CSE1305 Algorithms & Data Structures

Course Guideline
Previous knowledge Requirements:

Java programming

Course goals:

Explain and compare the structure and properties of standard algorithms and data structures.
Execute and visualize standard algorithms and data structures on given inputs.

Use mathematical methods to analyze the time and space complexity of algorithms and data
structures.

Implement algorithms and data structures using the Java programming language.

Solve programming tasks using standard algorithms and data structures.

Course content:

1. Data Structures
a. data containers
i. vector 3. Searching
i. list k. search structures
iii. tree i. search trees
iv. set ii. AVLtrees
b. ordered data structures iii. (2,4) trees
i. stack I.  backtracking
ii. queue 4. Graphs and Graph Algorithms
iii. priority queue m. graph data structures
iv. heap i. directed graphs
V. map ii. undirected graphs
c. operations on data structures iii. weights
i. iterative iv. representations
implementations n. graph algorithms
ii. recursive i. graph traversals
implementations ii. path finding
2. Sorting iii. cycle finding
d. selection sort iv. connectivity
e. insertion sort v. topological ordering
f.  heap sort vi. shortest path
g. merge sort vii. minimum spanning tree
h. quick sort
i. bucket sort
j.  radix sort
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Lecture Topics Order:

e Big-Oh notation

e Complexity in recursive methods
e Arrays & LinkedLists

e Stacks & Queues

e Dynamic arrays

e Positional lists

e |terators

e Trees
e Priority Queues
e Sorting

e Key-based sorting
e Maps & hashing
e Search Trees

e Graph properties
e Graph algorithms
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Week 1. Introduction to Algorithms and Data Structures

e data structure: is a systematic way of organizing and acessing data.
e algorithm: step by step procedure for performing some task in a finite amount of time.

To classify data structures as good or bad we must have precise ways of analyzing them:

e Running time: the faster the computer time to complete the task the better

e Space usage: Another measure for data/algorithm performance, the less space the better.

o Relationship between the running time of an algorithm and the size of its input (running time as
a function of input) t(x)

Complexity analysis and big-Oh notation [Sections 4.1, 4.2, 4.3]

4.1 Experimental Studies
Running time analysis:

A simple mechanism for collecting such running times in Java is based on use of the currentTimeMiillis
method of the System class. It will return the offset time from the “epoch” time (Jaunary 1, 1970 UTC)
so we can compare the difference of an offset at the start and at the end, such difference being the
elapsed time of an algorithm’s execution.

long startTime = System.currentTimeMillis(); // record the starting time

/*code*/
System.currentTimeMillis(); // record the ending time
endTime - startTime; // compute the elapsed

long endTime =
long elapsed

time

System.nanoTime() can be used to measure time in nanoseconds.
Relation between input size and running time:

Collect two values, x = input size (n) and y = running time (t). Have a large enough sample to allow a
statistical anylisis to fit the the best function t(n) that matches the data.

Disclaimer: Times between machines will be different, also within the same machine because the CPU is
shared by many processes. But as long as 2 algorithms are compared under similar circumstances, it
should be fine.

| n | repeatl (in ms) |repeat2 ﬁnlns}|

50,000 2334 1 10° 7
100,000 7437 I 2 e /O//
200.000 39,158 2] 3 w0 - =
400.000 170,173 3] £ @ T o repeart
800,000 690,836 0 - I ‘_ —=— repeat2
1,600,000 2,874,068 ElE
3,200,000 12,809,631 53] " 0 4 g
6,400,000 59,504,275 58 10—t |
12,800,000 | 265,696,421 135 10° o1 107

Running times for string += and stringBuilder.append(). Concetation is not only slower but it gets even
slower over time.
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Experiment limitations:

e (Environment replication) Experimental running times of two algorithms are difficult to directly
compare unless the experiments are performed in the same hardware and software
environments

e (Input bias) Experiments can be done only on a limited set of test inputs; hence, they leave out
the running times of inputs not included in the experiment (and these inputs may be important)

e Analgorithm must be fully implemented in order to execute it to study its running time
experimentally.

Developing the ideal anlytical tool:

e Allows us to evaluate the relative efficiency of any two algorithms in a way that is independent
of the hardware and software environment.

e |s performed by studying a high-level description of the algorithm without need for
implementation.

e Takes into account all possible inputs

Counting primitive Operations:

Instead of using “dirty” elapsing times on inconsistent machines, we “platonify it” and create a universal
mathematical model that assigns certain “efficiency penalties” to specific event’s that happen within an
algorithm, such “penalty” being the number of times a primitive operation is used:

e Assigning a value to a variable

e Following an object reference

e Performing an arithmetic operation (for example, adding two numbers)
e Comparing two numbers

e Accessing a single element of an array by index

e C(Calling a method

e Returning from a method

primitive operation: corresponds to a low-level instruction with an execution time that is constant

The sum of the number of times that all primitives are used consitute “t”, the platonified running time of
the algorithm. Assumption of the model: the running time of different primitve operations is the same.

Measuring Operations as a Function of Input Size:

A function f(n) that characterizes the number of primitive operations that are performed as a function of
the input size n

Focusing on the Worst Case Input:

Certain algorithms respond with different times to inputs of the same size. Ideally the average case
times would be considered as the reference point, but it is hard to know the average as it requires
sofisticated statistical anlysis. Instead the worst case time is used as a function of the input size n. To
find the worst case is easy and it amkes the standard of success for an algorithm to perform well even in
the worst case.
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4.2 The seven functions
The constant function
fm)=c

It does not matter what the value of n is; f(n) will always be equal to the constant value c

It characterizes the number of steps needed to do a basic operation on a computer, like adding two
numbers, assigning a value to a variable, or comparing two numbers

The logarithm function
f(n)=logynandb >1

The most common base for the logarithm function in computer science is 2 as computers store integers
in binary. So log = log; in this course unless otherwise specified.

o ceiling: of a real number, x, is the smallest integer greater than or equal to x, denoted with [x].
aka round to the nearest integer (and if it is already an integer, then it remains the same).

o floor |x]: Round to the lowest integer (and if it is already an integer, then it remains the same).

e [log, n] is an easy to find approximation of logy n. Just divide n for b times until the first
outcome smaller or equal to 1. the number of divisions is equal to [logy n]

The linear function

fm)=n

This function arises in algorithm analysis any time we have to do a single basic operation for each of n
elements.

The linear function also represents the best running time we can hope to achieve for any algorithm that
processes each of n objects that are not already in the computer’s memory, because reading in the n
objects already requires n operations.

The N-Log-N function
f(n)=nlogn

It’s run time is between the linear function and the quadratic function

The quadratic function
f) =n?

There are many algorithms that have nested loops, where the inner loop performs a linear number of
operations and the outer loop is performed a linear number of times. Thus, in such cases, the algorithm
performs n - n = n2 operations

Polynomials and Summations
Since the constant, linear, and quadratic functions are very important these have not been lumped into
the polynomial category although the actually are one. A polynomial can be summarised to summation

d

) =al=fm) =) am'

i=0
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The exponential function amd geometric summations
f(m) =b"
b is the base and n is the exponent. The most common base in computerscience is 2.
n
Zai =l+a+a’+--+a"
i=0
anda>0,a#1

an+1 -1

a-1
Called geometric summations, because each term is geometrically larger than the previous oneifa>1
14+2+4+8+-- 4201 =2"0—-1
0b1111111 = 0b10000000 — 0b1

Comparing the functions
Ideally, we would like data structure operations to run in times proportional to the constant or
logarithm function, and we would like our algorithms to run in linear or n-log-n time.

104
1040 =
10%
10¥
1028

—=&— Exponential

—o— Cubic

—m— Quadratic

—0O— N-Log-N

’s? 104 —— Linear
‘C’ 102[]-
‘-' 1016 —#— Logarithmic
1012 = ~—+— Constant
108
10* =

100 =
10° 10" 10* 107 10* 10° 10° 107 10° 10° 10'° 10" 10" 10" 10 10V
n

4.3 Asymptotic Analysis
Since we focus on the growth rate of running time over input size that is a “big picture” approach, where
just giving the proportional grow of t to n is a sufficient enough metric.

Big-Oh notation:

The big-Oh notation allows us to say that a function f(n) is “less than or equal to” another function g(n)
up to a constant factor “c” from ng to infinity
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fin)

Running Time

Mo Input Size

f(n) “is” (approximates) O(g(n)) since f(n) < c - g(n) when n 2 ng

The big-Oh notation allows us to ignore constant factors and lower-order terms and focus on the main
components of a function that affect its growth.

We can use limit properties of a polynomial so that from f(n) = ap + ain + ... + asn® and a4 > 0 we have
that f(n) is O(n%). The highest-degree term in a polynomial is the term that determines the asymptotic
growth rate of that polynomial and we should use such degree (the closest) to characterize a big-Oh
notation function (even if a larger degree technically holds for becoming a big-Oh), in addition lower-
order terms should be omitted so we can provide the big-Oh on its simplest terms.

So, for example, we would say that an algorithm that runs in worst-case time 4n?+nlogn is a quadratic-
time algorithm, since it runs in O(n?) time.

Big-Omega
If big-oh = a function is less than or equal to another function, then big-Omega = a function is greater
than or equal to that of another.

We say that f(n) is Q(g(n)), pronounced “ f(n) is big-Omega of g(n),” if g(n) is O(f(n)).
f(n) 2 cg(n), forn=ng

Big-Theta
Two functions grow at the same rate, f(n) is ©(g(n)) “ f(n) is big-Theta of g(n),” if f(n) is O(g(n)) and f(n) is
Q(g(n)). It is expressed as ¢’ g(n) < f(n) < c"g(n), for n 2 n0 where ¢’ and ¢” are real constants and ng > 1.

Comparissions
We can use the big-Oh notation to order classes of functions by asymptotic growth rate.

n | logn n nlogn n n 2"

8 3 8 24 64 512 256

16 4 16 64 256 4,096 65.536

32 5 32 160 1,024 32,768 4,294,967, 296
64 | 6 64 384 4,09 262,144 1.84 % 101°
128 7 128 896 16,384 2,097,152 3.40 x 10°8
256 8 256 2,048 65,536 16,777,216 1.15 x 10”7
512 9 512 4,608 262,144  134,217.728 1.34 x 1074

10
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Inversely, instead of looking at the running time growth, we can also look at the input capacity, that is
capablity of solving an amount of input n, over time (where here bigger is better).

Running Maximum Problem Size (n)
Time (us) | 1 second 1 minute 1 hour
400n 2,500 150,000 9,000,000
2n? 707 5,477 42,426
2" 19 25 31

Asymptotic limitations:

Although 10'%n is O(n) we would prefer an algorithm that is 10n*log n that is O(n*log n) because the
constant factor of one googol is so large that an input will rarely be larger than that where 10%° n would
outperform 10n log n. Besides, O(n*log n) is regarded as en efficient algorithm.

Analysis

Constant-Time Operations: fetching an array element.

Operations that run in constant-time are expressed as O(1). Assume variable A is an array of n elements.
A.length is evaluated in constant time as an explicit variable is stored that records the length of the array
(so we don’t have to compute it but to fetch it). Similarly, A[j] can be accessed in constant time as an
array uses a consecutive block of memory. The j" element is found by validating the index with the
.Iength variable and fetching its memory address. Therefore A[j] is O(1).

