTERS 

 

 

64-bit Lower 32 bits Lower 16 bits Lower 8 bits 

rax eax ax al 

rbx ebx bx bl 

rcx ecx cx cl 

rdx edx dx dl 

rsi esi si sil 

rdi edi di dil 

rbp ebp bp bpl 

rsp esp sp spl 

r8 r8d r8w r8b 

r9 r9d r9w r9b 

r10 r10d r10w r10b 

r11 r11d r11w r11b 

r12 r12d r12w r12b 

r13 r13d r13w r13b 

r14 r14d r14w r14b 

r15 r15d r15w r15b 

Other important registers: 

RIP = instruction pointer, points to the next instruction to be executed. 

changing this register is the same as a jumps 

RFLAGS = register that stores information about the last calculation 

(flags) to use for conditional jumps 

 

Variable-length instructions 1-15 bytes 

Format for move and arithmetic: INSRT SRC,   DST 

Format for comparison:  CMP    OPRND1, OPRND 2 

Format for Flow Control:  JMP     LOCATION 
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opcode operands function description 

mov src,dst dst = src copy 

push dst (%rsp) = dst, %rsp -= 8 pushes a value onto the stack 

pop src %rsp += 8,src=(%rsp) pops a value off the stack 

xchg A,B A,B = B,A switches the contents of A and B 

addq src,dst dst = dst + src adds src to dst 

subq src,dst dst = dst – src subtracts src from dst 

inc dst dst = dst + 1 adds 1 to dst 

dec dst dst = dst – 1 subtracts 1 from dst 

mulq src rdx:rax = rax * src multiplies rax by src (UNSIGNED) 

imulq src rdx:rax = rax * src multiplies rax by src (SIGNED) 

divq src rdx:rax = rax / src divides rax by src (SIGNED) 

idivq src rdx:rax = rax / src divides rax by src (SIGNED) 

jmp label  jumps to label (unconditional) 

je label  jumps to label (if equal) 

jne label  jumps to label (if not equal) 

jg label  jumps to label (if greater than) 

jl label  jumps to label (if less than) 

jle label  jumps to label (if less than or equal) 

jge label  jumps to label (if greater than or equal) 

call label 
push <current 15ddress + 
1>, jmp label 

calls a function 

ret  jmp (%rsp) returns to caller 

loop label dec %rcx, jnz label  

cmp A,B 
A – B (answer not stored but 
flags set) 

compares 2 numbers. Jump instruction follows 

xorq src,dst src = src xor dst bitwise xor 

orq src,dst src = src and dst bitwise and 

andq src,dst src = src or dst bitwise and 

shlq A,dst src = src << A shift left 

shrq A,dst src = src >> A shift right 

not dst dst = 1111111- dst bitwise inversion of dst 

neg dst dst = 0 – dst 2’s complement, result of not and add 1 

leaq A, dst dst = &A load effective 15ddress (& means 15ddress of) 

int int_no  software interrupt (see linux system calls above, used 
together with int 0x80) 
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ADDRESSING MODES (AT&T) 

example name description 

movq $25,%rax immediate 
Loads the decimal 
value into rax 

movq $label,%rax 
immediate 
(pointer) 

loads the location of 
the label into rax 

movq label,%rax direct 
loads the quadword at 
the location of the 
label into rax 

movq (%rbx),%rax indirect 

loads the quadword at 

the location pointed to 

by rbx into rax 

movq 8(%rbx),%rax 
indirect offset 
(positive) 

loads the quadword 8 
after the location 
pointed to by rbx into 
rax 

movq -8(%rbx),%rax 
indirect offset 
(negative) 

loads the quadword 8 
before the location 
pointed to by rbx into 
rax 

movq 
(%rbx,%rcx),%rax 

indirect variable 
offset 

loads the quadword at 
%rcx after the location 
pointed to by rbx into 
rax 

movq 
(%rbx,%rcx,8),%rax 

indirect variable 
scaled offset 
(negative) 

loads the quadword at 
%rcx*8 after the 
location pointed to by 
rbx into rax 

movq 

8(%rbx,%rcx,8),%rax 

indirect variable 

scaled offset 

(negative) 
+constant 

loads the quadword at 

8 after %rcx*8 after 

the location pointed to 
by rbx into rax 

Scale s=1,2,4 or 8 disp= 8, 16, 

32 or 64-bit signed number 

movzb move 0 extended byte. 

 

   

 

ASSEMBLER DIRECTIVES 

directive explaination 

.quad reserves space for a 64 bit number to be stored 

.long reserves space for a 32 bit number to be stored 

.word reserves space for a 16 bit number to be stored 

.byte reserves space for a 8 bit number to be stored 

.asciz 
reserves space for a string of text to be stored, 
automatically terminated by a 0 (NULL ) 

.ascii 
reserves space for a string of text to be 
stored, not automatically terminated by a 0 (NULL ) 

.skip n 
skips n bytes. useful for defining arrays of data. This 
should normally only be used in the .bss 

.equ defines symbolic names for expressions (i.e. constants) 

Nibble = 4 bits (not an assembler directive) 

ASSEMBLER SECTIONS 

The .text segment is intended to hold all instructions. The .text segment 

is read-only. It is perfectly fine to include constants and ASCII strings in 

this segment. 

The .data segment is used for initialized variables (variables that receive 

an initial value at the time you write your program, such as those created 

with the .word directive). 

The .bss segment is intended to hold uninitialised variables (variables 

that receive a value only at runtime). Therefore, this section is not part of 

the executable file after compilation, unlike the other two sections. 

(Not a section): .global label makes label visible to other programs. The 

main label must be exported because the operating system needs to know 

where to start running your program. 

X86 CALLING CONVENTION 

The calling convention (System V AMD64 ABI) that is used on *nix systems 

is as follows. for 64 bit programs only The first six integer or pointer 

arguments passed in the registers in this order: 

1. RDI 
2. RSI 

3. RDX 
4. RCX 

5. R8 
6. R9 

(with sometimes R10 as a static chain pointer in case of nested functions) 

Additional arguments are to be passed on to the stack 

The return values are stored in RAX (In case of a 64 bit number) and in 

RDX:RAX (MSB:LSB) in case of 128 bit numbers. 
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THE STACK 

You can push to the top or pop (take out) from the top of 

the stack. Pushing values makes the RSP (register stack 

pointer) jump a smaller address and populate it with 

such value. If you want to collect the last second push 

value you type 8(%rsp) 8 being the scale of the byte 

addresses. In 64 architecture the jumps are 8. 

Popping values would remove the value from the top of 

the stack and assign it to a source and the RSP will return to its last place. 

SUBROUTINES 

 

Calling a subroutine will make a jump and remember the next instruction 

address for after the return. 

You can pass parameters through registers (hold on to calling conventions) 

or you can push them on the stack (hard to keep RSP offsets). 

  

Prologues and epilogues with RSBP can help you keep separate stack frames 

for each subroutine. 

  

GDB DEBUGGER 

GDB is a debugger which can help find segfaults or find other mistakes in 

your program. to use it compile it using the -g option (put it directly after 

"gcc") and then instead of running it like ./<programname>, you run it as 

gdb ./<programname>. this should launch you into a gdb environment. in 

this environment you can use the following commands: 

b n (or breakpoint). this sets a breakpoint on line n 

print code. this prints whatever you specify in code. this can be a full c 

expression, or a register name (e.g. $rdi or $rax) 

x/nx p print n 32 bit words after p. p can be an adress or register. this is 

useful for reading whats on the stack (e.g. x/10x $rbp) 

n (or next) steps ahead one instruction. when it finds a function call it will 

not step into instructions inside this function. useful to skip large functions 

like c stdlib function like printf 

s (or step) steps ahead one instruction. this one does go into large functions 

r (or run) runs the program until the next breakpoint or the end 

c (or continue) after a breakpoint, continue restarts execution like run did 

until it encounters another breakpoint or the program ends. useful if a 

breakpoint is in a loop and you want to go to the next iteration 

start starts the program, places a breakpoint on line one so you can 

imediately start using s and n 

when using GDB your program must be compiled with -g and your code 

must be in a .text section 

CHAPTER 2 AND 9 EXTRA NOTES 
Unsigned integers uses less bits than Excess because excess still represents 

negative side when 000000 

Exponent of  the IEEE-754 has to be within -126,127 - 128 yields inf or Nan 

000xxxxxxx: 3-bit & 7-bit instructions. 

Max would be 2^3 – 1 + 2^(7-3). You can only have 1 opcode at a time… 

CISC vs RISC assembly difference is RISC uses 3 operands in math and it 

only accepts registers. 

CISC doesn’t need to LOAD things into registers. 

Vanilla uses LOAD for moving into a REGISTER and STORE R, (SP) for PUSH. 

Store seems to be the only one that has reversed order. (store src, dst) 

Loading to a memory is MOVE. 
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EXAM PREP 

BYTE CONVERSION 

Byte = 8 bits (2^3) 

KiB = 2^10 bytes 

MiB = 2^20 bytes 

GiB = 2^30 bytes 

TiB = 2^40 bytes 

PiB = 2^50 bytes 

EiB = 2^60 bytes 

ZiB = 2^70 bytes 

YiB = 2^80 bytes 

FLOATING POINT ADDITION 

1. Identify the operand with the smaller exponent 

2. Make the smaller exponent equal to the larger 

3. Compensate by adding zeros to the binary fraction (don’t forget 

implicit 1 of the mantissa) 

4. Add both mantissas 

5. Present the sum in a float number with the high exponent. 

FLOAT CREATION 

  

 

 

Positive integers overflow, negative integers overflow 

 

 

MULTIPLEXER ADDER (TRUTH TABLE TRICK) 

 

How to solve: Assume all x, y, (and carry) data inputs are 0 and ignore the 

select inputs. What would these incoming arrows input into the multiplexer? 

If the incoming y was 0, then you’ll get the 1234 truth table of: 

0 

0 

1 

1 

 

But the actual sum truth table is 0110. 

Therefore we know 2nd and 4th must be 
swapped. 
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MULTIPLEXOR Z OTPUT FORMULA 

 

z = ~y1*~y2*~x1*~x2 + ~y1*y2*~x1*x2 + y1*~y2* x1*~x2 + y1*y2* x1*x2 

 

BOOLEAN SIMPLIFICATION 

 

x1~x2 + ~x2x3 + ~x1x3 = x1~x2 + x1~x2x3 + ~x1~x2x3 + ~x1x3 = 

x1~x2(x3 + 1) + ~x1x3(~x2 + 1) = x1~x2 + ~x1x3 

 

Explanation: 

~x2x3 can be separated into x1~x2x3 + ~x1~x2x3, since ~x2x3 = 

~x2x3(~x1 + x1) = x1~x2x3 + ~x1~x2x3. 

 

Then we combine the terms again. 

1 + anything = 1 in boolean algebra, so the terms x3 and ~x2 can be 

omitted there. 

KOOMEY'S LAW 

Koomey's law describes a trend in the history of computing hardware: for 

about a half-century, the number of computations per joule of energy 

dissipated doubled about every 1.57 years 

BOOLEAN LAWS 

 

MOD-4 UP/DOWN COUNTER  
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FINITE STATE MACHINE 

 

1. Develop an appropriate state diagram or state table. 

2. Determine the number of flip-flops needed, and choose a suitable type 

3. Determine the values to be stored in these flip-flops for each state in the 

state diagram. This is referred to as state assignment. 

4. Develop the state-assigned state table. 

5. Derive the next-state logic expressions needed to control the inputs of 

the flip-flops. Also, derive the expressions for the outputs of the circuit. 

6. Use the derived expressions to implement the circuit. 

TYPES OF COMPUTERS 

Embed computers = for specific purpose in embed systems, industrial 

Personal computers = consumer market and variety of purposes 

Servers and Enterprise systems = network of large computers with DB 

Super computers  and grid computers = high performance, expensive, 

demanding computations (i.e. weather forecasting), grid = high speed 

network of combination of personal computers, cloud is emerging trend 

MEMORY TYPES 

PRIMARY 

Also called main memory. Electronic. Programs are stored here. It has 

distinct addresses (byte addressable usually) It includes RAM, which can be 

accessed at a fast fixed time. 

CACHE MEMORY 

Faster than RAM, holds sections of the program currently being executed. 

At start of program is empty, data fetched from main memory is copied here 

to interact with the CPU (cache is usually inside cpu close to registers). 

SECONDARY STORAGE 

Magnetic, optical and flash memory devices that keep data even when 

there’s no power. 

ARITHMETIC AND LOGIC UNIT 

Any arithmetic or logic operation, such as addition, subtraction, 

multiplication, division, or comparison of numbers, is initiated by bringing 

the required operands into the processor, where the operation is performed. 

PARALLELISM 

You can gain better performance (i.e. run code faster) 

By doing parallel tasks, using processors with multiple cores, or using 

multiple processors (and or a combination of everything). 

PROBLEMS CHAPTER 1 

Page 46 

MULTIPLICATION 

You just copy the 

operand 1 or return n 0s 

if the other operand’s bit 

is 0 and then offset the n 

number each time one bit 

further. 

You end up with n-1 

additions with n being 

the number of digits of 

one of the operands. 

Unless the operands have the same bit length, 

there are two possible number of sums. 

The Sequential Circuit Multiplier seems to use n number of additions.: 

This circuit performs multiplication by using a single n-bit adder n times. 

BOOTH ALGORITHM 

It handles both positive and negative multipliers uniformly. Second, it 

achieves some efficiency in the number of additions required when the 

multiplier has a few large blocks of 1s. 
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I promise that I will not use unauthorized help from people or non-course 

materials during my exam. I will create the answers on my own and I will 

create them only during the allocated exam time slot. I will not provide help 

to or ask help from other students during their exam. 
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WEEK 6 – CPU LOGIC (BEN EATER INTRO) 

Assume we have a made up Assembly language 

with the instructions: 

LDA SRC (A) – Loads the parameter implicitly into 
register A 
ADD SRC (A) – Adds the parameter and saves it into 

register A 

OUT (A) – Outputs the contents of register A into 
the decimal display 
 

However, these instructions that we just made up 
don’t tell the computer anything at all yet. We 
decided that the instructions of our assembly 
language are of fixed length. 

4 bits for the operation code and 4 bits for the paramater (whether the parameter is interpreted as a memory 
location or as an immediate value is up to the “micro routine” to decide). 
 

For now, let’s assume that LDA has opcode 0000, ADD has opcode 0001 and OUT has opcode 1110. 
Let’s also assume that we started to store the program at memory location 0000, the second line of code of that 

program is at 0001 and the last one at 0010. 

 

How do we execute the program above? 
1. The program counter keeps counting/jumping to the next line of code (command) that needs to be fetch and 

sent to the instruction register. At the start of the program, the program counter will be the 1st command. 

2. The first thing that is going to happen when we start to execute a program (or command of a program) is 
that we need to load the contents of the (first) command from the memory (via the memory data register) 
and put it in the Instruction Register (it tells us which command (opcode) we are currently running). This is 
the start of the fetch cycle: we fetch the instruction from memory and put it into the instruction register. 

3. In order to get the contents of memory location that the program counter indicates, first we need to take the 

value of the program counter and move it to the Memory Addres Register (to indicate which memory address 

cpmtemts to fetch). 

4. Every opcode instruction will then start with a fetch cycle, that goes throu the following control logic micro 

instruction (via to the Bus): 

a. ProgramCounterout, MemoryAddresRegisterin: Which means the counter outputs to the bus and the 

Memory Address Register reads from the bus. 

So for the progam above first 

instruction LDA 14, we did 

ProgramCounterout, 

MemoryAddresRegisterin 

in  just 1 clock pulse/cycle 

 
 

b. In the next clock pulse/cycle wee need to move the contents of Memory Address Register into the 

Instruction register: RAMout, InstructionRegisterin  

 

MI = MemoryAddresRegisterin 

CO = ProgramCounterout 

RO = RAMout 

II = InstructionRegisterin 
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Nothing happens until the clock pulse/cycle is completed. Which lasts long enough to have 

enough time to setup the control logic without conflicts and provide the desire output. 

Ben Eater’s instruction register is purposefully 2 colored, the Most Significant 4 bits expect the 

opcode and the 4 bits from the right expect the operand. 

c.    The last part of the fetch cycle is to increment the program counter, so that it will be pointing 

to the next instruction we would like to load: ProgramCounterEnable (CE in Ben’s Computer) 

  
Therefore, we need to make sure that the control logic hardware circuits know how to do: 

1. ProgramCounterout, MemoryAddresRegisterin 

2. RAMout, InstructionRegisterin 

3. ProgramCounterEnable 

 

Now that we’ve finally fetched the instruction. We will execute it. 

From here, first we read the 4 most significant bits of the instruction register. Which is the opcode: Since the 4 MSB 

= 0001 =LDA instruction,  it is just moving the operand to register A. Such a thing requires us to first update the 

Memory Address Register with the 4 LSB (operand that points memory address) so that we can Read the values from 

that memory address and eventually load them in A: 

d. Purposefully, only the least significant bits of the Instruction Register are connected to the 

bus. Therefore InstructionRegisterout will output the operand to the bus. Consequently, we 

want to update the Memory Addres Register to get the bus contents, so 

MemoryAddresRegisterin. This gives: InstructionRegisterout, MemoryAddresRegisterin 

  
e. Now we want to take the contents of the Ram, and move them to Regiser A: 

RAMOut, RegisterAin 

 
Each of these micro instructions (d and e) required 1 clock pulse/cycle. 

Therefore, the single LDA 14 operation has been exectued with the following micro instructions (CPU Logic): 
1. ProgramCounterout, MemoryAddresRegisterin 

2. RAMout, InstructionRegisterin 

3. ProgramCounterEnable 

4. InstructionRegisterout, MemoryAddresRegisterin 

5. RAMOut, RegisterAin 

A total of 5  clock cycles. 

 
The next instruction (and all instructions) start the same way: 

Program Counter spits out the Next Memory Address location, and the Memory 
Location Address Registers listens to the bus and updates its contents. 
The RAM spits out the contents of the instruction, and the Instruction registers 

takes in those contents. 

Before executing the opcode, the program counter gets incremented 
Then it depends on the opcode (and your hardware). What happens next. Ben’s 

computer ALU uses Register A and Register B as operands. So in this case you’ll 

have to do IO MI, RO B1. In ben’s computer ALU’s output is in E, so next is EO AI 
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8-bit CPU control logic (Ben Eater) https://www.youtube.com/watch?v=dXdoim96v5A 

BPU  - CHAPTER 5 (BASIC PROCESSING UNIT = BPU = CPU); RISC STYLE 

The processing unit executes machine-language instructions and coordinates the activities of other units in a 

computer. Such as fetching, decoding and executing such instructions. The processing unit is often called the central 

processing unit CPU. The term central is not as appropiate today as it was in the past because today’s computers 

often include several processing units. processor is a synonym for processing unit and CPU. 

Processors that operate in parrallel have a pipelined organization where the execution of an instruction is started 
before the execution of the precedeing instruction is completed. 
Superscalar operation is to fetch and start the execution of several instructions at the same time. 

FUNDAMENTAL CONCEPTS 

The processor fetches one instruction at a time and performs the operation specified. These instructions are fetched 

from successive memory locations unti la branch or a jump instruction is encountered. 

The processor uses the program counter (PC) to keep track of the addres of the next instruction to be fetched and 
executed. After fetching the instruction, the program counter is updated to point to the next instruction in sequence. 
A branch instrucion may cause the PC to not (automatically) increase by 1 but by the address of the jump. 
When an instruction is fetched it is placed in the instruction register, from where it is interpreted or decoded by the 

processor’s control circuitry. 

RISC-style steps for executing instructions: 
1. Fetch the contents of the memory location pointed by the PC and load them into the IR (instruction fetch 

phase). 

IR ← [[PC]] 

2. Increment the PC to point to the next instruction. 

PC ← [PC] + k where k is the integer that denotes the byte difference between address1 and address2 

3. Carry out the operation specified by the instruction in the IR (instruction execution phase). Which generally 

consists of one or more of the following actions: 

a. Read the contents of a memory location and load them into a processor register 

b. Read data from one or more processor registers 

c. Perform an arithmetic or logic operation and place the result ino a processor register 

d. Store data from a processor register into a memory location 

You LOAD registers and STORE in memory. 

The processor communicates with memory through the processor-memory interface. 
The instruction address generator updates the PC after each instruction is fetched 

The register file is a memory unit that contains the general purpose registers 
THe ALU does the computations, whose computations are stored in a rigster in the register file (For RISC) (Z in CISC) 

INSTRUCTION EXECUTION 

Load R5, X(R7) //DST, SRC 

Which uses Index Addressing mode to load a word of data from memory location X + [R7] into register 5. By doing: 
1. Fetch instruction from the memory 

2. Increment program counter 

3. Decode instruction to determine the operation to be performed 

4. Read register R7 

5. Add the Immediate value X to the contents of R7 (extra step) 

6. Use the sum as the effective address of the source operand. and read the contents of that location 

7. Load the data received from that location into register R5 

5 STEP RISC INSTRUCTIONS 

Depending on the hardware some operations can be done at the same time. Book assumes 5 steps for RISC processor. 

 
 

https://www.youtube.com/watch?v=dXdoim96v5A
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Load R5, X(R7) 

1. Fetch the instruction and increment the program counter 
2. Decode the instruction and read the contents of register R7 in the register file 

3. Compute the effective addres X + [R7] 

4. Read the memory source operand 

5. Load the operand into the destination register R5 

Add R3, R4, R5, //DST, SRC, SRC 

1. Fetch the instruction and incerement the program counter 
2. Decode the instruction and read the contents of source register R4 and R5 

3. Compute the sum [R4] + [R5] 

4. Load the result into the destination register R3 

However, since it is advantageous to the hardware to execute all instructions in the same number of steps, in RISC: 

1. Same 
2. Same 

3. Same 

4. No action 

5. Same 

Add R3, R4, #1000 

1. Same 
2. Decode the instruction and read register R4 

3. Compute the sum [R4] + 1000 

4. Same 

5. Same 

Store R6, X(R8) //Store has different order, SRC, DST 

1. Fetch the instruction and increment the program counter 
2. Decode the instruction and read registers R6 and R8 

3. Compute the effectie address X + [R8] 

4. Store the contents of register R6 into effective address 

5. No action 

COMMON RISC INSTRUCTION 5 STAGES 

1. Fetch an instruction and increment the program counter. 
2. Decode the instruction and read registers from the register file. 
3. Execute an ALU operation. 
4. (if needed) Read or write memory data if the instruction involves a memory operand. 
5. (if needed) Write the result into the destination register 

 

In most RISC R0 = 0 and the default index registers value. When R0 is 

used as the index register, the effective address of the operand is the 

immediate value X. This is the Absolute addressing mode. Alternatively, 

if the offset X is set to zero, the effective address is the contents of the 

index register, Ri. This is the Indirect addressing mode. Thus, only one 

addressing mode, the Index mode, needs to be implemented, resulting 

in a significant simplification of the processor hardware. 

REGISTER FILE 

General purpose registers are implemented in the form of a register file 

that allows two registers to be read at the same time, its contents giving 

two separate outputs. The register files has 2 read addreses and 1 write 

address for a third register. The addreses inputs are connected to the IR 

field that specifies the DST. ports: inputs and outputs of any emory unit. 

dual-ported: memory unit that has two output ports. 
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ALU 

The Arithmetic and Logic Unit is used to manipulate data: 

1. perform arithmetic operations: addition, substraction 

2. logic operations: such as AND, OR, XOR 

3. It may be connected directly to the register file 

In CISC they’d have to go via the bus 

4. The multiplexer selects either output B of the register file or 

the immediate value in the IR as the second ALU operand inB 

DATA PATH 

Since the instructions are based on two phases, fetch and 

execution, the hardware is also split in 2 corresponding sections. 

The fetching section also decodes the instruction and the control 

signals (between components), the other executes it: read 

operands, compute and store/load results. 

Each of the 5 steps take 1 clock cycle. 

INTER-STAGE REGISTERS 

It is necessary to insert registers between 

stages. Inter-stage registers hold the results 

produced in one stage so that they can be used 

as inputs to the next stage during the next 

clock cycle. Which leads to the processor 

datapath structure on the right. 

• Recall that for computational 
instructions, such as an Add 
instruction, no processing actions take 
place in step 4. During that step, 
multiplexer MuxYin selects register RZ 
to transfer the result of the 
computation to RY 

• For Load and Store instructions, the 

effective address of the memory 

operand is computed by the ALU in 

step 3 and loaded into register RZ 

• In the case of a Load instruction, the 

data read from the memory are 

selected by multiplexer MuxY and 

placed in register RY 

• For a Store instruction, data are read 

from the register file, which is part of 

stage 2, and placed in register RB. 

Since memory access is done in stage 

4, another inter-stage register is 

needed to maintain correct data flow 

in the multi-stage structure. Register 

RM is introduced for this purpose. 
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• The general purpose register that holds the return addresses is called LINK. 

• The general purpose register that holds interrupts addresses is called IRA 

• The return address is produced by the instruction address generator 

INSTRUCTION FETCH SECTION 

• The addresses used to access the memory 

come from the PC when fetching instructions and 

from register RZ in the datapath when accessing 

instruction operands. 

• MuxMA selects one of this 2 sources. 

• The instruction address generator updates the 

PC ater each instruction is fettched 

• The instruction read from the memory is 

loaded into the IR, where it stays until its execution 

is completed and the next instruction is fetched. 

• The contents of the IR are examined by the 

control circuitry to generate the signals needed to 

controll all the processor’s hardware. They are alos 

used by the block labeled Immediate. 

• A 16 bit IV can be extended to 32 bits, which 

will be used either as an ALU operand or as an index 

to compute the effective addres of an operand. 

• The IV is sign extended or “padded” with zeros for arithmetic operations and logic instructions respectively. 

• The IV also is used to  compute the target address of branch instructions. 

INSTRUCTION ADDRES GENERATOR 

The Addres Generator Circuit on the right, 

• Uses an adder to increment the PC value by 4 

(4 byte difference in addresses) 

• but it also computes the branch values. 

• MuxINC selects constant 4 or branch 

• MuxPC selects Adder result or RA 

• PC-Temp holds tempraryily the PC contents due 

to interrupts or subroutine saves 

INSTRUCTION FETCH AND EXECUTION STEPS 

Add R3, R4, R5 

Using the registers of datapath graph: 
1. Memory address ← [PC],  

Read memory, 
IR ← Memory data, 
PC ← [PC] + 4 

2. Decode instruction, 
RA ← [R4], 
RB ← [R5] 

3. RZ ← [RA] + [RB] 
4. RY ← [RZ] 
5. R3 ← [RY]  
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Load R5, X(R7) 

1. Memory address ← [PC], Read memory, IR ← Memory data, PC ← [PC] + 4 
2. Decode instruction, RA ← [R7] 

3. RZ ← [RA] + Immediate value X 

4. Memory address ← [RZ], Read memory, RY ← Memory data 

5. R5 ← [RY] 

Store R6, X(R8) 

1. Memory address ← [PC], Read memory, IR ← Memory data, PC ← [PC] + 4 
2. Decode instruction, RA ← [R8], RB ← [R6] 

3. RZ ← [RA] + Immediate value X, RM ← [RB] 

4. Memory address ← [RZ], Memory data ← [RM], Write memory 

5. No action 

Note: a memory Read or Write operation can be completed in one clock cycle when the data involved are available 
in the cache. When the operation requires access to the main memory, the processor must wait for that operation to 
be completed. 