Finding the max of an array
Is an algorithm that grows proportional to n as all entries of the array will need to be evaluated against
the current max value found. Thast is, such algorithm runs in O(n) time. The justification is provided:

//Returns the maximum value of a nonempty array of numbers. %/
public static double arrayMax (double[] data) {
int n = data.length;
double currentMax = datalO0]; // assume first entry is biggest (for now)
for (int j = 1; j < n; j++) // consider all other entries
if (data[j] > currentMax) // if datalj]
currentMax = dataljl; // record it
return currentMax;

1s biggest thus far...
as the current max

1. The initialization at lines 3 and 4 and the return statement at line 8 require only a constant
number of primitive operations.

2. Eachiteration of the loop also requires only a constant number of primitive operations, and the
loop executes n - 1 times

From 1 and 2 we have that the time is t(n) = ¢’+c’(n-1), which aproximates to t(n) = ¢’n in the long term,
which is O(n).

Updating the max in a random array with unique values
the expected number of times we update the biggest (including initialization) is ™" Harmonic number. It
can be shown that H, is O(logn). The Harmonic number is originally expressed as a summation:

11
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n
H, = Z 1/i
i=1

Composing strings
Using concatenation:

//Uses repeated concatenation to compose a String with n copies of char c. */
public static String concatenate(char ¢, int n) {

String answer = "";

for (int j = 0; jJ < n; J++)

answer += c;

return answer;
}
Strings in Java are immutable objects. Once created, an instance cannot be modified (So they are
essentially an especial reference type). The concatenation operator += does not append a character to
the existing String, instead it produces a new String with the desired sequence of characters. Then it

reasigns the variable to point to the new memory location with the new String.

The creation of a new string as a result of a concatenation, requires time that is proportional to the
length of the resulting string.

Therefore, the overall time taken by this algorithm is proportional to 1 + 2 + --- +n. Which is O(n?). It
resembles a loop inside a loop.

Three-Way Set Disjointness

The worst case scenario when checking the disjointness of 3 sets is that eventually it is disjoint. None of
them share a common value present at all of them. An algorithm that evaluates for each element in setA
whether it is in setB and setC may require 3 loops, which are nested.

//Returns true if there is no element common to all three arrays.
public static boolean disjointl (int[] groupA, int[] groupB, int[] groupC) {

for (int a : groupA)

for (int b : groupB)
for (int c : groupC)
if ((a == b) && (b == ¢))
return false; // we found a common value
return true; // if we reach this, sets are disjoint

}

This is O(n®) as in the worst case scenario each of the sets have size n. However, if an element a does not
match with any element in B it is a waste of time to check if there’s a match in C.

//Returns true if there is no element common to all three arrays.
public static boolean disjoint2(int[] groupA, int[] groupB, int[] groupC) ({
for (int a : groupAd)
for (int b : groupB)

if (a == b) // only check C when we find match from A and B
for (int c : groupC)
if (a == ¢) // and thus b == c as well

return false; // we found a common value
return true; // if we reach this, sets are disjoint

12
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In the second algorithm:

1. The management of the for loop over A requires O(n) time.

2. The time of the for loop over B accounts for a total of O(n2) (loop inside a loop)

3. There are at most n such pairs (a,b) where a#b

4. Therefore, the management of the loop over C and the commands within the body of that loop
use at most O(n?). This is because the commands within the body of that loop are a constant,
and big-Oh ignores constants if the degree of the polynomial is bigger than 1. And for each
element in C (that is, for n times) we check only against 1 remaning set, that is all the a’s that
don’t exist in B. Comparing 2 sets is O(n?). Other way of seeing it would be that after O(n?) after
A*B, there’s an constant body check in loop B equal to n, so O(n?+n) = O(n?)

Element uniqueness
//Returns true if there are no duplicate elements in the array.
public static boolean uniquel (int[] data) {

int n = data.length;

for (int J = 0; 7 < n - 1; j++)

for (int k = jJ + 1; k < n; k++)
if (data[j] == datalkl])
return false; // found duplicate pair

return true; // if we reach this, elements are unique
}
The worst-case running time of this method is proportional to (n-1) + (n-2) +---+2+1,0bserve that there

are 2 nested loops. This is O(n?).

Using Sorting as a Problem-Solving Tool

By sorting the array of elements, we are guaranteed that any duplicate elements will be placed next to
each other. Thus, to determine if there are any duplicates, all we need to do is perform a single pass
over the sorted array, looking for consecutive duplicates.

//Returns true if there are no duplicate elements in the array.
public static boolean unique2 (int[] data) {
int n = data.length;
int[] temp = Arrays.copyOf(data, n); // make copy of data
Arrays.sort(temp); // and sort the copy
for (int j = 0; 7 < n - 1; j++)
if (temp[j] == temp[]j + 1]1) // check neighboring entries
return false; // found duplicate pair
return true; // if we reach this, elements are unique
}
The best sorting algorithms (including those used by Array.sort in Java) guarantee a worst-case running

time of O(nlog n). Once the data is sorted, the subsequent loop runs in O(n) time.
The entire algorithm runs in O(nlog n + n) = O(nlog n) time.

Prefix Averages
Given a sequence x consisting of n numbers, we want to compute a sequence a such that a; is the
average of elements xq,...,x;, for j=0,...,n-1, that is:
j
_ Li=oXi
Q= ——-—
j+1

13
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Prefix average: quadatric-time algorithm
It computes each element aj independently, using an inner loop to compute that partial sum.

//Returns an array a such that, for all j, al[j] equals the average of x[0],
., o x[7].
public static double[] prefixAveragel (double[] x) {
int n = x.length;
double[] a = new double[n]; // filled with zeros by default
for (int j = 0; j < n; Jj++) |

double total = 0; // begin computing x[0] + ... + x[7]
for (int i = 0; i <= j; i++)

total += x[1];
alj] = total / (3 + 1); // record the average

}

return a;

Calling this method with a sample array {7.0,5.0,7.0, 5.0}returns:
7.0=7/1

6.0 = (7+5)/2

6.333333333333333 = (7+5+7)/3

6.0 = (7+5+7+5)/4

1. The initialization of n = x.length at line 3 and the eventual return of a reference to array a at line
11 both execute in O(1) time.

2. Creating and initializing the new array, a, at line 4 can be done with in O(n) time, using a
constant number of primitive operations per element.

3. The body of the outer loop, controlled by counter j, is executed n time. So we have O(n) time.

4. The body of the inner loop, which is controlled by counter i, is executed j+1 times. The inner
loop, is executed 1+ 2+ 3+ - + n times, which is n(n+1)/2 in other words, O(n?) time.

The running time of implementation prefixAveragel is given by the sum of these terms. The first term is
0(1), the second and third terms are O(n), and the fourth term is O(n?) which is O(n?)

Prefix average: linear-time algorithm

You can achieve the same result without doing two nested loops. Which is not only more readable but
also is O(n)

public static double[] prefixAverage?2 (double[] x) {
int n = x.length;
double[] a = new double([n]; // filled with zeros by default
double total = 0; // compute prefix sum as x[0] + x[1] +
for (int j = 0; j < n; Jj++) {
total += x[]j]; // update prefix sum to include x[7j]
aljl] = total / (J + 1); // compute average based on current sum
}

return a;

14
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Complexity analysis: proof methods [Section 4.4]

4.4.1 By Example
To justify claims of the generic form “There is an element x in a set S that has property P” we only need
to produce a particular x in S with such property P.

Similarly, to justify that a claim is false of the generic form “For all...” we just need to provide a
particular x that does not contain such property. That is a counter example.

4.4.2 The Contra Attack

Proof by contrapositive. Sometimes the contrapositive, which is equivalent to the initial statement,
might be easier to prove. See CSE1300 Reasoning and Logic.

Proof by contradiction. We reach a contradiction in the statement that is the exact opposite of the
original statement. A contradiction in the opposite statement makes the original statement true.

4.4.3 Induction and Loop Invariantes

Statements that use “for all n>=1...” it might be possible to use induction as a proof method. It shows
that there is a sequence of implications that starts with something known to be true (base case) and
leads to showing that k+1 for all k is true, so contiunity proof. Proving the induction step and using the
property of Natural number continuity (so, by the principle of induction), the initial argument can be
proven. The inductive argument is a template for building a sequence of direct justifications.

Justification: We will justify this equality by induction.

Base case: n = 1. Trivial, for | =n(n+1)/2,ifn=1.

Induction step: n > 2. Assume the inductive hypothesis is true for any j < n.
Therefore, for j =n—1, we have

]l (n—1)(n—1+1) (n—1)n

;.);,": 2 T2

Hence, we obtain

n n—1 2 2
. . (n—1)n 2n+n"—n n"+n n(n+1)
i;f—n+f;1—n+ 3 = > == > s
thereby proving the inductive hypothesis for n. [ |

Loop invariant:

Too prove that some statement L about a Loop is correct, define L in terms of a series of smaller
statements, where:

1. Theinital claim Lo is true before the loop begins.

2. |If Ljais true before the iteration j, then L; will be true after iteration j

3. The final statement, L, implies the desired statement to be true.
https://www.youtube.com/watch?v=3YP6NP1 tFQ
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Lecture 1 & 2 & Exercises

A function f(n) is O(n) if and only
if we can put a factor before n
such that the result will always be
greater than f(n) for values of n
above some value.

Indeed for f(n) is O(n):

f@)is 0(m) & 3¢,n0 (0 < c A0 <o A(Vn(n 2 ng = f(n) < ¢ m)))
for f(n) is O(1):

f()is 0(1) & 3¢,n0 (0 < c A0 < g A (Yn(n 2 1o = f(n) < c - 1))
for f(n) is O(x):

f)is0(x) & 3c,ng (0 < cA0<ngA(Vr(nzng = f(n) <c-x)))

change x for whichever O(type) you want.
for f(n) is O(g(n)):
F(n) is 0(g(n)) © 3¢, ng (o <cn0<ngA(Yn(n2ng = fm)<c- g(n))))
This is the one used in formal proofs of functions.

SSf(n)\ is\ O(g(n))\leftrightarrow\exists ¢,n_0(0<c\land 0<n_0\land (\forall n(n\geq n_0\Longrightarrow
f(n)\le c\cdot g(n))))$S

How to prove such functions?

Choose a ¢>0 and an ng > 0, take an arbitrary n 2 no, and show that f(n) < c * g(n)

What ¢ and ng can we choose to prove that 2n+ 10 is O(n)?

(a) €¢=0, np =100
(b)) c=1 nm=235
(c) e=2,np=15
(d) c=3 ng=11

Because:
f(11) <3 * 0(11)
2*¥11+10 < 3*11

32<33

16
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Theorem: 2n% + 5n + 49 is O(n?)
Proof.
From the definition of f(n) is O(g(n)) we have that

f(n)is0(g(n)) < 3c,ny (0 <cAO<ngA (Vn(n >ny= f(n)<c- g(n))))

“f(n) is O(g(n)) iff there exists a c and no that are bigger than 0 and that have the property that for all n,
iff n is greater or equal to ng then f(n) is less or equal to ¢ * g(n)”.

Since we part from taking the definition f(n) is O(g(n)) as true, we just need to find a ¢c>0 and an ng >0,
whereby if we have an arbitrary n 2 no, we can show that f(n) < c * g(n).