Source register addresses are specified using the same bit positions in all instructions. The hardware reads the 
registers whose addresses are in these bit positions once the instruction is loaded into the IR 

BRANCHING 

The standard PC increment continues until a branch or subroutine call instruction loads a new address into the PC. 

Subroutine call instructions also save the return address. Interrupts from I/O devices and software interrupt are 

handled in a similar manner. 

Branch instructions specify the branch target address relative (i.e. +5 or  -3 lines back), A branch offeset given as an 
immediate value in the instruction is added to the current contents of the PC. The number of bits used for this offset 
is less than the word length of the computer. Therefore the range of addresses is limited. Subroutine call instructions 
reach a larger range of addresses as they have more available bits to specify the target addres and the RISC 
computers ahve jump and call instructions that use general-purpose registers to specify a full 32-bit address. 

 
. In processors that do not use condition-code flags, the branch instruction specifies a compare-and-test operation 
that determines the branch condition. For example 

 
A simpler and faster comparator circuit can examine the contents of registers RA and RB and produce the required 
condition signals though. The comparator is usually inside the ALU and therefore not explicitly shown in graphs. 
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Subroutine calls and returns are implemented in a similar manner to branch instructions. The address of the 

subroutine may either be computed using an immediate value given in the instruction or it may be given in full in 

one of the general-purpose registers 

 
WAITING FOR MEMORY 

The role of the processor-memory interface circuit is to control data transfers between the processor and the 

memory. Most of the times the instructions are found in the cache, which in that case the operation is compeleted in 

one clock cycle. When the information is not in the cache and has to eb fetched from the main memory several clock 

cycles may be needed. The interface circuit must inform the processor control circuitry to delay subsequent 

execution steps until the memory operation is completed. To do so there is a signal that needs to be checked, Memory 

Function Completed (MFC). When MFC is received, the processor proceeds to the next step. Step 1 of the execution 

sequence of any instruction involves fetching the instruction from the memory. Therefore, it must include a Wait for 

MFC command, as follows: 

 
The Wait for MFC command is also needed in step 4 of Load and Store instructions. 

CONTROL SIGNALS 

• The processor hardware components 

are governed by control signals, which 

determine which multiplexer input is 

selected, what operation is perfomed by the 

ALU, and whether to read or write  a memory 

location or register. 

• In each clock cycle (one for each step 
of the 5th step structure), intermediate results 
are stored in inter-stage registers RA, RB, RZ, 
RM, RY and PC-Temp, which are always 
enabled. The other registers must be enabled 
only when necessary and via control signals. 

• The register file has three 5-bit address inputs, allowing access to 32 general-purpose registers. Two of these 

inputs, Address A and Address B, determine which registers are to be read. They are connected to fields 

IR31−27 and IR26−22 in the instruction register.  

• The third address input, Address C, selects the destination register, into which the input data at port C are to 

be written. 

• Multiplexer MuxC selects the source of that addres. 0 and 1 represent 2 possible IR slots for addresses. 

• The third input of the multiplexer is the address of the link register used in subroutine linkage instructions 

• New data are loaded into the selected register only when the control signal RF_write is asserted 

• Multiplexers are controlled by signals that select which input data appear at the multiplexer’s output  
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• The operation performed by the ALU is determined by a k-bit 

control code. 

• The comparator generates condition signals that indicate the 

result of the comparison. These signals are examined by the 

control circuitry during the execution of conditional branch 

instructions to determine whether the branch condition is true 

or false. 

• Two signals, MEM_read and MEM_write 

are used to initiate a memory Read or a 

memory Write operation. 

• When the requested operation has been 

completed, the interface asserts the MFC 

signal 

• The instruction register has a control signal, 

IR_enable, which enables a new instruction to be loaded 

into the register. When fetching it must be activated only 

after the MFC signal is asserted. 

• The immediate value can be 1. sign extended 16-bit, 

zero-extended 16-bit, and a special 26-bit value. Hence 

its control signal Extend needs 2 bits. 

• The INC_select signal selects the value to be added to 

the PC, either the constant 4 or the branch offset specified 

in the instruction. 

• The PC_select signal selects either the updated 

address or the contents of register RA to be loaded into 

the PC when the PC_enable control signal is activated 

 
 

 
 

HARDWIRED CONTROL 

There are 2 approaches to generate the control signals: hardwired control (RISC) and microprogrammed control 

(CISC). In hardwire control, the setting of the control signals depends on: 

• Contents of the step counter 

• Contents of the instruction register  

• The result of a computation or a comparison operation 

• External input signals, such as interrupt requests 
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• Instruction decoder interprets the OP-codeand he 

addressing mode information of the IR 

• Instruction decoder sends the corresponding INSi output to 

the control signal generator 

• After each clock cycle the step counter signals either one of 

T1 to T5. 

DEALING WITH MEMORY DELAY 

• The timing signals T1 to T5 are asserted in sequence as the 

step counter is advanced. Most of the time, the step counter 

is incremented at the end of every clock cycle. 

• When MEM_read or a MEM_write command is issued does 

not end until the MFC signal is asserted. 

• To extend the duration of an execution step to more than 

one clock cycle, we need to disable the step counter: 

Counter_enable = WMFC̅̅ ̅̅ ̅̅ ̅̅ ̅ + MFC 

• A new value is loaded into the PC at the end of any clock 

cycle in which the PC_enable signal is activated. 

The PC is incremented only once when an execution step is extended for more than one clock cycle. When fetching 

an instruction, the PC should be enabled only when MFC is received. It is also enabled in step 3 of instructions that 

cause branching (BR = instructions in branch group): 

PC_enable = T1 · MFC + T3 · BR 
 

CISC STYLE (BOOK INTRO)  

CISC-style instruction sets are more 

complex because they allow much greater 

flexibility in accessing instruction 

operands. Unlike RISC-style instruction 

sets, where only Load and Store 

instructions access data in the memory, 

CISC instructions can operate directly on 

memory operands. Also, they are not 

restricted to one word in length. 

Therefore, CISC-style instructions require 

a different organization of the processor 

hardware. Possible CISC processor 

suggested by the book on the left. 

The main difference between this 

organization and the five-stage structure 

discussed earlier is that the Interconnect 

block, which provides interconnections 

among other blocks, does not prescribe 

any particular structure or pattern of data 

flow. It provides paths that make it 

possible to transfer data between any two 

components, as needed to implement 

instruction. Inter stage registers are not 

needed but some registers are needed to hold intermediate results during instruction execution. 
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CIS STYLE (LECTURES) 

ISAs are needed to be standard so programs (and devices) are portable among different machines. 

INSTRUCTION EXECUTION 

• Divide and conquer: split the problem into multiple pieces solve them seperately and connect them. 

RISC used 5 steps (page 4), CISC is flexible. 

Since different parts of the hardware are allocated 
to different steps. You can start the fetching of the 
next instruction before the current one has been 
executed. The ALU is involved in load/store 
instructions in index addressing. 

CIS CPU 

Same components except for the CPU bus, the 

Register file is generally smaller (less registers) and 

the Control Circuitry includes bus behaviour. 

CISC HAS 6 STAGES 

Although it really depends on each computer. It 

generally will take more stages than RISC because 

there are more complex instructions that require 

more steps. 

Parts involved in fetching an instruction: 

1. Lookup Memory Address Register 

2. Increase/update program counter 

3. Wait till Memory Data Register content arrives 

4. Send Instruction to Instruction Register 

The bus connects all the different components.  

ADD $16, R2, R4 // SRC, SRC, DST 
Stage 1. (already done, fetched the instruction and increased the program counter)  

Stage 2. Decode instruction (Control Circuitry) (logic gates that look at the instruction and prepare things) 

i. Load constant/immediate value of 16 the ALU 

ii. Load Register in ALU with R2 

Stage 3. (Skip) Reserved for fetching operands from memory/complex addressing 

Stage 4. Execute and load the ALU result in Z register (Z is a necessary register to keep the results) 

Stage 5. (Skip) Reserved for reading from memory  

Stage 6. Move the register Z value to Register 4 accross the bus 

Stage 7. (Skip) Reserved for writing to memory 

INTERACTING WITH MAIN MEMORY AND THE BUS 

 
 

The control circuitry must disconnect all the other components not using the bus to avoid 1. data corruption and 2. 

interfering electronic signals (noise). 
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The tri-state gates/buffer wrapping register Z are the control 
circuit gates that refer to whether Z should be listening (in) 
or writing (out) to the bus. 

 

Z = high resistance ≈ disconnecting from bus. 
X I assume is the last value on the Bus. 
 

REGISTER FILE 

 
You do it like this instead of adding an Rin Rout n times for each Register. Otherwise the mictro instruction length 
would be too long and the suggested architecture is actually pretty efficient for moving contents between registers. 
 

STORE R2, (R1) // SRC, DST indirect addressing mode, R1 contains the value of the memory address 
Stage 1. Fetch 

a. PCout 

b. MARin 

c. Read 

d. WMFC (till here one cycle) 

e. MDRout 

f. IRin (another cycle?) 

 

Stage 2. Decode instruction 

g. R1out 

h. MARin (one cycle) 

i. R2out 

j. MDRin (another cycle) 

Stage 7. Write to memory 

k. Write 

l. WMFC (last cycle) 

In CISC we can skip stages if we dont need them. 

To improve CPU performance you can duplicate components (such as the bus, which would allow to parallel 

transfers), (the ALU or the register files could also be duplicated) and/or pipeline parts of instructions. 
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CONTROL CIRCUITRY 

Manipulates the control lines (tri-state gates that control the in/out behaviour of the registers connected to the bus) 

STORE R2, (R1) 
1. PC_out, MAR_in, read, WMFC 

2. MDR_out, IR_in 

3. R1_out, MAR_in 

4. R2_out, MDR_in, write, WMFC 

 
Fixed format per opcode in RISC (every instruction has virtually the same operands) 

and for CISC the look up table regards the different possible addressing modes. 

1. First fetch the next instruction. 

2. Then decode what needs to be done 
3. Then execute the thing 

4. Then write the results back at the right place 
The step counter regards each of those steps above 

T = step (tick). Counter below 

 
An example of a flag that changes the program behaviour 

is the WMFC and status flags in register for comparistion 

and branches, zero flag. 

HARDWIRED CONTROL 

Dedicated circuitry that makes up the 

box in the middle. which takes inputs 

from the step counter, instruction 

register decoder, condition signals and 

external inputs. 

The counter is controlled by the MFC 
and WMFC signals: 

Counter_enable = WMFC̅̅ ̅̅ ̅̅ ̅̅ ̅ + MFC 

To write anything you always need to be on tick T5 and (ALU or Load or Call) were executed 
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Calling an address requires to write/load the return addres on LINK register and occasionall mess with the stack 

pointer so depending on how you implement call you have to write 1 or 2 registers 

 
Programmable Logic Array on the left. You defnie which 

2 signals need to be “ANDed” 

 
The end array generates the ANDs. AND the OR array 

takes all elements of the AND to make a sum of products 

 
 

BPLA = Programmable Logic Array = Hardware Approach to generate control signals 

MICRO PROGRAMMED CONTROL 

A little processor instide the processor. So. in practice, an opcode is nothing but a menonic that stands for a set of 

micro instructions, which enable/disable the tri-state gates that wrap the components interacting with the bus. 

 
The rows represent the steps/ticks of an opcode. In CISC that would be 5 (fetch, decode, alu, r/w memory, w register) 

whereas in CISC 7 (fetch, decode, fetch complex addressing operands, alu, r memory, move registers, w memory). 

After fetching we can branch 
to a standard address of 
sum, substr, call etc. 
operations.  
Micro instructions in CISC, 

unlike the instructions, are 

of fixed length. 

 
A CPU inside a CPU -> 
Compared to hardwire, this 
uses branching instead of 
sequencing. 
Comapred to a full CPU, 

there’s no ALU nor registers 
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Don’t forget the external inputs and 
conditions signals. 
 

END bit: It is generally cheaper to have 1 
bit in each microinstruction than to have 
a full word dedicated to a jump/call 
function to end the program. 
1 bit * 5 or 7 ticks is less than 1 * 23ish bit 

word length. 

 
Remember that jumps are relative not absolute so jump 10 means jump to instruction +10. 

If Z=0 then go to address 0 
The number of control lines doesn’t change if the 
registers are 64 bits or 32 bits, the number of control lines 
regard the components connected to the bus. 
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CIS STYLE (BOOK WRAP UP) 

A bus consists of a set of lines to which several devices may be connected, enabling data to be transferred from any 
one device to any other. A logic gate that sends a signal over a bus line is called a bus driver, which can be only 1. A 
flip-flops make the Rin and Rout registers.  

 
Alternative bus architecture by using 3 buses.  

 

 

MICROPROGRAMMED CONTROL 

Control signals are generated for each 

execution step based on the instruction 

in the IR and they control what happens 

on the bus. To do so there is a 

microprogram stored on the processor 

chip in a small and fast memory called 

the microprogram memory or the 

control store. . Let each control signal be 

represented by a bit in an n-bit word, 

which is often referred to as a control 

word or a microinstruction. (bit such us 

the one of a component either reading or listening from the bus, PC enable, WMFC, etc). 
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The sequence of microinstructions corresponding to a given machine instruction constitutes the microroutine that 
implements that instruction. The microprogrammed control unit is shown below. 

Furthermore, the address generator uses a microprogram counter. 

Microprogrammed control is simple to implement and provides considerable 
flexibility in controlling the execution of machine instructions. But, it is slower than 
hardwired control. 
Modern processors have a multi-stage organization because this is a structure that 

is wellsuited to pipelined operation. 

 
Solved problems at page 209 of the book 
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CHAPTER 3 AND 7: INPUT/OUTPUT 

MEMORY-MAPPED I/O 

• The idea of using addresses to access various locations in the memory 

and registers can be extended to accessing various devices. 