Take ¢ =3, no = 10, and an arbitrary n n > no. This means that for all n > 10, f(n) < 3 * n2.
Therefore, we have that for all all n > 10:
f(n)/n?<3
(2n?+5n+49)/n?<3
2+5/n+49/n*><3
5/n +49/n? < 1, which is true for n = 10 since 5/10 + 49/100 < 1
and it is also true for any value of n > 10 as the left side of the equation will only get smaller.
Therefore, for all n > 10, 2n% + 5n + 49 is O(n?)
Q.E.D.
O(g(n)) = g(n) OR FASTER
Omega(g(n)) = g(n) OR SLOWER

Theta(g(n)) = O(g(n)) and Omega(g(n)), which means tightes bound of O(g(n)) which means precisely g(n)

Which of these functions are O(n?)? What is the tightest bound on f(n) = 807
5 Answer: 0(1)
50n~ 4 100
(b) 3n? +5n3 +4
& n* Is f(n) is O(n) == f(n) is O(n?) true for all f(n)?
E
@ 80n+5 Answer: Yes!
(e) 2"
80

(8 loga(n)

17
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Let R be a relation such that (f,g) € R iff f(n) is O(g(n))). Is R an

equivalence relation?

(a) Yes
(b) No, R is not reflexive

€D No, R is not symmetric
No, R is not transitive

No, R is not reflexive and not symmetric

f) No, R is not reflexive and not transitive
) No, R is not symmetric and not transitive

No, R is not reflexive, not symmetric and not transitive

This means that f(n) is O(g(n)) but g(n) is not necessarily O(f(n))

A function f(n) is Q(g(n)) if and only if we can put a factor before n such that

the result will always be smaller than f(n) for values of n above some value. How can
this be written in predicate logic?

f(n)is0(g(n)) < 3c,ng (0 <cAO<ngA (Vn(n >ny= f(n) =>c- g(n))))

SSf(n)\ is\ O(g(n))\leftrightarrow\exists c,n_0(0O<c\land 0<n_0\land (\forall n(n\geq n_0O\Longrightarrow
f(n)\ge c\cdot g(n))))$$

Which of these functions are Q(n?)?
Given that a function f(n) is ©(g(n)) if f(n) is both O(g(n)) and Q(g(n)).

5
( On® + 100 Which of these functions are ©(n?)?
) 3n* +5n° + 4
4 50n% + 100
(b) 3n%+5n+4

n
)
(d 80n+5 (c) n*
e)) 2" (d) 80n+5
M) 80 ok
(g) loga(n) (g) loga(n)
For theta:

SSf(n)\ is\ O(g(n))\leftrightarrow\exists,n_0(0<c\land 0<n_0\land (\forall n(n\geq n_0\Longrightarrow
f(n)\le c\cdot g(n))\land (n\geq n_0\Longrightarrow f(n)\ge c\cdot g(n))))$S

SSf(n)\ is\ O(g(n))\leftrightarrow\exists,n_0(0<c\land 0<n_0\land (\forall n(n\geq n_0\Longrightarrow
f(n)= c\cdot g(n))))$$

18
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Let R be a relation such that (f,g) € R iff f(n) is ©(g(n))). Is R an

equivalence relation?

(a) Yes

Counting primitives (raw vs constants) operations:

public static int MaxSRDifferencel(List<Integer> SR) {

int currentMax = 0; // 1
for(int i1 = 0; i < SR.size(); i++) // 1+ (n+1)+2n
for(int j = 0; j < SR.size(); j++) // (14 (n+ 1)+ 2n)n
int SRDifference = Math.abs(SR.get(i) - SR.get(j)); // 3n?
if (SRDifference > currentMax) // n?
currentMax = SRDifference; // n?
return currentMax; // 1
} // Total :7n* +5n+3

public static int MaxSRDifference2(List<Integer> SR) {

int currentMax = 0; // 1
for(int i = 0; i < SR.size(); i++) // 1+ (n+1)+2n
for(int j = i+l1; j < SR.size(); j++) /7 2n+ (n(n+1)/2) + 2(n(n —1)/2)
int SRDifference = Math.abs(SR.get(i) - SR.get(j)); // 3(n(n—1)/2)
if (SRDifference > currentMax) // 1(n(n—=1)/2)
currentMax = SRDifference; // Yn(n—1)/2)
return currentMax; /1
} // Total : 4n® +2n + 3
public static int MaxSRDifference3(List<Integer> SR) { o
int currentMax = 0; // 1
for(int i = 0; i < SR.size(); i++) /f 1+ (n+1)+2n
int thisSR = SR.get(i); // n
if (thisSR > currentMax) //n
currentMax = thisSR; // n
int currentMin = Integer.MAX_VALUE; // 1
for(int 1 = 0; i < SR.size(); i++) // 1+ (n+1)+2n
int thisSR = SR.get(i); // n
if (thisSR < currentMin) // n
currentMin = thisSR; // n
return currentMax - currentMin; /]2
} // Total :12n+ 8

We can observe from here that there is not a consensus where it comes to identifying which operations
count as a primitive operation. Furthermore, we already know that these might also have different real
times.

In the next exercise we can see that it does not matter what constitutes as a primtive, the number of
primitives per line can be reduced to just a constant. What we will see that since we use big-Oh
notation, the focus is on observing the relation with n. Do we see a constant time? a linear (n) time?
quadratic (n?)? logaritmic? etc.
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Big-Oh in practice

» What is the tightest bound on the runtime of method f(int[] x)?

1 public static int f£(int[] x) {

2 int sum; //

3 switch(x.length) { /¢

4 case 1: // e

5 sum = 2; // e3

6 break; // es

7 default: // cs

8 sum = 0; /! ¢

9 }

10 for(int 1 : x) { // er-n+cg
11 sum += Math.sqrt(i < 10 7 i : i >>> 1); f// co-n

12 1

13 return sum; [/ ¢l
14} // Total . (g + @) - n+a+ca+eo+ec3+a+es+ c+cg+ cio

// Total : c11 - n+ c12

Which is O(n)

Recursion [Chapter5]

5.1 Illustrative examples

Recursion is a technique by which a method makes one or more calls to itself. When one invocation of
the method makes a recursive call, that invocation is interrupted (the return address is saved and the
new instruction is executed) until the recursive call completes.

The factorial function
The facotiral of a positive integer n, denoted n!, is defined as:

n'-{ 1 ifn=20
n‘n—-1)-n—-2)..3:2-1 ifn>1

Application of the factorial: It is used to find the number of ways in which n distinct items can be
arranged into a sequence, that is the number of permutations of n items

permutation: each of several possible ways in which a set or number of things can be ordered or
arranged.

For example 3 characters a,b,c can be arranged in 3!=3*2*1=6 ways: abc, acb, bac, bca, cab, and cba.

The picewise function above can be simplifed int o a recursive definition:

nl—{ 1 ifn=0
T tn-(n-1) ifn>1

We have (one or more) base case at n! = 1 for n = 0. We have one or more recursive cases, which define
the function in terms of itself.
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public static int factorial (int n) throws IllegalArgumentException ({

if (n < 0)

throw new IllegalArgumentException(); // argument must be nonnegative
else if (n == 0)

return 1; // base case
else

return n * factorial(n - 1); // recursive case

This method does not use explicit loops. Repetition is achieved through repeated recursive invocations
of the method.

return 5 * 24 = 120
factorial(5) \
q return 4 x 6 = 24
factorial(4) : \
factorial(3) :
factorial(2) ¢
return 1 x 1 =1

return 3 x 2 =16
factorial(1) . f
factorial(0)

return 1
Figure 5.1: A recursion trace for the call factorial(5).

return 2 x 1 =2

Fractal ruler
If you zoom in in a big ruler from meters

——0 e 0 -—0

- - _ to mm, going through all the in between
-- -- -= measures, you see that a meter can be

- - - divded by 2, half a meter is 5dm, if you
- - -1 L

_ _ _ zoom to 1dm a dm can be splitin 2 and
- - -— you get 5¢cm, if you zoom in you get 1cm,
- - - etc. and all these zooms have the same
Tt o 2 image pattern.

-—- ——— -— 3

T T 1

(a) (b) (c)
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Binary search

Binary search is a recursive algorithm that efficently locates a target value within a sorted sequence of n
elements stored in an array. We will see that it will help us reduce the O time from O(n) to ***instert***
making it one of the most important computer algorithms and the reasons why we often store data in
sorted order.

Take the following array as an example:

01 2 3 456 7 8 91011 12 13 14 15
[2]4]5]7]8]9]2]1a]17]19]22]25]27]28]33]37]

Figure 5.4: Values stored in sorted order within an array. The numbers at top are
the indices.

Linear search O(n): When the sequence is unsorted, the standard approach to search for a target value
is to use a loop to examine every element, until either finding the target or exhausting the data set

sorted and indexable sequence: The bible has 1200 pages and you have to try to guess which page |
have randomly chosen. You could progressively name a one page after the other, but that could take
you 1200 tries in the worst case and on average 600 tries. Or we could play “higher” and “lower” and
split the options in half. Let’s say I've chosen page 610.

You: 1200/2 = 600

Me: higher!

You: (1200+600)/2 = 900

Me: lower!

You: (900+600)/2 = 750

Me: lower!

You: (750+600)/2 = 675

Me: lower!

You: (675+600)/2 = 638 (rounded)
Me: lower!

You: (638+600)/2 = 619

Me: lower!

You: (638+600)/2 = 610 (rounded)
Me: Yes!

It took us just 7 tries! In the longterm, this search algorithm will work best on average. The algorithm in
the next pages has a slightly different base case logic but follows the same “halving” approach.
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We call an element of the sequence a candidate if, at the current stage of the search, we cannot rule
out that this item matches the target.

The algorithm maintains two parameters, low and high, such that all the candidate elements have index
at least low and at most high with the sarting values of low = 0 and high = n-1

median candiadate: mid = |(low +high)/2| (floor)

So, in our exampleL candidate = all the non-rulled out bible pages. Target = page 610. In the binary
search algorithm we consider:

e |[f the target (610) equals the median (of current highest and lowest possible bible pages)
candidate, then we have found the item we are looking for, and the search terminates.

¢ [If the target is less than the median candidate, then we recur on the first half of the sequence,
that is, on the interval of indices from low to median-1.

¢ If the target is greater than the median candidate, then we recur on the second half of the
sequence, that is, on the interval of indices from median+1 to high

If the element does not exist in the array we get an unsuccessful search where low > is an emtpy.

Therefore binary search manages to run in O(log n) time. Computer Science logs are base 2. So, an n of 1
billion takes only 30 operations. Example of binary search below:

/**

* Binary Search

* @param data = ASC SORTED int array

* @return Returns true 1f the target value is found

* @low - smallest possible candidate
* @high - largest possible candidate
*/

public static boolean binarySearch (int[] data, int target, int low, int high)
{
if (low > high)
return false; // interval empty,; no match

else {
int mid = (low + high) / 2;
if (target == data[mid])

return true; // found a match
else if (target < data[mid])
return binarySearch(data, target, low, mid - 1); // recur left of
the middle
else
return binarySearch(data, target, mid + 1, high); // recur right
of the middle
}
}

/**
* Lazy method call that implicitly takes [0,data.length-1] as interval
*/
public static boolean binarySearch(int[] data, int target) {
return binarySearch(data, target,0,data.length-1);
}
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File systems
File-system directories (also called folders) are defined by the OS in a recursive way.

You have a top-level directory, and the contents of this directory consists of files and other directories.
The OS allows directories to be nested arbitrarily deep (as long as there is memory available) but
eventually there will be a base directory without folders in it.