• Each I/O device must appear to the processor as consisting of some 

addressable locations, just like the memory. 

• memory-mapped I/O: Some addresses in the address space of the 

processor are assigned to these I/O locations, rather than to the main 

memory. 

• These locations are usually implemented as bit storage circuits (flip-

flops) organized in the form of “I/O registers” 

 

 

Load R2, DATAIN //DST, SRC: reads the data from the DATAIN register and loads them into processor register R2. 

Store R2, DATAIN //SRC, DST: sends the contents of register R2 to location DATAOUT, which is a I/O register. 

I/O DEVICE INTERFACE 

• An I/O device is connected to the 
interconnection network by using a 
circuit, called the device interface. 
• The interface includes some registers 

among them data, status, and control 

registers whcih are accessed by program 

instructions as if they were memory 

locations. 

PROGRAM-CONTROLLED I/O 

• Consider a task that reads characters 

typed on a keyboard, stores these data in 

the memory, and displays the same 

characters on a display screen. A simple 

way of implementing this task is to write 

a program that performs all functions 

needed to realize the desired action. 

• Responeses from the keyboard must be done in a 
timely manner. 

• The rate of data transfer from the keyboard to a 

computer is limited by the typing speed of the 

user, which is unlikely to exceed a few characters 

per second 

• The rate of output transfers from the computer to 

the display is determined by the rate at which 

characters can be transmitted to and displayed on 

the display device, typically several thousand 

characters per second. 

• The difference in speed between I/O devices 

creates the need to syncronize data transfer 

between them 
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• signaling protocol:  On output, the processor sends the first character and then waits for a signal from the 

display that the next character can be sent. Then sends the second character, and so on. 

• On input: The processor waits for a signal indicating that a key has been pressed and that a binary code that 

represents the corresponding character is available in an I/O register associated with the keyboard. Then 

the processor proceeds to read that value. 

• Polling: The processor reads a status flag (such as KIN = key has been pressed) which is part of an 8 bit status 

register (KBD_STATUS)  

• If the registers in I/O interfaces are to be accessed as if they are memory locations, each register must be 

assigned a specific address that will be recognized by the interface circuit. 

• All addresses should be word-aligned. This makes the I/O registers accessible in a program executed by the 

processor 

 

Assume that the initial state of KIN is 0 and the initial state of DOUT is 1, which is normally performed by 

the device control circuits when power is turned on 

• Read the character pressed to register 5:  READWAIT  Read the KIN flag 

Branch to READWAIT if KIN=0 

         Transfer data from KBD_DATA to R5 
 

• To display the character from register 5: WRITEWAIT Read the DOUT flag 

Branch to WRITEWAIT if DOUT = 0 

Transfer data from R5 to DISP_DATA 

The wait loop is executed repeatedly until the status flag DOUT is set to 1 by the display when it is free to receive a 

character. Then, the character from R5 is transferred to DISP_DATA to be displayed, which also clears DOUT to 0. 

• In computers that use memory-mapped I/O you could implement it as follows (RISC-style) 

 
 
Recall that KIN is b1 (10base 2 = 2)and DOUT is b2 (100base2 = 4) 

INTERRUPTS 

When the processor is polling  in a loop like in the example above 

it cannot perform other tasks. Instead, we can arrange for the I/O 

device to alert the processor when it becomes ready by sending a 

hardware signal called an interrupt request to the processor. An 

example solution is to sperate the computation and I/O routines, 

and let the processor compute most of the time and occasionally 

jump to the I/O routines. Such jump is the interrupt. 

• The routine executed in response to an interrupt request 
is called the interrupt-service routine, which are similar 
to subroutine calls. 

• When the interrupt occurs, the PC saves the current PC 

value in temp register LINK or IPS, then PC is updated 

with the interrupt adddress, the procesor executes it, then resumes the previous routine. 

• As part of handling interrupts, the special control signal “intterupt acknolwedge” from the processor informs  

the device that its request has been recognized so that it may remove its interrupt-request signal. It is sent 

to the device through the interconnection network. 

• Before starting execution of the interruptservice routine, status information and contents of processor 

registers that may be altered in unanticipated ways during the execution of that routine must be saved. 
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• Return-from-interrupt instruction: The saved information is restored before execution of the interrupted 

program is resumed. In this way, the original program can continue execution without being affected (except 

delay) by the interruption. 

• interrupt latency: delay from the register savings before executing interrupt. Typically, the processor saves 

only the contents of the program counter and the processor status register 

• Some computers provide two types of interrupts. One saves all register contents, and the other does not. 

• shadow registers: a different set of registers can be used by the interrupt-service routine, thus eliminating 

the need to save and restore registers. 

• real-time processing: The concept of interrupts used in operating systems and in control applications where 

processing of certain routines must be accurately timed relative to external events. 

ENABLING AND DISABLING INTERRUPTS 

It must still be within the programmers power to control whether interrupts are enabled or not. It should be possible 

to enable/disable interrupts both at processors and I/O device ends. To do so we use control bits in registers that 

can be accessed by program instructions. 

• status register (PS): processor registor that contains information about its current state or operation, when 
1, interrupt is allowed, when 2 interrupts are ignored. 

• The I/O devices also have a control register that contain the information about how themselves should be 

operated. 

• When a device activates the interrupt-request signal, it keeps this signal activated until it learns that the 
processor has accepted its request. 

• It is essential to ensure that this active request signal does not lead to successive interruptions, causing the 

system to enter an infinite loop from which it cannot recover. 

• A good choice is to have the processor automatically disable interrupts before starting the execution of the 

interrupt-service routine. 

• The processor saves the contents of the program counter and the processor status register. 

• After saving the contents of the PS register, with the IE bit equal to 1, the processor clears the IE bit in the PS 

register, thus disabling further interrupts. 

• Then interrupt-service routine starts, followed by the Return-from-interrupt instruction 

• Which restores the contents of the PS registe, sets the IE bit back to 1, and therefore interrupts are again 

enabled (but not looped, it is still up to the processor to decide when to pick up the request). 

1. The device raises an interrupt request. 

2. The processor interrupts the program currently being executed and saves the contents of the PC and PS 

registers. 

3. Interrupts are disabled by clearing the IE bit in the PS to 0. 

4. The action requested by the interrupt is performed by the interrupt-service routine, during which time the 

device is informed that its request has been recognized, and in response, it deactivates the interrupt-request 

signal 

5. Upon completion of the interrupt-service routine, the saved contents of the PC and PS registers are restored 

(enabling interrupts by setting the IE bit to 1), and execution of the interrupted program is resumed. 

HANDLING MULTIPLE DEVICES 

Multiple devices, that are operationally independent, sending interrupt requests are not syncrhonised. To fix this: 

• When an interrupt request is received it is necessary to identify the particular device that raised the request 
• if two devices raise interrupt requests at the same time, it must be possible to break the tie and select one of 

the two requests for service (and then execute the other). 

• The information needed to determine whether a device is requesting an interrupt is available in its status 

register. When the device raises an interrupt request, it sets to 1 a bit in its status register, which we will call 

the IRQ bit. 

• The simplest way to identify the interrupting device is to have the interrupt-service routine poll all I/O 

devices in the system 
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• The first device encountered with its IRQ bit set to 1 is the device that should be serviced. (first-in-first-out) 

VECTORED INTERRUPTS 

The main disadvantage of the previous last step is the time spent interrogating the IRQ bits of devices that may not 

be requesting any service. 

• vectored interrupts: interrupt-handling schemes where teh device identifies iteself t othe processor rather 
than the processor polling for devices. 

• A device requesting an interrupt can identify itself if it has its own interrupt-request signal, or if it can send 

a special code to the processor through the interconnection network 

• interrupt-vector table: permanently allocated area in the memory to hold the addresses of interrupt-service 

routines, these addresses are alos called interrupt vectors. 

INTERRUPT NESTING 

• Generally, interrupts should be disabled during the execution of an interrupt-service routine, to ensure that 

a request from one device will not cause more than one interruption (aka. interrupt himself). 

• Hower sometimes it is desired that high priority devices may be able to interrupt lower prioiritiy devices. 

• A processor priority level can be assigned, which can be encoded in a few bits of the processor status register 

• For each nested interrupt service routine the stack must save the program counter and the status register, 

which has to be done before the interrupt-service routines enables nesting. 

CONTROLLING I/O DEVICE BEHAVIOUR 

• control register: register in the device interface that hodls information needed to control the device 

• The control register is accessed as an addressable location, just like the data and status registers. In a 32-bit 

processor, the control registers are 32 bits long. 

• interrupt-enable: bit in the control register of the device that stores whether the processor will recognise it 

• *IRQ: bit that is set to 1 if an interrupt request has been rised but not yet serviced 

PROCESSOR CONTROL REGISTERS 

• To deal with interrupts, besides the status register (PS) with the intterupt-enable bit (IE), other registers 

and bits shall be used. The IPS saves the content of PS when an interrupt request is received and accepted. 

• After the interrupt-service routine, the previous state of the processor is restored from IPS to PS. If nested 

interrupts are used then IPS must use the stack. 

• IENABLE: allows the processor to slectively respond to individual I/O devices, where a bit is assigned for 

each device. 

• IPENDING: register that indicates the active interrupt requests (usefol for when multiple devices make 

requests at the same time). 

• control registers cannot be accessed in the same way as the general-purpose registers. They cannot be 

accessed by arithmetic and logic instructions, nor by Load and Store in the same enconding format. 

• Therefore they have their own dedicated special instructions: 

MoveControl R2, PS //DST, SRC 

CISC INTERRUPTS 

• CISC can test status bits of I/O registers directly.“TestBit” instruction is used to test the status flag. 

• SetBit and ClearBit will make it 1 and 0 respectively. 

EXCEPTIONS 

• An interrupt is an event that causes the execution of one program to be suspended and the execution of 

another program to begin 

• exception: refers to any event that causes an interruption, which is not limited to just I/O interrupts 

o recovery from errors: If an error occurs (in the hardware), the control hardware detects it and 

informs the processor by raising an interrupt. For example, The OP-code field of an instruction may 

not correspond to any legal instruction, or an arithmetic instruction may attempt a division by zero. 
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▪ when an interrupt is caused by an error associated with the current instruction, that 

instruction cannot usually be completed, and the processor begins exception processing 

immediately  

o debuggings: A debugger usex exceptions to allow trace mode and breakpoints features, which 

interrupt the instructions at specific points. 

o operating system: the OS software may use exceptions to communicate/control with the execution 

of user programs. It also uses hardware interrupts to perform I/O operations. 

BUS STRUCTURE 

The bus is the interconnection network that is used to transfer data among the processor, memory, and I/O devices. 

• Only one source/destination pair of units can use this bus to 
transfer data at any one time. 
• The bus consists of three sets of lines used to carry: address, 

data and control signals 

• Each I/O device is assigned a unique set of addresses for the 

registers in its interface. 

• When the processor places a particular address on the address 
lines, it is examined by addres decoders of all devices on the bus. 

 

 

• The device that recognizes this address responds to 

the commands issued on the control lines. 

• The processor uses the control lines to request either 

a Read or a Write operation 

• The requested data are transferred over the data 

lines. 

• When I/O devices and the memory share the same 

address space, the arrangement is called memory-

mapped I/O 

• interface circuit: the device’s address decoder, data 

and status registers, and the control circuitry required to coordinate I/O transfers. 

BUS OPERATION 

• bus protocol: set of rules that govern how the bus is used by verious devices. It defines when a device may 

place information on the bus, when it may load data on the bus, etc. all done by control signals (such as R/W̅) 

• The bus control lines also carry timing information. They specify the times at which the processor and the 

I/O devices may place data on or receive data from the data lines. There syncronous and asyncrhonous. 

• master: devide that initates data transfer by issuing Read or Write commands on the bus. (often the CPU) 

• slave: the deviced addressed by the master. 

SYNCHRONOUS BUS 

• clock cycle: clock signal’s two phases: the high level 

followed and the low level that follows. 

• clock pulse: first half of the cycle (the high part). 

• diamond: means change in value. 

• halfway line: unreliable/ignored data. 
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Read operation: 
1. Master places the slave address on the addres lines and sends a command on the control lines. 
2. The clock bus period from t0 to t1 > the maximum propagation delay over the bus. (long enough to allow 

step 3). 
3. All devices decode the address and control signals, and only the slave places at t1 the requested input data 

on the data lines. 

4. At the end of the clock cycle, at time t2, the master loads the data on the data lines into one of its registers. 

The clock bus periodf from t1 to t2 > (t0  to t1) + setup time of the master’s register. 

Write operation: 

1. Master places the slave address on the addres lines a command on the control lines and the data on the data 
line. 

2. The clock bus period from t0 to t1 > the maximum propagation delay over the bus. (long enough to allow 
step 3). 

3. All devices decode the address and control signals, and only the slave, at t1 loads the output data on into its 

data register 

4. The clock bus periodf from t1 to t2 > (t0  to t1) + setup time of the slave’s register. 

Because of propagation delays on bus wires and in the circuits of the devices, while the clock changes are assumed 

to be seen at the same time by all devices connected to the bus: 

• a given signal transition is seen by different devices at different times. 

• This forces all devices to operate at the speed of the slowest device. 

• solution: bus incorporates control signals (Slave-ready) that represent the response from the device. These 

signals inform the master that the slave has recognized its address and that it is ready to participate in a data 

transfer operation. The number of clock cycles will vary from one device to another. 

• The master, which has been waiting for this signal, loads the data into its register at the end of the clock cycle 

• Save removes its data signal from the bus and returns its slave-ready signal to the low level by end of cycle T 

• the master may send new address and command signals to start a new transfer in clock cycle T+1 

• If the addressed device does not respond at all, the master waits for some predefined maximum number of 

clock cycles, then aborts the operation (i.e. wrong address or device malfunction) 
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ASYNCHRONOUS BUS 

Aka handshake protocol: exchange of command and response 

signals between the master and the salve (so no need for 

Slave-ready & clock (negative) edge). A control line Master-

ready is asserted by the master to indicate that it is ready to 

start a data transfer. 

1. The master places the address and command information 

on the bus. 

2. Then it indicates to all devices that it has done so by 

activating the Master-ready line. 

3. This causes all devices to decode the address 

4. The selected slave performs the required operation and 

informs the processor that it has done so by activating the 

Slave-ready line. 

5. The master waits for Slave-ready to become asserted 

before it removes its signals from the bus. In the case of a 

Read operation, it also loads the data into one of its 

registers. 

• fully interlocked/full handshake: a change in one signal is always in resonse to a chinge in the other. Highest 

degree of flexibility and reliabilit 

• advantage: the handshake protocol eliminates the need for distribution of a single clock signal whose edges 

should be seen by all devices at about the same time (simplifies the design), plus delays are flexible, whereas 

in synchronous you will be bottlenecked by the slowest device. 

• disadvantage: it is only advantageous when there are slow devices. If all devices are within the same range 

it is better to use a synchronous clock because you will only need to accomadate a one round trip delay 

instead of two. 

ARBITRATION 

• bus driver: A logic gate that places data on the bus. 

• arbitrer circuit (round robin scheme): circuit that decides who uses a specific resource request by multiple 

entities at once. The arbitrer associates priorities with individual requests. It will grant it to higher priority 

first. Once the driver is done, it deactivates its Bus-grant. 

I/O LECTURE 

Interface: Information exchange protocol between 

elements, ISA is an interface between hardware and 

software. 

Interfaces are portable, so that the same protocol works 
with different elements. 
The difference between the Memory – CPU interface and 

the Device CPU interface is that the Devices have registers 

inside them, so that the CPU can access them just as if they 

were normal registers, thouse would be mapped registers.  
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• Black thick lines are buses 

• North bridge focuses on performance (it has 
quick access to the CPU) Main memory and GPU 
are there. 
• South bridge is for all other devices 

(connectivity, USB, ethernet, keyboard, 

periferals) and provides felxibility 

• North and South combined = computer 
chipset. Component on the mother board that 
connects the CPU to all the other devices that we 
could potentially connect to. 
• You can’t plug any CPU in any chipset as these 
work with a very unique chemistry (to gain 
efficency) there is not a fixed interface between a 
CPU and a general chipset. 
• However, the chipset itself is compatible with 
a lot of devices 
 

Only when the address match will the slave device 

respond to the command in the control lines. 

 
 

 
 

 
1. Data registers: 

Store incoming and outgoing data 

2. Status and control registers 

Certify status of the defice 

to control transfer 

3. Address decoder 

to detect if data is for the device 
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• set up time (lots of gates to change values) 

• propogation delay 

• drawback: slowest device sets the delay adjustment clock speed for all devices 

 

 

 

 
 

 
 

 
faster devices need fewer cycles to respond 

 
signal completed to CPU 

 
 

 
 

 
Explicit handshaking (vs synchronous clock) 

Timing must account for signal propagation skew, caused 

by detours (longer paths (wire length and gates)) 
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Not all of the 2^64 bits of the main memory addresses 

will be used so some are allocated to device registers. 

So you will map specific addresses, in hex generally 
Therefore the same move command can be used 

interchangeably with registers both inside and outside 

the CPU 

 
 

 
 

 
Programming I/O routines: 

 
 

Actively wait in a loop until the bit is 1. 
Keeps the CPU busy with this loop. 

 
Unconditional I/O. The device is constantly sending data but the CPU reads it whenever he wants. You get racing the 

beam issue: The pixels are displayed when the CPU wants, so half of the image has old pixels the other half new pixels 

Passive signaling (polling) : Similar as buys waiting, but instead of every cycle it is every x seconds 
Active signaling: removes control from the cpu. 

 
The CPU may not be interrupted when it is executing an instruction, these are atomic. The interrupt will sneak in the 

PC after the current instruction is completed. 
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Shared interrupt line hardware to the CPU, which 

the CPU cant ignore. 

 
1. A Device sends interrupt signal via the IRQ 

2. CPU sends Grant signal back to (all) devices 

via GRANT (different when prioritizing) 

3. Device sends ID on data bus 

4. CPU calls ISR from interrupt vector [ID] 

 

The interrupt vector information is usually in the 
device drivers. 
 

 
Daisy chaining = hooking up multiple devices in a sequence. 

 
When multiple devices raise a grant signal the 
priority will go from the closest device to the CPU 
to the furthest. (Because you are the first to 
receive the grant signal). 
 

If the high priority device didnt raise the interrupt 
it will pass the grant on to the next devices. 
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CHAPTER 8 MEMORY (SOLVED PROBLEMS PAGE 324) 

The memory of a computer comprises a hirearchy, including a cache, the main memory, and secondary storage. 

Direct memory access is a mechanism to transfer data between an I/O device, such as a disk, and the main memory 
with minimal involvement from the processor. 
Caches decrease memory access times. 

BASIC CONCEPTS 

• The maximum size of the memory that can be used in any computer is determined by the addressing scheme. 

• 16-bit addresses can have 2^16 memory locations. 

• Memory is usally designed to store and retrieve data in word-length quantities. From now own, assume 32-

bit addresses for byte addressable memories. The high order 30 bits determine which word is specified. the 
low order 2 bits of the address specify which byte location is involved. 

o A word is 2 bytes. 

o long is 4 bytes 

o quad is 8 bytes 

• The connection between the CPU and memory consist of: 

o addres 

o data 

o control lines 

• The processor uses the addres lines to specify the 

memory location involved in a data transfer operation 

• The processor uses the data liens to transfer the data at 

such specific address 

• The control lines carry the command indicating a Read or 

Write operation and whether a byte or a word is to be 

transferred. 

• Control lines also provide the timing information by asserting MFC 

• memory access time: speed of memory unit that elapses the time between initation of an operation to 

transfer a word of data and the completion of that operation. 

• memory cycle time: minimum time delay required between the initation of two successive memory 

operations (i.e. time between 2 successive reads). Cycle time is usually shorter than access time. 

• random-access memory (RAM): if the access time to any location is the same, independent of the location’s 

address. Which is different to other type of memories such as disc, where certain data is located at places 

that take longer for the disc to read. The cycle times range from 100ns to less than 10ns 

CACHE AND VIRTUAL MEMORY 

• Memory access time is the bottleneck in the CPU as decoding and processing the instruction take less time 

than fetching the instruction from memory. 

• cache memory: small fast memory inserted between the larger (slower) main memory and the processor. It 

holds the currently active portions of a program and its data. 

• virtual memory: only the active portions of a program are stored in the main memory, and the remainder is 

tored on the much larger secondary device. Sections of the program are transferred back and forth. Therefore 

the application sees a memory that is much larger than the computer’s actual main memory. 

• block transfers: Data is transfered in blocks involving tens to thousands of words 

Semiconductor RAM Memories 

INTERNAL ORGANIZATION OF MEMORY CHIPS 

• Memory cells are commonly organized in the form of an array, where each cell stores 1 bit of data 

• Each row constitues a memory word 

• word line: cells of a row are connected to a common line. Driven by the address decoder on the chip 
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• columns are connected to a Sense/Write circuit by 2 bit lines which are connected to the data input/output 

lines of the chip. Depending on the Read/Write signals the Sense/Write will either output the cells contents 

or listen to the input and write it on the cell. 

 
16 words of 8 bits each (it is still up to the architect to define how many bits a word contains). This is refered to as a 
16x8 organization. The configuration above stores 128 bits (16*8) and reqiores 14 external connections for address, 
data and control lines. It also needs 2 lines for power supply and ground conections. 
 

1024 cells, organized as a 128x8 memory. Requires a total of 19 external connections. 
1kx1 setting would be a 10 bit address, with only one data line, resulting in 15 external connections 

 
a 1G-bit chip may have a 256M × 4 organization, in which case a 28-bit address is needed and 4 bits are transferred 

to or from the chip 

 

STATIC MEMORIES 

static memories: memories that consist of circuits capable of retaining their state as long as power is applied. 

SRAM (static RAM cell below, CMOS style): 
• Two inverters are cross-connected to form a latch 

• The latch is connected to two bit lines by transistors 

T1 and T2 

• Transistors act as switches, which are controlled by 

the word line. They are NMOS so the represent the exact 

same value that the word line has. if low they are open 

(so latch retians its current value) if high they are closed. 

• to read the state of the SRAM cell, the word line is 
activated to close switches T1 and T2 
• Cell = 1 if b1 high, b’ low. 

• Cell = 0 if b1 low, b’ high 
• To write, the Sense/Write circuit drives bit lines b and 

b’ , instead of sensing their state. It sets b and b’ 

accordingly and actiates the word line to save it (once 

disabled, the latch will keep the current value. 

• Continues power is needed for the cell to retain its state. 
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• When power is restored after an interruption, the latch settles into a stable but not necessarily the same as 

the last state, this makes SRAM volatile, because their contents are lost after power is gone. 

• advantage: low power consumption (current flows in the cell only when the cell is being accesssed. There is 

no connection between supply and ground but the state is kept. Another advantage is that they can be 

accessed very quickly (ns) 

DYNAMIC RAMS 

DRAMS (dynamic RAMs): Less expensive and higher density RAMs 

implemented with simpler cells that can’t retain their state for a long 

period unless they are accessed frequently. 

• Information is stored in a dynamic memory cell in the form of a charge 
on a capacitor, but this charge can be maintained for only tens of 
milliseconds. 
• its contents must be periodically refreshed by restoring the capacitor 

charge to its full value (this occurs when the contents of the cell are read 

or written into it). 

• To store information in this cell, transistor T is turned on and an 

appropriate voltage is applied to the bit line 

• After the transistor is turned off, the charge remains stored in the capacitor, but not for long as the capacitor 

begins to discharge after is totally turned off. 

• A sense amplifier connected to the bit line detects whether the charge stored in the capacitor is above or 

below the threshold value 

• If the charge is above the threshold, the sense amplifier drives the bit line to the full voltage representing the 

logic value 1. As a result, the capacitor is recharged to the full charge corresponding to the logic value 1. 

• If the sense detects the capacitor below the threshold, it pulls the bit line to ground level to discharge the 

capacitor fully.  

• Since the word line is common to all cells in a row, all cells in a selected row are read and refreshed at the 

same time after reading the contents of a  single cell of that row. 

• Row Address Strobe (RAS signal): input control line that causes a read operation to be initiated, in which all 

cells in the selected row are read and refreshed. 

• fast page mode feature: a block of data (often called page) transfered at a much faster rate by applying a 

consecutive sequence of column addresses (CAS signals = Column Address Strobe). 

SYNCHRONOUS DRAMS 

• DRAMS syncrhonized by a clock signal. 

• Clock sends refreshing signal to selected rows, which 
makes the dynamic nature of these memory chips is 
almost invisible to the user. 
• SDRAMs have several different modes of operation, 

which can be selected by writing control information into 

a mode register 

• burst operations of different lengths can be specified 

New data are placed on the data lines at the rising clock 
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• The column address is latched under control of the CAS signal 
• Synchronous DRAMs can deliver data at a very high rate, because all the control signals needed are generated 

inside the chip. 

• Today’s SDRAMs operate with clock speeds that can exceed 1 GHz 

• memory latency: time it takes to transfer the first word of a block 

• memory bandwidth: performance measure: number of bits or bytes that can be transferred in one second 

• Double_data_rate SDRAM: To make the best use of the available clock speed, data are transferred externally 

on both the rising and falling edges of the clock 

• Rambus Memory: The key feature of Rambus technology is the use of a differential-signaling technique to 

transfer data to and from the memory chips. 

STRUCTURE OF LARGER MEMORIES 

 
The R/W inputs of all chips are tied together to provide a common Read/Write control lin (not shown in the figure) 

DYNAMIC MEMORY SYSTEMS 

• A large memory leads to better performance, because more of the programs and data used in processing can 

be held in the memory, thus reducing the frequency of access to secondary storage 

• Because of their high bit density and low cost, synchronous dynamic RAMs, are widely used in the memory 

units of computers 
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• They are slower than static RAMs, but they use less power and have considerably lower cost per bit 

• Memory modules are commonly called SIMMs (Single In-line Memory Modules) or DIMMs (Dual In-line 

Memory Modules) 

MEMORY CONTROLLER 

• The address applied to dynamic RAM chips is divided into two parts: 

o high-order address bits: select a row in the cell array 

(provided first and latched into the memory chip under control of the RAS signal) 
o lower-end bits: select a column 

(provided on the same address pins and latched under control of the CAS signal) 
• Since a typical processor issues all bits of an address at the same time, a multiplexer is required (memory 

controller circuit) 

REFRESH OVERHEAD 

• A dynamic RAM cannot respond to read or write requests while an internal refresh operation is taking place 

• Such requests are delayed until the refresh cycle is completed 

• the time lost to accommodate refresh operations is very small 

 

COMPARING RAMS 

• Static RAMs (SRAM) are used where a small but very fast memory is needed (cache) 

• Dynamic RAMs are cheaper and have high bit density 

• Synchronous Dynamic Rams (SDRAM) are the better version of DRAM and used for the main memory 

DIRECT MEMORY ACCESS 

 
Data are transferred from an I/O device to the memory by first reading them from the I/O device using an instruction 
such as: LOAD R2, DATAIN //DST, SRC 

• Considerable overhead is incurred, because several program instructions must be executed involving many 

memory accesses for each data word transfered. 



CSE1400 Computer Organisation 

6 

• direct memory access (DMA): An alternative approach is used to transfer blocks of data directly between the 

main memory and I/O devices, such as disks. 

• The unit that controls DMA transfers is referred to as a DMA controller which performs the functions that 

would normally be carried out by the processor when accessing the main memory 

• Although a DMA controller transfers data without intervention by the processor, its operation must be under 

the control of a program executed by the processor, usually an operating system routine. 