Managing directories is done with recursive algoirhtms, such as computing the total disk usage for all
files and folders witihin a particular directory.

5124K
{user/rt/courses/
1K
249K
cs016/
2K
10K 229K

grades homeworks/ programs,,-’
1

8K 1K / \p

L~

hw1| |hw2| |hw3 pri pr2 r3 demos/
3K || 2K | | 4K | [57K||97K]| |74K 1K 1K
buylow | | sellhigh market
26K 55K 4786K

immediate disk space: disk space used by each entry
cummulative disk space: disk space used by that entry and its nested folders.
¢s016 has 2k of immediate space but 249 of cummulative space.

The cumulative disk space for an entry can be computed with the immediate disk space used by the
entry plus the sum of the cumulative disk space of its nested folders. In pseudocde:

Algorithm DiskUsage( path):
Input: A string designating a path to a file-system entry
Output: The cumulative disk space used by that entry and any nested entries
total = size( path) {immediate disk space used by the entry}
if path represents a directory then
for each child entry stored within directory path do

total = total 4+ DiskUsage( child) {recursive call}

return total

Code Fragment 5.4: An algorithm for computing the cumulative disk space usage

nested at a file-system entry. We presume that method size returns the immediate
disk space of an entry.
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Java Implmentation:
/**
* Calculates the total disk usage (in bytes) of the portion of the file
system rooted
* at the given path, while printing a summary akin to the standard 'du' Unix
tool.
*/
public static long diskUsage (File root) {
long total = root.length(); // start with direct disk usage
if (root.isDirectory()) { // and if this is a directory,
for (String childName : root.list()) { // then for each child
File child = new File(root, childName); // compose full path to
child
total += diskUsage(child); // add child’s usage to total
}
}
System.out.println(total + "\t" + root); // descriptive output
return total; // return the grand total

8 /user/rt/courses/cs016,/grades

3 /user/rt/courses/cs016 /homeworks/hw1

2 /user/rt/courses/cs016 /homeworks /hw2

4 /user/rt/courses/cs016 /homeworks/hw3

10 Juser/rt/courses/cs016 /homeworks

57 /user/rt/courses/cs016 /programs/prl

97 /user/rt/courses/cs016,/programs/pr2

74 Juser/rt/courses/cs016/programs/pr3

229  Juser/rt/courses/cs016/programs

249  /user/rt/courses/cs016

26 /user/rt/courses/cs252 /projects /papers/buylow
55 /user/rt/courses/cs252 /projects /papers/sellhigh
82 /user/rt/courses/cs252 /projects/papers

4786  /user/rt/courses/cs252 /projects/demos/market

4787  /user/rt/courses/cs252/projects/demos

4870 /user/rt/courses/cs252/projects

3 /user/rt/courses/cs252 /grades

4874  /user/rt/courses/cs252

5124  /user/rt/courses/

Figure 5.8: A report of the disk usage for the file system shown in Figure 5.7, as
generated by our diskUsage method from Code Fragment 5.5, or equivalently by
the Unix/Linux command du with option -a (which lists both directories and files).

It will first go as deep as possible until hitting the directory without folders and then it will display its
size, then it will return, repeat the same process and once all directories at a directory have been called,
then the cummulative size of such location is displayed, and so on.
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5.2 Analyzing Recursive Algorithms

With a recursive algorithm, we account for the number of operations within the body of a call. Then we
can account for the summation of all calls. Each recursive method has its own dynamics, so they need to
be carefully analysed. For each of the previous examples we have the following results.

Computing Factorials big-Oh time

nl_{ 1 ifn=0
" tn-(n-1) ifn>1

public static int factorial (int n) throws IllegalArgumentException {

if (n < 0)
throw new IllegalArgumentException(); // c0
else if (n == 0)
return 1; // cl
else
return n * factorial(n - 1); // ¢c2 + ¢c3 * #cummulative f(n-1)calls

1. Let’s try to find the number of cummulative calls:
Since we only accept n>=0. We have that if n =0, that’s the base case which is 1 call.
then we have each of the integers from 1 to n, that is, a total of n integers making a call. if we
sum n calls + the base call we get a total of n+1 calls.

2. Since f(n) has c0 + c1 + c2 + c3*cummulative f(n-1) calls, we have f(n) has c4 + c3*n. Therefore
f(n) is O(n).

Computing Fractal (like some tree branches) big-Oh time

Let’s say that the example of the ruler has the property that calling the method once and notatc=0=
basecase, will spawn two calls, and then each of those two calls will span other two. We get into a tree
situation where for ¢ 2 0, a call to drawlInterval(c) results in precisely 2¢ - 1 lines of output.

Proof.

We can see that drawlnterval(0) generates no output and thereferoe 2°—1 = 0 is true, which serves as a
base case for our claim.

Recursive case:

drawlnterval(n) = c1+2*(drawlnterval(n-1))

= c1+2*( c1+2*(drawlnterval(n-2)))

= c1+2*( c142*( c1+2*(drawlnterval(n-3))))

= c1+2*c1+4*( c1+2*(drawlnterval(n-3)) = 3*c1+4*c1+8*(drawlInterval(n-3))

= 7*c1+8*(drawlInterval(n-3))

repeat n times (until reaching base case)

(2"-1)*c1+2"*(drawlnterval(n-n)) = (2"-1)*c1+2"*(drawlnterval(0)) = (2"-1)*c1+2"*0 = (2"-1)*c1

Therefore f(n) is O(2")
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Computing Binary Search Time
As in all recursive functions. The running time is proportional to the number of recursive calls performed
and such number is multiplied to the “immediate time” of the recursive function body.

In the binary search example, the “immidate time” (that is the folder space without regarding sub
folders), was equal to O(1). so O(1) will be multiplied by the number of recursive calls. Which in this case
is expected to be log n + 1 in the worst case secnario.

Proposition: The binary search algorithm runs in O(log n) time for a sorted array with n elements. Where
n is bigger than 0

Justification: To prove this claim, a crucial fact is that with each recursive call
the number of candidate elements still to be searched is given by the value

high — low + 1.

Moreover, the number of remaining candidates is reduced by at least one-half with
each recursive call. Specifically, from the definition of mid, the number of remain-
ing candidates is either

low + high high — low + 1
(mid — 1) —low + 1 = {#J_m@%

high— (mid+ 1)+ 1 = high— < 5

Initially, the number of candidates is n; after the first call in a binary search, it is
at most n/2; after the second call, it is at most n/4; and so on. In general, after
the j™ call in a binary search, the number of candidate elements remaining is at
most 71/2/. In the worst case (an unsuccessful search), the recursive calls stop when
there are no more candidate elements. Hence, the maximum number of recursive
calls performed, is the smallest integer r such that

P
27 ’

or \‘low—l—hith < high — low + 1

Since we know that n > 0, we also have that r > 0 so multiplying both sides of the equations with 2"
wont change the sign of the inequality. Then we have that n < 2"

log(n) < log(2")
log(n) <r

Being r the smallest integer such that r > log n, we have r = |logn]|+1. That means that binary search runs
in O(log n) time.

Disk Usage

amortization: Counting the number of nested loops does not provide the tight upper bound, as it can be
sometimes proved that sometimes O(n) is not achieved at a sepcific level, therefore making the
assumption that f(n) runs at O(n'°°*) wrong.
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5.3 Properties of recursive algorithms

linear recursion: If a recursive call starts at most one other

Factorial is an example, and also binary search (despite the binary prefix) since from within the
recursion body you call at most one other recursion.

Other examples include: summing array elements, reversing elements of an array, power
function (with int powers example)

binary recursion: If a recursive call may start two others

Examples: fractal ruler, summing elements of a sequence (which has O(log n) space but O(n)
time.

multiple recursion: If a recursive call may start three or more others, such as diskSpace method.
Multiple recursion can be used in algorithms that solve a combinatorial puzzle by enumerating
and testing all possible configurations.

5.4 Designing recursive algorithsm

1.

Test for base cases: These base cases should be defined so that every possible chain of recursive
calls will eventually end at a base case.

Recur: If not a base case, we perform one or more recursive calls that progress towards a base
case.

Recursion Limitations

An Inefficient Recursion for Computing Fibonacci Numbers

In Section 2.2.3, we introduced a process for generating the progression of Fi-
bonacci numbers, which can be defined recursively as follows:

B =0
=1
F, — Fya+F ) forn>1.

Ironically, a recursive implementation based directly on this definition results in the
method fibonacciBad shown in Code Fragment 5.13, which computes a Fibonacci
number by making two recursive calls in each non-base case.

/#* Returns the nth Fibonacci number (inefficiently). */
public static long fibonacciBad(int n) {
if (n <=1)
return n;
else
6 return fibonacciBad(n—2) + fibonacciBad(n—1);

7}

Code Fragment 5.13: Computing the n® Fibonacci number using binary recursion.

N R O

Lh

Unfortunately, such a direct implementation of the Fibonacci formula results
in a terribly inefficient method. Computing the 2™ Fibonacci number in this way
requires an exponential number of calls to the method.

We can compute Fn much more efficiently using a recursion in which each invocation makes only one
recursive call. Rather than having the method return a single value, which is the nth Fibonacci number,
we define a recursive method that returns an array with two consecutive Fibonacci numbers Fy, Fn1
using the convention F_;=0.
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Now we return twice the data but execute half the recursion calls. Since there is only one call per body
and the operations within the body are constant the algorithm below runs at O(n) time.

//Returns array containing the pair of Fibonacci numbers, F(n) and F(n-1). */
public static long[] fibonacciGood(int n) {
if (n <= 1) {
long[] answer = {n, 0};
return answer;
} else {
long[] temp = fibonacciGood(n - 1); // returns {Fn-1, Fn-2)}
long[] answer = {temp[0] + temp[l], temp[O0]}; // we want {Fn, Fn-1}
return answer;

}

Infinite recursion

To combat against infinite recursions, the designers of Java made an intentional decision to limit the
overall space used to store activation frames for simultaneously active method calls. If this limit is
reached, the Java Virtual Machine throws a StackOverflowError. A typical value might allow upward of
1000 simultaneous calls. While not a problem to binarySearch, could be a problem to other recursive
methods. You can reconfigure the Virtual Machine to allow for greater space for nested method calls, or
you could use traditional loops instead of recursion.

Eliminating Tail recursion
We can use the stack data structure, which we will introduce in Section 6.1, to convert a recursive
algorithm into a nonrecursive algorithm by managing the nesting of the recursive structure ourselves.

tail recursion: A recursion is a tail recursion if any recursive call that is made from one context is the
very last operation in that context. They can be automatically reimplemented nonrecursively by
enclosing the body in a loop for repetition, and replacing a recursive call with new parameters by a
reassignment of the existing parameters to those value. many programming language implementations
may convert tail recursions in this way as an optimization.

1 /#x Returns true if the target value is found in the data array. */

(¥

3 Ent low = 0; if (low > high)

4 int high = data.length — 1; return false;

5 while (low <= high) { else {

6 int mid = (low + high) / 2; int mid = (low + high) / 2;

7 if (target == data[mid]) if (target == data[mid])

8 return true; return true;

9 else if (target < data[mid]) else if (target < data[mid])

10 high = mid — 1; return binarySearch(data, target, low, mid — 1);
11 else ———— else

12 low = mid + 1: return binarySearch(data, target, mid + 1, high);
13 } }

[4  return false; }

15 }

Instead of calling yourself again. You just update the fields within your method and run the while loop
again (with half the interval) instead of creating a new stack frame with a recursion call.