• To initiate the transfer of a block of words, the processor sends to the DMA controller the starting address, 

the number of words in the block, and the direction of the transfer. 

• The DMAcontroller then proceeds to perform the requested operation. When the entire block has been 

transferred, it informs the processor by raising an interrupt. 

• Two registers are used for storing the starting address and the word count. The third register contains status 

and control flags. 

• Done flag 1 iWhen controller completes transferring a block of data and is ready to receive another command 

• Bit 30 is the Interrupt-enable flag, IE. When this flag is set to 1, it causes the controller to raise an interrupt 

after it has completed transferring a block of data. 

• The controller sets the IRQ bit to 1 when it has requested an interrupt. 

MEMORY HIERARCHY 

• An ideal memory would be fast, large, and inexpensive 

• a very fast memory can be implemented using static 

RAM chip 

• these chips are not suitable for implementing large 

memories, because their basic cells are larger and 

consume more power than dynamic RAM cells. 

• Although dynamic memory units with gigabyte 

capacities can be implemented at a reasonable cost, the 

affordable size is still small compared to the demands 

of large programs with voluminous data. 

• A solution is provided by using secondary storage, 

mainly magnetic disks, to provide the required 

memory space. Disks are available at a reasonable cost, 

and they are used extensively in computer systems. 

However, they are much slower than semiconductor 

memory units. 

• affordable, (smaller) main memory can be built with 

dynamic RAM technology. 

• static RAM technology to be used in smaller units 

where speed is of the essence, such as in cache 

memories. This memory, called a processor cache 

holds copies of the instructions and data from the main 

memory, 

• The fastest access is to data held in processor registers. 

A primary (L1) cache is always located on the processor chip. This cache is small and its access time is comparable 
to that of processor registers 
A larger, and hence somewhat slower, secondary (L2 sometimes even L3) cache is placed between the primary cache 
and the rest of the memory. Often it is also housed on the processor chip. 

CACHE MEMORIES 

• The cache is a small very fast memory between the processor and the main memory. 

• locality of referene: approach to make the main memory appear to the processor to be much faster than it is. 
• most of program execution time is spent in routines in which many instructions are executed repeatedly. 

• a recently executed instruction is likely to be executed again very soon 
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• instructions close to a recently executed instruction are also likely to be executed soon 

• property of locality of reference: whenever an 

information item, instruction or data, is first needed, this 

item should be brought into the cache, because it is likely 

to be needed again soon. 

• Spatial locality suggests that instead of fetching just 

one item from the main memory to the cache, it is useful 

to fetch several items that are located at adjacent 

addresses as wel 

• cache block/cache line: set of contiguous address locations of some size 

• mapping function: specifies the correspondence between the main memory blocks and those in the cache 

• replacement algorithm: cache control hardware that decides which block should be removed to create space 

for the new block that contains the referenced word 

• cache hits: the processor without knowing whether the issued address is cached or not goes through the 

cache control circuitry and if it does a read  or write hit occurs. 

• read hit: the main memory is not involved 

• write hit: option 1, write-through protocol, both cache and main memory are updated. Option 2, 

• write-back/ copy-back: only the cache location is updated and marks the block containing it with an 

associated fal bit (dirty/modified bit) and right before the cache word is going to be removed for a new block 

the main memory location of the word is updated. 

• The write-through protocol is simpler than the write-back protocol, but it results in unnecessary Write 

operations in the main memory when a given cache word is updated several times during its cache residency. 

• The write-back protocol also involves unnecessary Write operations, because all words of the block are 

eventually written back, even if only a single word has been changed while the block was in the cache. Still 

write-back is used most often as it takes advantage of the data block transfer efficency. 

• cache misses: when a word is not found in the cache. Which will copy the main memory words to the cache.  

• load-through/early restart: it first sends the word to the processor and then to the cache to reduce 

processor’s waiting time at the spend of more complex circuitry. 

• Write miss with write-through protocol: the information is written directly into the main memory. 

• Write miss with write-back protocol: the block containing the addressed word is first brought into the cache, 

and then the desired word in the cache is overwritten with the new information. 

• many processors use separate caches for instructions and data, making it possible for the two operations to 

proceed in parallel. 

• direct mapping: block j of the main memory maps 

onto block j modulo 128 of the cache. Contention is 

resolved by allowing the new block to overwrite 

the currently resident block. With direct mapping, 

the replacement algorithm is trivial. Placement of a 

block in the cache is determined by its memory 

address. The direct-mapping technique is easy to 

implement, but it is not very flexible. 

 
 

• associative mapping: the most flexible mapping meppod, a main memory block can be placed into any cache 

block position. It has a more fficient use of the space in the cache. When a new block is brought into the cache, 

it replaces (ejects) an existing block only if the cache is full. Associative search searches the tags in parallel. 

 



CSE1400 Computer Organisation 

8 

 
 

• set associative mapping: combiation of direct and associative mapping. Main memory blocks may reside in 

any set. It eases the block rplacement problem of direct mapping. Associative search is also reduced. 

 
• stale data: when the power is turned on, the cache contains no valid data (stale) (so all valid bits are reset to 

0). A control bit (valid bit) must be provided to tell whether the block data is valid or not. The processor 

fetches data from a cache block only if its valid bit is equal to 1. So as program execution proceeds, the valid 

bit of a given cache block is set to 1 when a memory block is loaded into that location. 

• flush the cache: forces all dirty blocks to be written back to the memory before performing the transfer. 

• cache-coherence problem: the need to ensure that two different entities (the processor and the DMA 

subsystems in this case) use identical copies of the data. 

• replacement algorithms: 

o In a direct-mapped cache, the position of each block is predetermined by its address; hence, the 

replacement strategy is trivial. For the rest: 

o least recently used (LRU) replacent algorithm: overwrite the block that has gone the longest time 

without being referenced (a 2-bit counter can be used for each block). 

▪ Performance of the LRU algorithm can be improved by introducing a small amount of 
randomness in deciding which block to replace. 

o “oldest” block from a full set when a new block must be brought in. This algorithm does not take into 

account the recent pattern of access to blocks in the cache, it is generally not as effective as the LRU 

algorithm 

o the simplest algorithm is to randomly choose the block to be overwritten. Interestingly enough, this 

simple algorithm has been found to be quite effective in practice. 

PERFORMANCE CONSIDERATIONS 

• Hit rate and miss penalty: Consider a system with only one level of cache. In this case, the miss penalty 

consists almost entirely of the time to access a block of data in the main memory. Let h be the hit rate, M the 

miss penalty, and C the time to access information in the cache. Thus, the average access time experienced 

by the processor is: 𝑡𝑎𝑣𝑔 = ℎ𝐶 + (1 − ℎ)𝑀 

• Hit rate and miss with 2 cache: 𝑡𝑎𝑣𝑔 = ℎ1𝐶1 + (1 − ℎ1)(ℎ2𝐶2 + (1 − ℎ2)𝑀) 

• number of misses in the L2 cache: (1 − h1)(1 − h2) 
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• write buffer: writing tasks can be delayed and performed in bulks (buffers) because the processor doesn’t 
usually need to access the written data immeditely again, for reading requests is the opposite. 

• prefetching:  To avoid stalling the processor, it is possible to prefetch the data into the cache before they are 

needed. A special prefetch instruction may be provided in the instruction set of the processor. They can be 

inserted into a program either by the programmer or by the compiler. 

• lockup-free cache: prefetching can lock the entire cache room. Lockup free cache allows the processor to 

access the cache and have more than one outstanding miss. 

VIRTUAL MEMORY 

When a program doesn’t have enough main memory to execute the programs virtual 

memory will allocate the extra memory to a secondary memory space, which will 

replace parts of the current main memory as the new ones are needed for execution. 

It’s like caching secondary memory into main memory. 

• virtual or logical addresses: binary addresses that the processor issues for 
either instructions or data. 

• If a virtual address refers to a part of the program or data space that is 

currently in the physical memory, then the contents of the appropriate 

location in the main memory are accessed immediately. Otherwise, the 

contents of the referenced address must be brought into a suitable location in 

the memory before they can be used. 

• Memory Management Unit: special hardware unit that keeps track of which 

parts of the virtual addres space are in the physical memory (main). 

o When the desired data or instructions are in the main memory, the 

MMU translates the virtual address into the corresponding physical 

address 

o If the data are not in the main memory, the MMU causes the operating 

system to transfer the data from the disk to the memory. Such 

transfers are performed using the DMA scheme that does not directly 

involve the processor 

• Address translation: A simple method for translating virtual addresses into physical addresses is to assume 

that all programs and data are composed of fixed-length units called pages. 
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• The cache bridges the speed gap between the processor and the main memory and is implemented in 
hardware. 

• The virtual-memory mechanism bridges the size and speed gaps between the main memory and secondary 
storage and is usually implemented in part by software techniques. 

• page table This information includes the main memory address where the page is stored and the current 

status of the page. 

• virtual page number: high-order bits 

• offset: low-order bits (location of a particular byte or word within a page) 

• page frame: An area in the main memory that can hold one page 

• page table base register: Keeps the starting address of the page table 

• Translation Lookaside Buffer (TLB): Mantained within the MMU, the TLB functions as a cache for the page 

table in the main memory by containing the most recently accessed pages. In addition, it includes the virtual 

address of the page, which is needed to search the TLB for a particular page 

• Address translation proceeds as follows: 

o Given a virtual address, the MMU looks in the TLB for the referenced page 

o If the page table entry for this page is found in the TLB, the physical address is obtained immediately 

o If there is a miss in the TLB, then the required entry is obtained from the page table in the main 

memory and the TLB is updated 

o It is essential to ensure that the contents of the TLB are always the same as the contents of page tables 

in the memory. When the operating system changes the contents of a page table, it must 

simultaneously invalidate the corresponding entries in the TLB 
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• page faults: page that is not in the main memory, a page fault is said to have occurred. So like the cache miss 
o When it detects a page fault, the MMU asks the operating system to intervene by raising an exception 

(interrupt) 

o The operating system copies the requested page from the disk into the main memory 

o Concepts similar to the LRU replacement algorithm can be applied to page replacement 

o It is important to note that the write-through protocol, which is useful in the framework of cache 

memories, is not suitable for virtual memory. The access time of the disk is so long that it does not 

make sense to access it frequently to write small amounts of data. 

• system space: separated from virtual space in which user application program resides dedicated for operatig 

system routines. Separate page table for each user program are arrranged. The physical main memory is thus 

shared by the active pages of the system space and several user spaces. However, only the pages that belong 

to one of these spaces are accessible at any given time. 

o protection: No program should be allowed to destroy either the data or instructions of other 

programs in the memory. 

o supervisor mode: The processor is usually placed in the supervisor mode when operating system 

routines are being executed and in the user mode to execute user programs. 

o user mode: some machine instructions cannot be executed. These are privileged instructions. They 

include instructions that modify the page table base register, which can only be executed while the 

processor is in the supervisor mode. 

o shared pages: Since a user program is executed in the user mode, it is prevented from accessing the 

page tables of other users or of the system space. Shared pages will therefore have entries in two 

different page tables 

WEEK 7 – MEMORY LECTURE 

DIRECT MEMORY ACCESS 

Very simplistic co-processor with just 1 instruction, move. 

  

 Cache will free up the bus from DMA bursts 
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DMA fetches the next memory block while CPU is 
decoding the current one. 

 

MEMORY ORGANIZATION 

To shuffle larger words in one go 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SRAM is stable (bit stays after power off) 
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DRAM: Just a capacitor and a transistor which is cheaper 

than the 6 transistors of SRAM. Capacitor needs to be 

recharged (iff the state was 1). Charged capacitor means T = 

1 (bit line = 1), empty capacitor T=0 (bit line = 0) 
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128x8 is more efficient than 1024x1 because you use words of 8 bits. 

But 1024x1 is cheaper because it uses less pins 

 
More speed is more expensive (more pins) 
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WEEK 8 – CACHE LECTURE 

 

Power wall from too much generated heat in 
the circuits. Caches become more important as 
the gab between the CPU and the DRAM 
widens (Draining halt). 
 

OS and hardware define which things go to 

which caches 

Reason latency of the disk is 10^6 whereas the 

bandwidth is not that small is because the 

latency calculates the time (cpu cycle unit) of 

getting the first word wereas bandwidth looks 

at the average time of getting x words per 

cycle. Since the disk can process large words 

the average per word goes down. 

OS decides how much DRAM (main memory) 

programs get and how much disk as well. OS 

can’t decide caches. 

The cache is not only listening to the memory but 
also to the bus, so that if the disc (DMA) decicdes to 
change some words in memory the cache can be 
aware of it and either get updated or remove that 
cache (because it is invalid). 
 

If cache writes something in cach only it will flag 
that word and only after the disc wants to access 
the equivalent memory location then will the cach 
interrupt that and write it on memory 
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Avg access = c * h + (1 - h)(c + m) 

           = c + (1 - h) * m 

 
We either read a block or write a block, we dont operate at individual (Memory) words 
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Everything goes to the same pile but you have to scan 
all the blocks to find them as there is no specific order 
other than pushing things. 
 

Hardware still allows you to do searches in parallel at 
a not so high expense (just more gates). 
 

 
 

 
 

 
 

 
 
Combines Direct Mapped and Fully Associative. It 
allows for groups of sets where same set different 
tag elements can be store. 
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x tells us how many blocks there are. 
4-way set-associatve cache = 4 blocks per set 

x = 1 means direct map cache (only 1 book per shelf, 

only 1 block per set) 

 
as many items in the set as many blocks in the cache means k*k = fully associative 

 
Transcript: 
 

So we have colors for each block. Direct Mapped Cache 
takes the tag and the byte. 
The bits in the middle (block), decide where to go in 

the cache  

 
Con: If program wants to repeat using block 0 over and 

over, cache wont be able to store them all at the same 

time. It wil leither store 0 xor 128 xor 256 
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Anything can go anywhere (same collor) 
As long as the number of blocks is not larger than the 

cache then we’re fine 

 

 
 

 
 

 
 
 
 

 
You can (opposite to direct maping) store more than 1 
block in a set (2-way set) 
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CHAPTER 6 – PIPELINING 

The five-stage processor of RISC and the corresponding datapath allow instructions to be fetched and executed one 

at a time. Therefore it takes five clock cycles to complete the execution of each instruction. 

This could be pipelined so the fetch, decode, compute, memory and write stages can be done in parallel. 
1. Instruction Ij is fetched in the first cycle and moves through the remaining stages 

2. In the second cycle instruction Ij+1 is fetched while Ijis on stage 2 

3. In the third sycle instruction Ij+2 is fetched while Ij is on stage 3 and Ij+1 is on stage 2, and so forth. 

Although any one instruction takes five cycles to complete its execution, instructions are completed, ideally at the 

rate of one per cycle (after the first 4). However, if the source register of Ij+1 is the destination register of a memory 

writing operation of an instruction at Ij the operands of Ij+1 won’t be ready until stage 6, (opposite to the ideal 

scenario where they would be ready in stage 3). Which means Ij+1 is stalled in the Decode stage for 3 cycles. 

Consquently Ij+2 is also stalled and so forth. 

• hazard: Any condition that causes the pipeline to stall 
Since register and things are 
being moved around at the same 
time it is necessary to save this 
information in interstage 
buffers. These include registers 
RA, RB, RM, RY and RZ 
 

 
 

 
 

 
The interstage buffers are used as follows: 

• Interstage buffer B1 feeds the Decode stage with a 
newly-fetched instruction 

• Interstage buffer B2 feeds the Compute stage with the 

two operands read from the register file, the 

source/destination register identifiers, the immediate 

value derived from the instruction, the incremented 

PC value used as the return address for a subroutine 
call, and the settings of control signals determined by 

the instruction decoder. 

• Interstage buffer B3 holds the result of the ALU 

operation, which may be data to be written into the 

register file or an address that feeds the Memory stage, 

and it also holds the incremented PC value passed 

from the previous stage, in case it is needed as the 

return address for a subroutine-call instruction 

• Interstage buffer B4 feeds the Write stage with a value 

to be written into the register file. This value may be 

the ALU result from the Compute stage, the result of 

the Memory access stage, or the incremented PC value 

that is used as the return address for a subroutine-call 

instruction 
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DATA DEPENDENCIES 

Execution of: 

Add  R2, R3 #100 
Substract R9, R2, #30 

data hazard introduced in the previous page. 

The Subtract instruction is stalled for three 

cycles to delay reading register R2 until cycle 

6 when the new value becomes available. 

 
• The control circuit must first recognize the data dependency when it decodes the Subtract instruction in 

cycle 3 by comparing its source register identifier from interstage buffer B1 with the destination register 
identifier of theAdd instruction that is held in interstage buffer B2. 

• Subtract instruction must be held in interstage buffer B1 during cycles 3 to 5 

• Add instruction proceeds through the remaining pipeline stages. 

• control signals can be set in interstage buffer B2 for an implicit NOP (No-operation) instruction that does not 

modify the memory or the register file. 

• Each NOP creates one clock cycle of idle time, called a bubble. 

OPERAND FORWARDING 

Pipeline stalls due to data dependencies can be alleviated through the use of operand forwarding. Considering the 

previous add and substract instructions. 

• Instead of substract to wait for stage 6 to 

decode the instruction with the register addresses, 

it could use the already available value computed 

at the end of stage 3. 

• This value can be loaded into register RZ and 

rather than stall the Subtract instruction, the 

hardware can forward the value from register RZ 

to where it is needed in cycle 4 

 

A new multiplexer, MuxA, is inserted before input InA of the ALU, and 
the existing multiplexer MuxB is expanded with another input. The 
multiplexers select either a value read from the register file in the 
normal manner, or the value available in register RZ. 

HANDLING DATA DEPENDENCIES IN SOFTWARE 

 
Insertion of NOP instructions for a data dependency (done by the 
compiler) NOP takes 1 cycle, stalling it manually. This simplifies the 
hardware implementation at the expense of having larger code size. 
Execution time is still longer than operand forwarding 



CSE1400 Computer Organisation 

3 

The compiler can attempt to optimize the code to improve performance and reduce the code size by reordering 

instructions to move useful instructions into the NOP slots 

MEMORY DELAYS 

A memory access may take ten or more cycles (3 in the figure for simplicity) a cache miss causes all subsequent 

instructions to be delayed. Consider: 

Load R2, (R3) 
Substract R9, R2, #30 

Operand forwarding cannot be done with memory as it takes more than one cycle to be fetched and wont be available 
until it is loaded into register RY in stage 5 (check BPU summary page 5 datapath structure). 

 
The compiler can eliminate the one-cycle stall for this type of data dependency by reordering instructions to insert 
a useful instruction between the Load instruction and the instruction that depends on the data read from the 
memory. The inserted instruction fills the bubble that would otherwise be created. If a useful instruction cannot be 
found by the compiler, then the hardware introduces the one-cycle stall automatically. If the processor hardware 
does not deal with dependencies, then the compiler must insert an explicit NOP instruction. 

BRANCH DELAYS 

• branch penalty: Delay from branching 

UNCONDITIONAL BRANCHES 
• With a two-cycle branch penalty, the relatively high 
frequency of branch instructions could increase the 
execution time for a program by as much as 40 percent. 
• Reducing the branch penalty requires the branch 

target address to be computed earlier in the pipeline. Rather 

than wait until the Compute stage. 

• it is possible to determine the target address and 

update the program counter in the Decode stage 

• Thus, instruction Ik can be fetched one clock cycle 

earlier, reducing the branch penalty to one cycle. 

• A second adder is needed in the Decode stage to 

compute a branch target address for every instruction 

• When the instruction decoder determines that the 
instruction is indeed a branch instruction, the computed 
target address will be available before the end of the cycle. It 
can then be used to fetch the target instruction in the next 
cycle. 

CONDITIONAL BRANCHES 
Branch_if_[R5]=[R6] LOOP 

• The result of the comparison in the third step 
determines whether the branch is taken. 
• The branch condition must be tested as early as 

possible to limit the branch penalty (he comparator that tests 

the branch condition can also be moved to the Decode stage). 
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• Moving the branch decision to the Decode stage ensures a common branch penalty of only one cycle for all 

branch instructions 

THE BRANCH DELAY SLOT 

• In all cases, the instruction immediately following the branch 

instruction is always fetched. 

• delayed branching: To reduce branch penalty the branch delay slot 

technique attempts to find a suitable instruction to occupy the delay slot 

of the branch instruction, one that needs to be executed even when the 

branch is taken. 

• It can do so by moving one of the instructions preceding the branch 

instruction to the delay slot (as long as data dependencies are 

preserved). 

• If a useful instruction is found, then there will be no branch penalty. 
• If no useful instruction can be placed in the delay slot because of 

constraints arising from data dependencies, a NOP must be placed there 

instead. 

• The effectiveness of delayed branching depends on how often the 

compiler can reorder instructions to usefully fill the delay slot (70%). 

 

BRANCH PREDICTION 

• Making the branch decision in cycle 2 of the execution of a branch instruction reduces the branch penalty. 

• the instruction immediately following the branch instruction is still fetched in cycle 2 and may have to be 
discarded. 

• decision to fetch this instruction is actually made in cycle 1, when the PC is incremented while the branch 

instruction itself is being fetched 

• to reduce the branch penalty further, the processor can anticipate an instruction being fetched is a branch 

instruction and predict its outcome to determine which instruction should be fetched in the next cycle. 

• Static branch prediction: Assume that the branch will not be taken and fetch the next instruction in sequential 

order. There will only be penalty when the prediction is incorrect. Assuming randomness, this gives 50% 

accuracy. However backward branches at the end of a loop are taken most of the time, for such a loop is 
better to assume that the branch is gonna be taken. The processor can determine the static prediction by 

checknig the sign of the branch offset. Alternatively, the machine encoding of a branch instruction may 

include a bit that indicates how to predict the instruction.  

• Dynamic Branch Prediction: The processor hardware keeps track of branch history to make better 
predections. Simplest form is to use the last result as prediction. Works well inside program loops. The track 
history can be expanded to more than just the last one, i.e. 4-state algorithm vs 2-state algorithm. 

BT - Branch taken 
BNT - Branch not taken 

ST - Strongly likely to be taken 

LT - Likely to be taken 

LNT - Likely not to be taken 

SNT - Strongly likely not to be taken 
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• Branch Target Buffer: small fast memory that contains the extra information that the processor needs to keep 
for dynamic branch prediction. The branch target buffer contains a lookup table for each branch with: 

o the address of the branch instruction. 

o one or two state bits for the branch prediction algorithm 

o the branch target address 

• the table has a limited size (1024ish entries), containing information for only the most recently executed 

branch instructions 

• (not necessarily branch) speculative execution: subsequent instructions based on an unconfirmed prediction 

are fetched, dispatched, and possibly executed, but are labeled as being speculative so that they and their 

results may be discarded if the prediction is incorrect 

• reservation stations: buffer for sepeculative execution, they hold information and operands relevant to each 

dispatched instruction 

PERFORMANCE EVALUATION 

• non-pipelined processor - basic performance equation: 

o T: execution time 

o N: Dynamic Instruction Count 

o S: Average number of clock cycles to fetch and execute one instruction 

o R: clock rate in cycles per second 

𝑻 =
𝑵 ∗  𝑺

𝑹
 

• instruction throughput (non-pipelined): Number of instructions executed per second 

𝑃𝑛𝑝 =
𝑅

𝑆
 

RISC, when there are no cache misses, uses 5 cycles to execute all instructions. So S = 5 
Pipelining improves performance by overlapping the execution of successive instructions 

• instruction throughput (platonic pipelined): In the abscence of stalls 

Pp = R 

Remember that there are millions of instructions so the first 4 that are not 100% overlapped are insignificant. So a 
n-stage pipeline can potentially increase the throughput by a factor of n. In reality there are diminishing returns but 
recent processor implementations ahve 20 stages with clock rates of several GHz 

DELAYS 
The operations with the longest delay dictate the cycle time, and hence the clock rate R. 

o δstall: increased difference from S, where S = 1 in an ideal world. 
δstall = Dynamic Instructions % * Dependent Instructions (of the dynamic) % * 1 

• instruction throughput pipelined (with stalls): 

𝑃𝑝 =
𝑅

1 + 𝛿𝑠𝑡𝑎𝑙𝑙
 

• The compiler can improve performance by reducing the number of times that a Load instruction is 

immediately followed by a dependent instruction. 

• A stall is eliminated each time the compiler can safely move a nearby instruction to a position between the 

Load instruction and the dependent instruction 

• mispredicting branches: Assume target address are determined in the Decode stage of the pipeline 

𝛿𝑏𝑟𝑎𝑛𝑐ℎ_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑏𝑟𝑎𝑛𝑐ℎ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (1)   ∗  𝑏𝑟𝑎𝑛𝑐ℎ % ∗  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

• cache misses: 

𝛿𝑚𝑖𝑠𝑠 = (𝑚𝑖 ∗ 𝑑 ∗ 𝑚𝑑) ∗ 𝑝𝑚 

Where 𝑝𝑚 = stalled pipeline cycles from cache misses; 𝑚𝑖 = instruction miss %; d = load and store instructions % 
(that involve the cache) and 𝑚𝑑 = operand miss % 
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SUPERSCALAR OPERATION 

The maximum throughput of a pipelined 

processor is one instruction per clock cycle. 

Superscalar procesor can acheive more than 

1 instruction per clock cycle by equipping 

the processor with “multiple-issue” 
multiple execution units (each could be also 

pipelined). 

• a superscalar processor has a more 
elaborate fetch unit that fetches two or 
more instructions per cycle before they are 
needed and places them in an instruction 
queue 
• dispatch unit: takes two or more 

instructions from the front of the queue, 

decodes them, and sends them to the 

appropriate execution units. 

• At the end of the pipeline, another unit 

is responsible for writing results into the 

register file. 

• It incorporates two execution units, one for arithmetic instructions and another for Load and Store 

instructions. 

• An arithmetic instruction and a Load or Store instruction must obtain all their operands from the register 

file when they are dispatched in the same cycle to the two execution units. The register file must now have 

four output ports instead of the two output ports needed in the simple pipeline. 

• an arithmetic instruction and a Load instruction must write their results into the register file when they 
complete in the same cycle. Thus, the register file must now have two input ports instead of the single input 
port for the simple pipeline. 

• the register file allows two results to be written in the same cycle because the destination registers are 

different. 

• Otherwise, one instruction is stalled to ensure that results are written into the destination register in the 

same order as in the original instruction sequence of the program 

• As long as such dependencies are handled correctly, there is no reason to delay the execution of an unrelated 

instruction. If there is no dependency between a pair of instructions, the order in which execution is 

completed does not matter. However exceptions will lead to a processor executing the second instruction, 

which may have had relied on the first one not having an exception, this is called an impricese exceptions. 

• precise exceptions: delaying or buffering instructions to give room for exceptions at the expense of more 

complex hardware 

• comittment step: moving the temporary registers to the permanent ones. The effect of an instruction cannot 
be reserved after this point. 

• register renaming: a temporary register takes the role of a permanent register during a period of time. There 

may be as many temporary registers as there are permanent registers. 

• commitment unit: sepcial control unit that uses a separate queue called the reorder buffer to determine 

which instruction(s) should be committed next (if out of order  execution is allowed), this guarantees in-

order commitment. Instructions are retired after the temporary registers have been moved to the fixed ones. 

• dispatch order operations: the dispatch unit must ensure that all the resources needed for the execution of 

an instruction are available. 