29
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Recursion exercises

» What is the tightest bound on the runtime of method f(int x)?

1 public static int £(int x) {

2 if(x < 1) { Vil

3 return 1; // 1

4 } else {

5 return f(x-1) + f(x-1); ¢ Tin-13 +-T(o~1) +2

6 }

7} // Total: 2 (iBa: < o)
8 // Total: 2T(n-1) + 3 (else)

T(n)=ca+2T(n—-1) ifn>0
T(0) = co

Where T(n) is a function of n. But to make a Big-Oh notation of the original algorithm we need to
rephrase T(n) to a different form, non dependent on T:

Unfolding of the recurrence equation

T(n)=ca+2T(n—-1) ifn>0

T(0)=co

T(n)=a+2T(n-1) by T(n)=c +2T(n—1)
=ca+2(c+2T(n-2)) by T(n—1)=c +2T(n-2)
=3c1+4T(n-2) by arithmetic
=3c1+4c1 +2T(n-3)) by T(n—2)=c +2T(n—3)
=Tc1+8T(n—3) by arithmetic
= (2" —1Da + 2kT(n — k) repeat k times
=R2"-1)a+2"T(n—n) by letting k = n
=(2"-1)a + 2" by 7(0) = o

So we have that f(n) is O(2"). But there’s an alternative way to do this:

Make an educated guess

17(n)
2T(n—1)
4T(n-2)
8T(n—3)

2"T(0)

(142484484 ... 42" g +2"¢ = (2" = 1) + 2"
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But this does not count as a formal proof.

And prove it is correct

Theorem
Given that

T(n)=ca+2T(n—-1) ifn>0
T(U} = Cp

Then T(n) = (2" — 1)1 + 2"¢co for alln > 0

Proof.
» Case k = 0:
T(0) = co by T(0) = co
= (20 —1a + 2% by arithmetic
> Case k > 0: IH: T(k) = (2% —1)c; + 2% o
T(k+1)=c +2T(k) by T(n) =ca+2T(n—1)
=a+2((2" - 1)a +2¢q) by the induction hypothesis (IH)
=c + 2(2kc1 —c + ZkCo) by the by arithmetic

= + 2" — 261 + 2%l by the by arithmetic
= (2%t — 1)¢ + 2¢t1g by the by arithmetic

since k is an arbitrary integer, the statement holds forallnn>0

Exercise

Let's go back to the splitting problem about the SRList from lecture 1. Given that
SRList is sorted, there is an algorithm that solves that problem with a better runtime
than O(n).
Hintl: you might want to use the method List.subList(int fromIndex, int tolndex),
which splits the list in O(1) time.
Hint2: you probably want to use a recursive method.

» Make an algorithm that splits the SRList in 2 lists

» Give a tight bound on the runtime of this algorithm

» Implement the algorithm

» Extra: Do an emperical analysis to check whether your algorithm and

implementation are correct

31

Q.ED



CSE1305 Algorithms & Data Structures

Answer:

/**
* Gets the index of a sorted 1ist in O(log n) (Short signature)
*/
public static int getIndex (List<Integer> list, int target) {
return getindex(list, target, 0, list.size());

}

/**

* Gets the index of a sorted list element in O(log n) (full signature)
*

*/
public static int getIndex(List<Integer> list, int target, int low, int high)
{
if (low > high)
throw new ArrayIndexOutOfBoundsException ("Ranking not in the list");

else {
int mid = (low + high) / 2; //we start at the middle
if (target == list.get (mid))

return mid; // found a match, returns INDEX
else if (target < list.get(mid)) // recur left of the middle
return getIndex(list, target, low, mid - 1);
else
return getIndex(list, target, mid + 1, high); //recur right of
the middle
}
}

/**

* Takes an SR List and adds the split contents into a lower an upper list,
in less than O(n)

*

* @param SR - List with players rankings (assume it's already sorted)

* @param lower - lower bound list reference (assume it's already empty)

* @param upper - upper bound list reference (assume it's already empty)

*/
public static void SplitlLog(List<Integer> SR, List<Integer> lower,
List<Integer> upper, int splitVvalue) {

int index = getIndex (SR, splitValue); //0(log n) search -> c1
* 1og n

lower.addAll (SR.subList (0, index)); //interval 1is [0,index) -> c2

upper.addAll (SR.sublist (index, SR.size())); //interval is [0,index) ->
c3
} //0(log n)
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BinarySearch(data,target,low,high):

CSE1305 Algorithms & Data Structures

» if low = high: =
» return low G
» mid « (low + high)/2 ¢
» if data[mid] < targetvalue: &
» return BinarySearch(data, target. mid + 1, high) T(n/2)
> else:
» return BinarySearch(data, target, low, mid) T(n/2)

T(l) = Q
T(n)=ca+T(n/2) ifn>1

N. What is the runtime complexity of this algorithm?

T(n)=c+ T(n/2)

=ca+a+ T(n/4)

= 2c1 + T(n/4)

=2c1 + ¢ + T(n/8)))
= 3ci + T(n/8)

— kea+ T(n/2))

= logz(n) - c1 + T(n/n))
= loga(n) - &1 + <o

by T(n) =c1+ T(n/2)
by T(n/2) = c1 + T(n/4)
by arithmetic

by T(n/4) = c; + T(n/8)
by arithmetic

repeat k times

by letting k = loga(n)

by T(1) = co

The runtime complexity of Binary Search is O(log(n))!

Stack frame for f
X = n/4
return at line 65

Stack frame for f
% = hif2
return at line 65

Stack frame for f
X=n

return at line 65

rS(n)
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Space complexity [Video]

We can also use O notation to compute the space complexity of an algorithm.

Memory in Java: The call stack and heap

In Java (and most programming languages) the memory is organized in two parts:

The call stack contains:

» The method arguments (primitives
and references)

» The local variables (primitives and
references) -

» The return adress (more about that 2]
in a moment) b = [1@5f184fc6

The heap contains: ¢ = [1@3feba861
» Arrays
» Objects

The call stack

public static void main(String[] args) {

1
2 int a = 4;
3 char b = ’H’;
4 String ¢ = f(a);
5 System.out.println(b + ¢);
6 }
7
8 public static String f(int x) {
9 h(x);
10 char a = g();
11 return a + "llo";
12}
13
14 public static char g() {
15 char a = ’e’;
16 h(5);
17 return a; Stack frame for main
18} args =
19
20 public static void h(int y) { a=
21 System.out.println(y); b =
2 )}
C =
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The call stack

public static void main(String[] args) {
int a = 4;

char b = ’H’;

String ¢ = f(a);

System.out.println(b + c);

1

2

3

4

5

6
7

8 public static String f(int x) {
9

h(x);
10 char a = g();
11 return a + "llo";
12}
13
14 public static char g() {
15 char a = ’e’;
16 h(5);
17 return a;
18}

20 public static void h(int y) {
21 System.out.println(y);
2 }

The call stack

1
2
3
4
5
6
7
8
9

10
11

13

public static void main(String[] args) {
int a = 4;
char b = ’H’;
String ¢ = f(a);
System.out.println(b + c);
}

public static String f(int x) {
h(x);
char a = g();
return a + "llo";

}

public static char g() {
char a = ’e’;
h(85);
return a;

}

public static void h(int y) {
System.out.println(y);
}
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Stack frame for f
X =
a =
return at line 4

Stack frame for main
args =
a=
b
c

Stack frame for h
y f—
return at line 9

Stack frame for f
X =
a=
return at line 4

Stack frame for main
args =
a=
b

C




The call stack

public static void main(String[] args) {
int a = 4;
char b = ’H’;
String ¢ = f(a);
System.out.println(b + c);
}

public static String f(int x) {
h(x);
char a = g();
return a + "llo";

-
-0 O W NN s W N

}

e
& oW

public static char g() {
char a = ’e’;
h(5);
return a;

-
- o wn

}

8

public static void h(int y) {
21 System.out.println(y);
}

L4
L]

The call stack

1 public static void main(String[] args) {
2 int a = 4;

3 char b = *H’;

4 String ¢ = f(a);

5 System.out.println(b + c);

6 1}

7

8

9

public static String f(int x) {
h(x);
10 char a = g();
11 return a + "llo";
12}
13
14 public static char g() {
15 char a = ’e’;
16 h(8);
17 return a;
18}
19
20 public static void h(int y) {
21 System.out.println(y);
2 }
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Stack frame for f
X =
a =
return at line 4

Stack frame for main
args =

a=
b
C

Stack frame for g
a=
return at line 10

Stack frame for f
X =
a=
return at line 4

Stack frame for main
args =

a =

b
c

I




The call stack

1 public static void main(String[] args) {
2 int a = 4;

3 char b = H?;

4 String ¢ = f(a);

5 System.out.println(b + c);

6 1}

7

8

9

public static String f(int x) {
h(x);
10 char a = g();
11 return a + "llo";
12}
13
14 public static char g() {

15 char a = ’e’;
16 h(5);

17 return a;
18}

19

20 public static void h(int y) {
21 System.out.println(y);

2 }

The call stack

1 public static veoid main(String[] args) {
2 int a = 4;

3 char b = 'H’;

4 String c = f(a);

5 System.out.println(b + ¢);

6 }

7

8 public static String f(int x) {
9 h(x);

10 char a = g();

11 return a + "llo";

12}

13

14 public static char g() {

15 char a = ’e’;

16 h(5);

17 return a;

158}

19

20 public static void h(int y) {
21 System.out.println(y);

2 }
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Stack frame for h
y f—
return at line 16

Stack frame for g
a =
return at line 10

Stack frame for f
X =
a =
return at line 4

Stack frame for main
args =
a=
b =

CcC =

Stack frame for g
a =
return at line 10

Stack frame for f
X =
a =
return at line 4

Stack frame for main
args =

a =
b

CcC =




The call stack

- R I - I R T

el e e e i
@ ~N M Ea W N = O

19

public static void main(String[] args) {

int a = 4;

char b = H’;

String ¢ = f(a);

System.out.println(b + ¢);
}

public static String f(int x) {
h(x);
char a = g();
return a + "llo";

}

public static char g() {
char a = 'e’;
h(5);
return a;

}

public static void h(int y) {
System.out.println(y);
}

The call stack

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

public static void main(String[] args) {

int a = 4;

char b = 'H’;

String c = f(a);

System.out.println(b + c);
}

public static String f(int x) {
h(x);
char a = g();
return a + "llo";

}

public static char g() {
char a = ’e’;
h(6);
return a;

}

public static void h(int y) {
System.out.println(y);
}
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Stack frame for f
X =
a=
return at line 4

Stack frame for main
args =
a =
b =
c

Stack frame for main
args =
a=
b =
C
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Stacks
push \ pop
A stack organizes a set of elements in a Last
In, First Out (LIFO) manner a

The two basic operations on a stack:

P pushing a new element on the stack

» popping an element from the stack

Exercise

» What is the tightest bound on the space complexity of method f(int x)?

> Extra: And what is the tightest bound on the space complexity of other methods
you have seen?