• deadlock: a situation that can arise when two units, A and B, use a shared resource and both of them are 

waiting for the other in a vicious circle so that neither can complete its execution 
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WEEK 8 – PIPELINING LECTURE 

Remember: without caching there’s no possible DMA 

• Harvard architecture treats data and 
instructions differently. 
• This structure allows to fetch data and 
instructions at the same time 
• It also allows us to use different cache 

mappings for data and program memory. 

• Programs are typically sequential, so they 
respond better to direct mapping. 
• Data is all over the place, responds better to 
associative case. 
 

 
 

 
 

Pipelining aims to increase the throughput. Which is optimal for 
general purpouse computing (rather than dedicated circuitry). 
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We need to modify our hardware from the previous BPU architecture as it was not designed to do these stages in 
parallel. So we need buffers. 
 

 

 
 

 
 

 
There is a trade-off between aiming for a high throughput with lots of stages and increasing the risk of longer pipeline 

stalls. 
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In the decoding stage you can actually see the data 

dependency between instruction I2 and instruction I1. 

 
Solution: The output of the current instruction is ready 

with forwarding in the next stage so that we can execute 

instructions back to back instead of waiting for the write 

step. 

 
 

 
 

 

 
unconditional: It the branch is just a jump instruction, there’s 
no need for the ALU/comparator to execute anything, so the 
result is known right after decoding (just 1 bubble) 

 

conditional prediction: Instead of going to the 
ALU/comparator, we could also assume a-priori the result of 
the loop and jump (or not) directly. 
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finite state machine -> 
 
For long operations such as divisions since they appear 
rarely the don’t require our attention as they don’t 

have an impact on performance. 
 

 

CHAPTER 12 - PARALLEL PROCESSING AND PERFORMANCE 

HARDWARE MULTITHREADING 

• Operating system (OS) software enables multitasking of different programs in the same processor by 

performing context switches among programs 

• Processes (any information that describes the current state of the program execution) may be associated 

with applications such as Web-browsing, word-processing, and music-playing programs that a user has 

opened in a computer. Each process has a corresponding thread. 

• it is possible for multiple threads to execute portions of one program and run in parallel as if they correspond 

to separate programs. But all threads that are part of a single program run in the same address space and are 

associated with the same process. 

• hardware multithreading: To deal with multiple threads efficiently, a processor is implemented with several 

identical sets of registers, including multiple program counters. 

• The state of the previously active thread is preserved in its own set of registers. 

• coarse-grained multithreading: an about to stall processor quickly switches to a different thread and 

continue to fetch and execute other instruction. 
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• fine-grained orinterleavedmultithreading: switch after every instruction is fetched. Throughput may be 

increased by interleaving instructions from many threads, but it takes longer for a given thread to complete 

all of its instructions. 

VECTOR (SIMD) PROCESSING 

• vector: array of elements usch as integers or floating-point numbers. 

• vector instructions / single-instruction multiple-data (SIMD) instructions: A processor can be enhanced with 

multiple ALUs. In such a processor, it is possible to operate on multiple data elements in parallel using a 

single instruction. Can only be used when the operations performed in parallel are independent. This is 

known as data parallelism. 

• vector registers: they can hold several data elements. L = vector length = number of data elements = number 

of operations that can be performed in parallel with multiple ALUs 

• VectorAdd.S Vi, Vj, Vk: just a vector sum that takes vector registers operands and saves it in a vector register 

• storing and loading vectors just places elelements consecutively in the destination and read consequitive 

elements into a vector. 

• vectorizable: such as high-level integer arrays. Where operations for all elements of the array can be done in 

parallel 

• Vectorizable loops exist in programs for applications such as computer graphics and digital signal processing. 

GRAPHICS PROCESSING UNITS (GPUS) 

• The primary purpose of GPUs is to accelerate the large number of floating-point calculations needed in high-

resolution three-dimensional graphics, such as in video games 

• operations involved in these calculations are often independent 

• a large GPU chip contains hundreds of simple cores with floating-point ALUs to perform them in parallel 

• A GPU chip and a dedicated memory for it are included on a video card 

• A small program is written for the processing cores in the GPU chip 

• A large number of cores execute this program in parallel 

• The cores execute the same instructions on parallel, but operate on different data elements. 

• Before initiating the GPU computation, the program in the host computer must first transfer the data needed 

by the GPU program from the main memory into the dedicated GPU memory 

• After the computation is completed, the resulting output data in the dedicated memory are transferred back 

to the main memory 

• There’s a C extension to deal with NVIDIA’s GPU so that an entire program can be written in C. 

o The compiler will partion the final object into machine instructions for the GPU and CPU 

o An open standard called OpenCL has been proposed by industry as a programming framework for 

systems that include GPU chips from any vendor 

SHARED MEMORY MULTIPROCESSORS 

• Implementing a large memory in a single module would create a bottleneck when many processors make 

requests to access the memory simultaneously 

• It can be alleviated by distributing memory across multiple modules so that simultaneous requests from 

different processors are more likely to access different memory modules 

• An interconnection network enables any processor to access any module that is a part of the shared memory 

• (UMA) Uniform Memory Access multiprocessor: A system which 

has the same network latency for all accesses from the 

processors to the memory modules. 

• (NUMA) Non-Uniform Memory Access multiprocessors: For 

better performance, they place a memory module close to each 

processor, resulting in a collection of nodes that have different 

latencies.  
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INTERCONNECTION NETWORKS 

• The interconnection network must allow information transfer between any pair of nodes in the system 

• The traffic in the network consists of requests (such as read and write) and data transfers 

• bandwidth: capacity of a transmission link to transfer data bytes per second. 

• effective throughput: rate of data transfer, which is less than the available bandwidth because a link must 

carry information that coordinates the transfer of data. 

• packets: information transfers through the network, of a fixed length and specified format 

• Ideally, a complete packet would be handled in parallel in one clock cycle at any node or switch in the 

network. But to reduce complexity a packet is divided into smaller pieces, each of which is eventually 

transfered in one clock cycle. 

Interconnection networks: 

• (simple) bus: set of wires that provide a single shared path for information transfer. Often used in UMA 

multiprocessors. Arbitration is necessary to ensure that only one of many possible requesters is granted use 

of the bus at any time. A simple bus does not allow a new request to appear on the bus until the response for 

the current request has been provided 

• split-transaction bus: a request and its corresponding response are treated as separate events and other 

transfers may take place between them. This is usually handled by associating a unique tag with each request 

that appears on the bus. Each response then appears with the appropriate tag so that the source can match 

it to its original request. 

• ring: A ring network is formed with point-to-point connections between nodes. A long single ring results in 

high average latency for communication between any two nodes. 

• bidirectional ring: halves the latency and doubles the bandiwdth by adding a second ring in the opposite 

direction, at the expense of more complex communications. 

• hirearchy of rings:  The average latency is reduced without traversing the entire rings, just a section. 

 
• crossbar: network that provides a direct link between any pair of units connected to the network. It is 

typically used in UMA multiprocessors to connect processors to memory modules. For n processors and k 

memories, n × k switches are needed. 

• mesh: 

Nodes in the boundaries and corners have fewer connections,  

torus: mesh with wraparound connections between nodes at opposite 

boundaries of the mesh. So all nodes in a torus have 4 connections (average 

latency is reduced at the expense of more complexity). 
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• snoopy cache: use of directories in each memory module to indicate which nodes may hace copies of a given 

block in the shared state. Small multiprocessors, including current multicore chips, typically use snooping. 

• mesagge-passing multicomputers: implementing each node in the system as a complete computer with its 

own memory. Data that need to be shared are exchanged by sending messages from one computer to another. 

PARALLEL PROGRAMMING FOR MULTIPROCESSORS 

• The compiler cannot automatically identify independent high-level (programming) tasks that could be 

executed in parallel, it has its limitations detecting and exploiting parallelism. 

• It is therefore the responsibility of the programmer to explicitly partition the overall computation in the 
source program into tasks and to specify how they are to be executed on multiple processors. 

• create_thread: routine library that supports parallel programming. An operating system service is invoked 

by the library routine to create a new thread with a distinct stack, so that it may call other subroutines and 

have its own local variables. All global variables are shared among all threads. 

• get_my_thread_id: library routine that returns a unique integer between 0 and p-1 for each thread. A thread 

can determine the appropriate subset of the overall computation for which it is responsible 

• barrier: thread synchronization method that forces a thread to enter into a busy-wait loop until all threads 

have reached a specific point in the program. This ensures that the threads have completed their respective 

computations preceding the barrier call. 

PERFORMANCE MODELING 

• The most important measure of the performance of a computer is how quickly it can execute programs 

• execution time: 

o Torig = current execution time 

o fenh = fraction of execution time affected by enhancent 

o funenh = 1 – fenh compliment (fraction of execution time not affected by enhancement) 

o p = fenh * Torig  = portion of time reduced thanks to enhancement 

Tnew = Torig * (funenh + fenh/p) 

• speedup = Torig/Tnew = Amdahl’s Law  = 1/(funenh + fenh/p) 
o the benefit of a given performance enhancement increases if it affects a larger portion of the 

execution time 

• upper bound on the possible speedup:  1/unenh 

o p → ∞ reduction of the fraction fenh of execution time to zero 

o the unenhanced portion of the original execution time can significantly limit the achievable speedup, 

even if the enhanced portion is improved by an arbitrarily large factor 

WEEK 9 - PARALLEL & VIRTUAL MEMORY LECTURE 

• Superscalar execution: multiple components doing 

multiple things on paralle 

• Floating point unit bottleneck is removed but fetching 

instructions becomes harder 

• instruction que is a bunch of instructions which each 

can be executed on parallel 

. 
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• In-order issued instructions may be 

completed at different clock cycles. Therefore 

there is an extra variant that we add called 

“program order completion” 

• Which will make instructions wait so that the 

first in first out instruction fetching order is 

mantained 

 

 
 

 
 

 
 

 
Amdahl’s Law 

Data dependencies, some algorithms cant be run on parallel either 
(min, max, median, which need to check all data) 
Only a fraction of a program can be parallelized 
 

  
speedup = Torig/Tnew = Amdahl’s Law  = 1/(funenh + fenh/p) 

“It takes 10 second to execute sequentially, if we can parallelize 80% of a program and run it on 4 processors what 

would be our speedup?” 

fp = parallel % = .8 

fs = sequential % = 1-.8 = .2 
Torig = Ts = 10 

Tnew = Tp = 10*(.2+.8/4) = 4 

Amdals law = Torig / T new= 10/4 = 2.5  
Or just speed up = 1/(funenh + fenh/p) = 1/(.2+.8/4) = 1/.4 = 2.5 

max speedup = 1/fs  

lim
𝑝→∞

1/ (𝑓𝑠 +
𝑓𝑝

𝑝
) = 1/(𝑓𝑠 + 0)  =  1/𝑓𝑠 

Flynns taxonomy:  
• Single Instruction, Single Data (SISD) 

o Conventional system 

• Single Instruction, Multiple Data (SIMD) 

o one instruction on multiple data streams 

• Multiple Instruction, Multiple Data (MIMD) 

o Multiple instruction streams on multiple 

data streams 

• Multiple Instrucion Single Data (MISD) 

o Multiple instruction streams on single 

data stream 
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• We can work on parallel with data 
• We can have multiple computers (execution units) 

SISD: Simple 1 core machine 

 
 

 
 

UNIFORM MEMORY ACCESS 

We have memory and processors. And whenever 

we want to grab something from memory the 

processors go through the interconnection 

network (bus, ring, mesh etc) 

Problem arise when 2 processors want to access 

the same memory. Therefore we are 

sequentialising the access to the memory. Eery 

cache miss goes over the same bus, not efficient. 

 
So here everything can borrow from the common 

pool but only one at a time. 

 
 

 
 

 
 

 
I can read my own memory very fast, if I want to read 
someone elses (processor), I can but it goes slow. 
 
It should be up to the program to optimize which 

memory belongs to which CPU. 
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Here processor can request memory from another 

one, but it is not available by default unless the 

other accepts the request. It’s like the internet 

 
 

 
 

 
 

 
 

 

 
 
 
N parallel paths between processors and memory 
Simple but still lots of wires 

Only works for low scale parallel processing 
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It makes handling large files easier. 

 
Same concept as cache 
 

 

 

 

We want to give the programmer the illusion that 

he is always to write on all those 4GB although we 

only have 2GB available. 

We would need to map the 4gb pages into the 2GB 

page table 

 

 

 

Processor 

 
Bus  Virtual address 

MMU 
Bus  Physical address 

 
Cache 

  Physical address 
Main Memory 

 
  DMA controller 

Disk storage 
 

 

Caches do everything with hardware, Virtual memory also has software support. It gives us more flexibility 
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1. We start with a logical/virtual address where the program thinks he can store anything 

2. Page table provides us with a mapping in the page addres table register 

3. Because you need to have this table available for each program and you dont want them to overwrite 

memories across so one page table is created per running program. 

4. There is a control bit for writing confirmation. 

a. Generally we will not copy things to the disk every time, just before closing the program. 

 

TLB stores the recent translations of virtual 
memory to physical memory like a cache. 
 

So instead of having to look up the whole page 
table in main memory every time, you have the 
TLB quickly by hand. 
 

 
 

 
 

 
 

 
 

 

 Where is the page? The page is on Disk, it was virtual... So it is the job of the 
OS to bring the page from disk to main memory into the page table because we have now a new mapping. 
and Disk stuff is moved via the DMA (and its bus). 
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NO! We want to minimize the number of times we talk to the disk because the disk is extremly slow 

 
 

 

 
 

 

 
 

 

 

 

 

 

PTBR = page table for each process ensures that the allocated 
pages for a program are fixed and a program cant mess with 
the pages of another program, such us the OS, which is very 
protected. Furthermore, only the OS should be allowed to 
write the page table base register. 
 