1 public static int f(int x) {
2 if(x <= 1) {
3 return 1;
4 } else {
5 return f(x-1) * x;
6 }
7}

If we have input n, we have that there will be n, n-1, n-2... 3, 2, 1 calls. [1 to n] = n calls

f(1) (basecase):
x=1

returnto 5
f(2):

x=2

returnto 5

f(n-1):

x=n-1

returnto 5

f(n):

X=n

return to somewhere

Within the body of a call we see that the amount of variables is constant. Therefore the space
complexity of f(n) = c*n which is O(n).
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Week 2. Arrays, stacks and queues

Arrays. Insertion and deletion

Arrays

An array stores a fixed-length sequence of elements of the same type.
Allows access to elements by integer indices, in 0(1) time.
Book sections 3.1.1 and 3.1.2

Arrays of primitives

In Java
Array is a reference type: variable of type array stores a reference to the actual array.

Example: scoreboard to keep 10 highest scores of a game, in order (non-increasing).

Array variable scores stores 10 highest scores as integers.

— Lengthn=10
(typearray) ;
S| 940 | 880 | 830 | 790 | 750 | 660 | 650 | 590 | 510 | 440 |Elements of type int
0 1 2 3 4 5 5 7 8 9 Indexes k= {0, ..., n-1}
L]

Java code 3.1,3.2: pages 94-95

Arrays of objects

public class GameEntry
implements Cloneable {
protected String name;

Class GameEntry: information on a game’s high score + player name. protected int score;
Array scores: } :

- information on the 10 highest scores in a game;

- the array is kept sorted.

Mikel [rop |
High score objects m m m m
(GameEntry class) m m
Array scores:
O N A A s

references to high /
score objects

o—im )

== B H

e
ot

-]
o
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Java code fragment 3.3: pi

Arrays: insert element

Add new high scorer Jill with score 740 at index 2:
Make room at index 2 by shifting subsequent elements forward (update references).

m m | it
m 750 740

it

Java code fragment 3.3: page 96

Arrays: insert element .
Time O(n)

Add element e to array scores at index i:

Shift forward the n — i non-null elements scores[i] to scores[n-1].

Set element at index i of array scores to e. Increment n.

scoes CTTTT T NN TTTTT1
2 i n

0 1

’“”“Illllllrmj:[l:[l
01 2

i n

scores [ ] | T [ 1 [ NNiNNDINNIN | 1 [ 1]
0 1 2 i n

Java coc

Arrays: remove element

Remove cheater Paul at index 3:
Shift subsequent elements backward (update references).
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Arrays: remove element Java code fragment 3.4: page 9

Time O(n)
. = Space 0(1)
Remove element e at index i of array scores:

Shift backward the n — i — 1 non-null elements scores[i+1] to scores[n~-1].
Decrement n.

scores TTTT T I-HNNN TTT11
o 1 2 i n N

scores [T T T T BN T T TT]
0 I 2

i n

scores [T 111 1 NN 1 [ 1111
0 1 2 i n

Arrays: sort

Algorithm sort (a)
Input: An array a of n comparable elements.
Output: The same array a with its elements rearranged in a
specific order (typically non-decreasing).

Output

Arrays: insertion sort

InsertionSort(a)
for k from 1 to n-1 do
insert a[k] at its proper location within a(0], a[1], ..., a[k-1]

In-place algorithm: modifies the array directly (no new array to store result).
Implicit output: array is passed by reference, no need for explicit return.

Input Output

sort
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Arrays: insertion sort

Array Current  Loop over previ | compare, shift them if out of place. Insert current element.

move
@insert | Index 1: element A,
\ A < D: shift D right.
. Insert A.

sorted  unsorted

Index 2: element C.

01234
msen
sorted
C < D: shift D right.
Eé . é C> A: no move.
Insert C.

l”"
sorted " Index 3: element B,
no move B < D: shift D right.
. B < C: shift C right.
B> A: no move.
Insert B.

sorted
o (@ Index 4: element E.
@ - g E > D: no move.
Sorted! 21

Java code fragment 3.6: page 101

Arrays: insertion sort s
Iterate over the array Sgie g(ll))
(index k from1ton —1) n-1

c-(1424t@-D)=cy k=c. B0 -
k=1

2

At iteration k: compare with previous, shift if necessary: worst-case ¢ - k comparisons

[a] [o[a]ce]e]  [ofec]efe]  [afofc[s]e]
[c] [a[cofeTefe]  [a[ofeefe]  [a[c[ofe]e]
[e] [a[c[ofee]  [afc]ofofe]  [afcfe]ofe]  [afe]c]o[e]

[A]e]c[o]e]

Arrays: testing for equality

int[) scoresl = {940,880,830,790,750,660,650,590,510,440};
int[] scores2 = {940,880,830,790,750,660,650,590,510,440};

Iength n=10

scoresl e——|940 | 880 | 830 | 790 | 750 | 660 | 650 | 590 | 510 | 440

elements (type int)
indexes k = {0, ..., n-1}

scores2 | 940 | 880 | 830 | 790 | 750 | 660 | 650 | 590 | 510 | 440

0 1 2 3 4 5 6 7 8 9

Tests for equality What is compared? Result? Time?
scoresl == gcores2 array variable (reference) false 0(1)
scoresl.equals(scores2) array variable (reference) false 0(1)

(defined for Object, compares with == by default; should be overriden)

java.utils.Arrays.equals(scoresl,scores2) array’s elements true O(n)

(loops over k to compare a[k] against blk): uses alk] == blk] for primitives, calls a[k].equals(blk]) for objects) 24
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Arrays: clone

1 GameEntry([] backup = new GameEntry[15];
2 backup = scores.clone();
3 scores[4).setScore(600);
[Mike] [Rob ] What do instructions 1 to 3 do?
105 Paul |l flann Rose sack] 1 Declares array backup for 15 GameEntry.
660 @ m 2 Clones scores and assigns to backup.

3 Sets score of element at index 4 in array scores to 600.

What is the value of
backup.length
I 1 I )| | after 1? 15 after 2? 10

|l|1|1|/l /

7 8 9  bpackup[4].getScore()
after 1? NullPointerException  after 2? 590 after 3? 600
scores (array)

Why is backup(4).getScore() 600 and not 590?

Arrays: clone

o 2 @ @ Clone makes a shallow copy
t ¢ ¢ 4 backup = scores.clone();
backup [ [y [y [ [P0
(clone) A 3\ a\ s\e6 8 o As a result, bagkup[4]and .
scores|[ 4] point to the same object.
New array backup.
Mike, m m m Elements copied by reference.
@
e @
scores |1|1|/|/|//1|1|1|1|
0 1 2 3 4 5 6 7 8 9

Arrays: deep copy

We want to preserve the integrity of our backup!
It should not change when we alter the original array scores.

We need a deep copy. How do we achieve this?

rero PoeEEE
20 Jfll 660 ff f 590 510 720 590 || I 510
B
I‘I

Llllll/ ljll.’l/l/ ll lll]

1 2 3 4 5 0 1 2 3 4 5 6 7 8 9
scores New array scoresB. backup
Elements copied by value. (deep copy of scores) 28
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Arrays: deep copy

// clone( ) signature in Object class Making a deep copy
public class Object {

protected native Object clone()
throws CloneNotSupportedException; 1. GameEntry class has to implement interface

) Cloneable, and override java.lang.Object clone().

// Cloneable indicates Object’s clone( ) 2. Create new array and copy elements one by one
// can be used to copy instances of a class into new array by invoking clone( ) on each of them.
public interface Cloneable { )
// Class overrides Object method clone( ) GameEntry[] scoresB = new GameEntry[scoresA.length];
public class GameEntry for(int k = 0; k < scoresA.length; k++)

implements Cloneable interface { scoresB(k) = (GameEntry) scoresA[k].clone();

public Object clone() {(
L]
}

Arrays: expand capacity

How can we increase the capacity of array scores to keep
information about the 20 highest scores (instead of 10)?

Solution: make a (deep) copy into a larger array.
GameEntry[] larger = new GameEntry|[2*scores.length);
for(int k = 0; k < scores.length; k++)

larger(k] = (GameEntry) scores(k].clone();
scores = larger;

Array expansion with at most n additional positions is O(n) time and O(n) space.
»

Linked Lists Singly linked list next
Singly Linked lists

element i
node /

Node stores:
head * (reference to) element;

o * reference to next node in the list.
I I I public class Node<E> (
private E element;
private Node<E> next;
public Node(E e, Node<E> n) {
A B C element = e;

next = n;

}

public E getElement() (
return element;

R : thtazs )
A List is a sequence of nodes starting from a head pointer: public Node<®> getHext() {

« tail: last node of the list; its next reference is null; return next;
o . * ] ’ )
* traversal: moving through the list following nodes pabiia Vol setmans(Nodedd> ) (
next references. next = n;

) 34
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y . Code 3.10, 3.14
SLL: insert at the head amenn TR
pace (l) if (size == () L]

tail = head;
size++;

)

newnode he.ad\‘

Create new node. LAX | o—t—— O MSP ATL BOS @
head

Insert new node: e e

have it point to old

head. LAX MSP ATL BOS %]

Update head: newnode head

point to new node. \ /

Note: newnode is a local LAX MSP ATL BOS (7}

variable, discarded upon return.

What happens if we first update the head, after creating the new node?

SLL: insert at the head

37

Code 3.10, 3.14

public void addFirst(E e) {
head = new Node<>(e, head);
if (size == 0)

tail = head;
size+s;
}
newnode head
Create new node. LAX | o=—t—— & MSP ATL BOS 1%}
newnode head
Updesa hénd. LAX | ——O MSP ATL BOS @
>

Lost reference to the list!
List unreachable, cannot

SLL: insert at the tail

perform insertion.

Java code 3.11

newtail

head
Create new node. MSP ATL BOS
head 14l tail
Find tail by traversing \
the list. Msp ATL BOS

@ |MA| et—s)

Inefficient!
How do we fix this?

46

o Time O(n)
Space 0(1)



SLL: insert at the tail

Create new node.

SLL: insert at the tail

Create new node.

Update tail’s next:
point to new node.

Update tail:
point to new node.

head

CSE1305 Algorithms & Data Structures

Time O(1)
Space 0(1)

tail

MSP

S

Java code 3.11

public void addLast(E e) {
Node<E> n =
new Node<>{e, null);
if (isEmpty()) head = n;
alse tail.setNext(n);
tail = n;
BlLZOYS;

newtail

I

ATL

MIA

BOS

head

head

head

Keep reference to tail
(in addition to head).

Time 0(1)
Space 0(1)

Java code 3.11
public void addLast(E e) {
Node<E> n =
new Node<>(e, null);
if (isEmpty()) head = n;
else tail.setNext(n);

SLL: remove head

Update head: point
to current head’s
next.

Garbage collector will
reclaim old head
node (if there are no
other references to it).

head

Time 0(1)
Space 0(1)

tail = n;
size++;
}
tail newtail
MSP ATL BOS g |MA| et—O
tail newtail
MSP ATL BOS MIA (%)
tail newtail
»
o]
MSP ATL BOS MIA 1%}
44

Java code 3.12

public void removeFirst(E e){
if (isEmpty()) return null;
E e » head.getElement();
head = head.getNext();
size-~;

if (size == 0) tail = null;
return e;
}
tail
LAX MsP ATL BOS 1%}
head tail
MsP ATL BOS @
head tail
MSP ATL BOS (%)
46
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SLL: remove tail O time
Reference to tail
doesn’t help.
Find last but one node: head nextlsTail nextisTail  nextlsTail tail
traverse list while checking
node.next and

node.next.next. |MSP| o—l—lml --'—-Iaosl } =M|A| —JI )

head nextisTail tail
Update tail:
point to last but one node. \ \I
Update tail’s next: IMSPI l [ ATL | - BOSI | 1]
set to null. | | | |
head tail

Garbage collector will

reclaim old tail node \ I
(if there are no references to it). IMSPI ’-—*—-l ATL I ~—|—+ BOSl b—l—‘ 7]

49
Circulary Linked Lists
Java code 3.15
Cl rcu la rly ' l n ked I |St public class CircularlyLinkedLis!
tail
next next n.ext\ L
LAX MsP ATL gos | ] next (implicit head)

\

Circularly linked list:
« Singly linked list (SLL) with tail’s next pointing to head node, rather than null (no explicit head).
* Operations: addFirst(e), addLast(e), removeFirst( ) as in SLL + update method rotate( ).

Only explicit reference to the tail. No head reference

Time 0(1) Java code 3.15

2 ime bli id rotate(){

CLL: rotate Space 0(1) "iE tea 1= autd)
tail = tail.getNext();

}

tail
tail LAX
"~ (head) - LAX] & (head)
BOS / MSP BOS / MSP /
(ATt~ ATCT~
Before rotation: { LAX, MSP, ATL, BOS } After rotation: { MSP, ATL, BOS, LAX }

Rotate method: updates the tail by following its next reference (implicit head).

48



CSE1305 Algorithms & Data Structures

newnode Java code 3.15

CLL: insert at head \ public void addFirst(E e){

if (size == Q) {(

tail = new Node<>(e, null)

tail STL tail.setNext(tail);
}
else {
LAX .\~ (hend) Node<E> : - now N?dc<>{e,
Create new node with: /| G Bk y-oris vl
- element; BOS 7 Msp it
- next reference pointing — ) )
to tail’s next. ATL > .
Time 0(1)
newnode Space 0(1)
tail \
Update tail’s next: point \ (head) ] sTu *

to new node.

/LAX

(newnode is a local variable /
within method addFirst(), BOS \ MS';/'
reference is not kept) ~ /
ATL [N
56
2 3 Java code 3.15
CLL: insert at tail s St ot
tail tail = tail.gotNext();
(head) { sTL d
mn Time 0(1)
Space 0(1)
Insert at the head. m
ST
tail
Rotate. STL |
(head)
58
Java code 3.15
CLL- remove head tail public E removeFirst()({
. if (isBmpty())
return null;
Node<E> h = tail.getNext();
STL if (h == tail)
head tail = null;
LAX (head) / else _ \
Get explicit pointer to head. / al::i};1mt.N|.xt(h.9Lthxl( 1)
If identical to tail, there’s gos| ¢ N MSP EEtars-RightBlansat();
only one node: set tail to - /’ ’
null. ATL [N
Time 0(1)
tail Space 0(1)
STL
Otherwise: LAX
Set tail’s next to head'’s next. /] .

gos| < | (head)

60
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Doubly linked lists

Doubly linked list (DLL)

CSE1305 Algorithms & Data Structures

header next next next next trailer
| K | Y|P | f Y| SFO | Y
prev prev prev prev
public class DoublyLinkedList<E> {
private static class Node<E> ({
private E element;
DOUb|y linked list private Node<E> prev;
Each node contains: private Node<E> next;
& E|ement' public Node(E e, Node<E> p, Node<E> n){
’ .o
* next: reference to next node; )
. 2 public E getElement(){ return element; |
» prev: reference to previous node. public Node<E> getPrev(){ return prev; |
public Node<E> getMext(){ return next; |
Sentinels header and trailer: PEblio-vold SerPxev(R Pl Frey = §i ]
. KR - public void setNext(E n){ next = n; }
* dummy nodes to simplify insertions and }
deletions (avoid special cases). private Node<E> header;
private Node<E> trailer;
private int size = 0;
.“.l-nnr:vl-’ 18 217 nana 17C_124 64
B S 2 Java code 3.16, 3.17
DLL: create/initialize W Nt
o header = new Node<>(null, null, null);
trailer = new Node<>(null, header, null)
header.setNext(trailer); L]
)
Create header node: hiiader ST'me %(11)
* element: null; pace O(1)
* prev reference: null;
* next reference: null.
Create trailer node: header trailer
* element: null; ! »
* prev reference: header;
* next reference: null.
header trailer
Point header’s next to trailer. P
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o Time O(1)

PVD
pred succ
Create new node:
By header e S I L I Sk trailer
’
* prev point to pred; 7 L 7 B . 2 L L
* next point to succ. prev prev prev prev
newnode
prev next
PVD
Set references to new node: heid prpd \ = il
* pred’s next; eacer _ next next next dasiad
* succ’s prev. U L K s 7 LGS SFO | «h_ L
prev prev next prev prev
Java code 3.17: page 126 b 67
private void addBetween(E e. Node<E> pred. Node<E> succ) { ... }
DLL: remove Timeoil)
Space O(1)
pred node succ
Get predecessor and header ..t I next I oo—_— I next . trailer
successor nodes: (r\/ BWI ,r\/ JEK (w\) sfo | AT
* Set pred as node’s prev; ] rev | Saeed Rower]
prev p v prev prev
* Set succ as node’s next.
pred node succ
next "
Link out old node: iater next I next I next i
* Set pred’s next as succ; g Y| | vk Lo ik | WV |sFO AN
* Set succ’s prev as pred. prev rev prev
prev
xt i
header e trailer
Let garbage collection next next
reclaim removed node. Y| 8w |/ | sFo | «f s
prev prev
prev
Java code 3.17 private E remove(Node<E> node) { ... } 70
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DLL: insert at the head/tail

How do we insert or remove at the head or tail of a DLL?
Hint: make use of the following methods

private void addBetween(E e, Node<E> predecessor, Node<E> successor)
private E remove(Node<E> node)

Insert at the head: public void addFirst(E e) {
addBetween(e, header, header.getNext());

}

Insert at the tail: public void addLast(E e) {
addBetweﬁp(e, trailer.getPrev(), trailer);
}

Java code 3.17: page 126 72

. . Time O(1)
DLL: remove head/tail

How do we insert or remove at the head or tail of a DLL?
Hint: make use of the following methods

private void addBetween(E e, Node<E> predecessor, Node<E> successor)
private E remove(Node<E> node)

Remove head: public E removeFirst() {
if (isEmpty()) return null;
else return remove(header.getNext());

}

Remove tail: public E removeLast() { ,
if (isEmpty()) return null;
else return remove(trailer.getPrev());
}
Java code 3.17: page 126 73
For a(n) array/list with n elements:
Array SLL CLL DLL
Access element (by index) O(1) O(n) O(n) Ofn)
Search element O(n) O(n) O(n) Of(n)
Insertion
At head O(n) O(1) O(1) O(1) addFirst(e)
At tail O(1) O(1) oO(1) O(1) addFirst(e)
Deletion
At head O(n) O(1) oO(1) O(1) removeFirst()
At tail O(1) O(n) O(n) O(1) removelast()
Clone/copy O(n) O(n) O(n) Ofn)

Advantages: efficient expansion, efficient insertion/deletion at head and tail.
Disadvantages: accessing elements requires traversal, added space for prev references.

52



CSE1305 Algorithms & Data Structures

Arrays and lists [Chapter 3 extras]

java.util Methods for Arrays
equals(A, B): Returns true if and only if the array A and the array B are
equal. Two arrays are considered equal if they have the
same number of elements and every corresponding pair
of elements in the two arrays are equal. That is, A and B
have the same values in the same order.
fill{A, x): Stores value x in every cell of array A, provided the type
of array A is defined so that it is allowed to store the
value x.
copyOf(A, n): Returns an array of size n such that the first k elements of
this array are copied from A, where £ = min{n,A.length }.
If n > A.length, then the last n —A length elements in
this array will be padded with default values, e.g.. 0 for
an array of int and null for an array of objects.
zopyOfRange(A, 5, t): Returns an array of size t — 5 such that the elements of
this array are copied in order from A[s] to A[r — 1], where
5 < 1, padded as with copyOf( ) if r > A.length.
toString(A): Returns a String representation of the array A, beginning
with [, ending with |, and with elements of A displayed
separated by string ", ". The string representation of
an element A[i] is obtained using String.valueOf(A[i]).
which returns the string "null" for a null reference and
otherwise calls A[i].toString( ).
sort(A): Sorts the array A based on a natural ordering of its el
ements, which must be comparable. Sorting algorithms
are the focus of Chapter 12.
binarySearch(A, x): Searches the sorted array A for value x, returning the
index where it is found. or else the index of where it
could be inserted while maintaining the sorted order. The
binary-search algorithm is described in Section 5.1.3.

java.util Methods for Random
nextBoolean( ): Returns the next pseudorandom boolean value.

nextDouble( ): Returns the next pseudorandom double value, between
0.0 and 1.0.

nextInt( ): Returns the next pseudorandom int value.

nextInt(n): Returns the next pseudorandom int value in the range
from 0 up to but not including n.

setSeed(s): Sets the seed of this psendorandom number generator to
the long s.
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/**
* Program showing some array uses.
*/
public class RandomArray {
public static void main(String[] args) {

int data[] = new int[10];
Random rand = new Random(); // a pseudo-random number generator
rand.setSeed (System.currentTimeMillis()); // use current time as a

seed
// fill the data array with pseudo-random numbers from 0 to 99,
inclusive
for (int i = 0; i < data.length; i++)
data[i] = rand.nextInt(100); // the next pseudo-random number
int[] orig = Arrays.copyOf(data, data.length); // make a copy of the
data array

System.out.println ("arrays equal before sort: " + Arrays.equals(data,
orig));
Arrays.sort(data); // sorting the data array (orig is unchanged)
System.out.println("arrays equal after sort: " + Arrays.equals(data,
orig));
System.out.println("orig = " + Arrays.toString(oriqg));
System.out.println("data = " + Arrays.toString(data));
}
}
Cryptography

This field involves the process of encryption, in which a message, called the plaintext, is converted into a
scrambled message, called the ciphertext. Decryption: turning a ciphertext back into its original
plaintext.

Caesar cipher: simplest encryption = offseting all the characters of a string by a fixed constant, wrapping
around Z->A

Strings in java are immutable, so we can’t change the string characters but we would need to create an
equivalent array of characters, edit the array, and then reassemble a (new) string based on the array.
Cryptogrpahy Implementation CaesarCipher available in IntelliJ worskpace

Two-Dimensional Arrays
In a two-dimensional array, where we use two indices, say i and j, the first index usually refers to a row
number and the second to a column number.

Eventhough Java arrays can only be one-dimensional what we are actually doing is an array of arrays.
Nevertheless, Java provides a built-in pseudo 2 dimensional array declaration method that makes it feel
like a real 2-dimensional array:

int[ ][ ] data = new int[8][10];

This statement creates a two-dimensional “array of arrays,” data, which is 8x10, having 8 rows and 10
columns. Data is an array of length 8 such that each, element of data is an array of length 10 of integers.
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TicTacToe Implementation available in IntelliJ workspace
Singly Linked List Implementation available in Intelli) workspace
Circulary Linked Lists

Round-Rogin scheduling
In order to support the responsiveness of an arbitrary number of concurrent processes, most operating

systems allow processes to effectively share use of the CPUs, using some form of an algorithm known as
round-robin scheduling. A process is given a short turn to execute, known as a time slice, but it is
interrupted when the slice ends, even if its job is not yet complete. Each active process is given its own
time slice, taking turns in a cyclic order. New processes can be added to the system, and processes that
complete their work can be removed.

(So, it’s a circular linked list waiting pool and we just append processes to the tail and remove them as
they are completed).

Circulary Linked List Implementation available in IntelliJ workspace
Doubly Linked Lists
Sentinels

Header and Trailer Sentinels

In order to avoid some special cases when operating near the boundaries of a doubly
linked list, it helps to add special nodes at both ends of the list: a header node at the
beginning of the list, and a frailer node at the end of the list. These “dummy” nodes
are known as sentfinels (or guards), and they do not store elements of the primary
sequence. A doubly linked list with such sentinels is shown in Figure 3.19.

header  peyt next next next _ trailer
L, | L L | Ll |
.’pﬁ JFK fpﬁ PVD O’p) SFO ."h_,/.
prev prev prev prev

Figure 3.19: A doubly linked list representing the sequence { JFK, PVD, SFO },
using sentinels header and trailer to demarcate the ends of the list.

Full implemention in Intelli) worskpace

size( ): Returns the number of elements in the list.
isEmpty(): Returns true if the list is empty, and false otherwise.
first(): Returns (but does not remove) the first element in the list.
last(): Returns (but does not remove) the last element in the list.
addFirst(e): Adds a new element to the front of the list.

addLast(e): Adds a new element to the end of the list.
removeFirst(): Removes and returns the first element of the list.

removelast(): Removes and returns the last element of the list.

If first( ). last( ). removeFirst( ), or removelast() are called on a list that is empty,
we will return a null reference and leave the list unchanged.
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Equivalence testing

The author of each class has a responsibility to provide an implementation of the equals method, which
overrides the one inherited from Object (that onlye checks a == b). The equals method must follow the
mathematical definition of “equivalence relation”:

Treatment of null: For any nonnull reference variable x. the call x.equals(null)
should return false (that is, nothing equals null except null).
Reflexivity: For any nonnull reference variable x, the call x.equals(x) should
return true (that is, an object should equal itself).
Symmetry: For any nonnull reference variables x and y, the calls x.equals(y)
and y.equals(x) should return the same value.
Transitivity: For any nonnull reference variables x, y, and z, if both calls
x.equals(y) and y.equals(z) return true, then call x.equals(z)
must return true as well.

Available Equals for arrays

a == b: Tests if a and b refer to the same underlying array instance.

a.equals(b): Interestingly, this is identical to a == b. Arrays are not a
true class type and do not override the Object.equals method.

Arrays.equals(a,b): This provides a more intuitive notion of equivalence, return-
ing true if the arrays have the same length and all pairs
of corresponding elements are “equal”™ to each other. More
specifically, if the array elements are primitives, then it uses
the standard == to compare values. If elements of the ar-
rays are a reference type. then it makes pairwise compar-
isons a[k].equals(b[k]) in evaluating the equivalence.

To support the more natural notion of multidimensional arrays being equal if
they have equal contents, the class provides an additional method:

Arrays.deepEquals(a,b): Identical to Arrays.equals(a,b) except when the elements
of a and b are themselves arrays, in which case it calls
Arrays.deepEquals(a[k],b[k]) for corresponding entries,
rather than a[k].equals(b[k]).

Cloning

Each class in Java is responsible for defining whether its instances can be copied, and if so, precisely how
the copy is constructed. The universal Object superclass defines a method named clone, which can be
used to produce what is known as a shallow copy of an object. This uses the standard assignment
semantics to assign the value of each field of the new object equal to the corresponding field of the
existing object that is being copied.

A shallow copy is not always appropriate for all classes, and therefore, Java intentionally disables use of
the clone( ) method by declaring it as protected, and by having it throw a CloneNotSupportedException
when called.
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The author of a class must explicitly declare support for cloning by formally declaring that the class
implements the Cloneable interface, and by declaring a public version of the clone( ) method. That
public method can simply call the protected one to do the field-by-field assighment that results in a
shallow copy, if appropriate. However, for many classes, the class may choose to implement a deeper
version of cloning, in which some of the referenced objects are themselves cloned.

/*A method for creating a deep copy of a two-dimensional array of integers*/

public static int[][] deepClone(int[][] original) {
int[] [] backup = new int[original.length][]; // create top-level array of
arrays

for (int k = 0; k < original.length; k++)
backup[k] = originallk].clone(); // copy row k
return backup;

/* Implementation of the SinglyLinkedList.clone method */
public SinglyLinkedList<E> clone() throws CloneNotSupportedException ({
// always use inherited Object.clone() to create the initial copy
SinglyLinkedList<E> other = (SinglyLinkedList<E>) super.clone(); // safe
cast
if (size > 0) { // we need independent chain of nodes
other.head = new Node<> (head.getElement (), null);
Node<E> walk = head.getNext (); // walk through remainder of original
list
Node<E> otherTail = other.head; // remember most recently created
node
while (walk != null) { // make a new node storing same element
Node<E> newest = new Node<>(walk.getElement (), null);
otherTail.setNext (newest); // link previous node to this one
otherTail = newest;
walk = walk.getNext (),
}
}

return other;

Stacks
Stack: definition

Stack (or pile) of elements.
We can only access/modify the top of the stack.

Last-in, first-out principle (LIFO):
* elements can be inserted at any time;
* only the last inserted element (top of the stack)
can be accessed or deleted.

Applications:
* Candy dispenser.
* Text editor undo: most recent change undone first.

N N
gz
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Stack: definition

pop

(remove)

push
(insert)

i top / peek

[access)

Stack: last-in, first-out (LIFO) collection.

Operations:
* push: insert element onto the stack;
* pop: remove element at the top of the stack;
+ top/peek: access top element, without removing.

Stack: abstraction

Abstract Data Structure (ADT)

Abstraction of a data structure, cannot be instantiated. It specifies:
* Signatures of operations on the data structure;
* May also contain constants, default or static methods, ...

Stack ADT
What methods do you expect in a Stack ADT?

Stack: abstraction

Abstract Data Structure (ADT)
Abstraction of a data structure, cannot be instantiated. It specifies:

« Signatures of operations on the data structure;
* May also contain constants, default or static methods, ...

Stack ADT
Update methods
void push(E e) adds element e to the top of the stack
E pop() removes and returns element at the top of the stack

Accessor methods
E top() returns the top element on the stack, without removing it
int size( ) returns the number of elements in the stack
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Java code 6.1

Stack ADT: Java interface LG Sopme ol BN )

Generic parameterized type (allows specification of element type at declaration)

public interface Stack<E> {

/..

* Returns the number of elements in the stack.

* @return number of elements in the stack Javadoc-style comments.

*/ Keyword examples:

int size(); @return describes output values

@param describes parameters
[ew
* Tests whether the stack is empty.
* freturn <code>true</code> if the stack is empty, <code>false</code> otherwise
®/

Methods in

an interface boolean isEmpty();
are implicitl
public. /%

* Inserts an element at the top of the stack.
* @param e the element to insert

*/

void push(E e);

} 7
Stack: example
Instruction Return Stack Instruction Return Stack /’ 3
push(s) - 57N pop() 3 EI
push(3) = 3 \ 3 isEmpty() false
5 =]
size() 2 2 3 popl) 5 /5
: 8
topl() 3 g | & isEmpty() true
3 S pop() null "
Java code 6.2
Stack: array_based public class ArrayStack<E> (...}
Top element
stack array data: E—*I 2 I 3 [ 5 [ A [ 19 I 23 ] 29 [ [ ] ] <---+» top/peek
0 1 2 C6 C5 t C3 C2 C1

w

lTopeIement
data: G—-[ 2[3[s]|.[19]23]29]aa] [ | /push(31)
0 1 2 C6 CS C4 t c-2 Ca

Top element

.[19123] ] ;[' ] ‘l \'pop(twice)

2 c-6 t c-4

w

e EAE
. 2 29 31

« Stores elements in an array of fixed capacity C.
* Top element: index t (data[t]).
+ Stack size: t+1.
10

Why is the top element at the end of the array?
Efficient element insertion/deletion! O(1)
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I head (top element)
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Java code 6.4
public class LinkedStack<E> { ...

MSP top/peek ¢«=+«-» |MSP| } {A‘lll { {wsl = (7}
push(LAX) I head (top element)
I |- - |
I“‘"I —{wse] (| 05| o
I head (top element)
pop | |
(twice),.\ff(, | dols | I |“°S| %
AN\ Stack method SLL method
= N size() size()
isEmpty() isEmpty()
push(e) addFirst(e)
* Top of the stack: head of the list, for O(1) insertions and deletions.  pop() removeFirst()
* Implementation: Reuse SLL methods (adapter design pattern). top() first()

13

This is called an adapter design pattern

Stack: complexity

Data structure  Space

Array o(c) C, array capacity

List O(n) n, number of elements in the stack
Operations Time
Obtain size size( ) 0(1)
Check if empty isEmpty( ) 0(1)
Get top element top( ) 0(1)
Insert element e at the top push(e) 0(1)
Remove and return top element pop() 0(1)

Array: fixed capacity, wastes space if overdimensioned, costs time if underdimensioned (expansion).

List: grows efficiently.

Stack: matching symbols

1 public static boolean isMatched(String expression) {
2 final String open = “({[";

3 final String close = ")}1";

4 Stack<Character> buffer = new LinkedStack<>();

5 for (char ¢ : expression.toCharArray()) {
6 if (open.indexOf(c) != -1)

7 buffer.push(c);

8 else if (close.indexOf(c) != -1) {

9 if (buffer.isEmpty())

10 return false;

11 if (close.indexOf(c) != open.indexOf(buffer.pop()))
12 return false;

13 }

14 )

15 return buffer.isEmpty();

16 )
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Time: O(n)
Space: 0(n)
Space Time
-0(1) - 0(1)
open Of1) 2
d dose 0(1) AI.I operanons J
- buffer O(1) within for =
loop are O(1). toCharArray takes O(n)
7 time but is called once,
result stored in a
temporary variable
stack operations O(1)
O(n) push, pop, isEmpty. - O(n)
toCharArray() O(n) "0(1)
I~ buffer O(n) indexOf is O(k), with k
open 0(1) the # of char nce k=3
close O(1) ma nstant. doesn’t
tha :
-0(1)




Queues
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Collection of objects.
Insertion and deletion follow first-in, first-out principle (FIFO):
* Elements can be inserted at any time, at the back of the queue.
* Only the element that has been the longest in the queue can be removed.
Applications:
* Handle calls to a call center.
* Handle printing jobs.
5 Java code 6.7
Queue: abstractlon public isterface Quous<E> { ... )
java.util.Queue methods
Queue ADT throws returns
Exception special value
Update methods
void engqueue(E e) adds element e to the tail of the queue add(e) offer(e)
E dequeue( ) removes & returns the head element (or null) remove( ) poli()
&
Accessor methods
E first( ) returns the head element, without removing it element( ) peek( )
int size( ) returns the number of elements in the queue size( )
boolean isEmpty( ) returns true if the queue is empty, false otherwise isEmpty( )
Queue: example
Instruction  Return Queue Instruction  Return / Queue
5
enqueue(5) - 5 \ dequeue( ) 5 2] /T ’J
enqueue(3) - 3 \ isEmpty( ) false

TG "ETo

2 (3

size() 2 dequeue() 3 &
hed ISl EE] 2 e
) 5 Empty()d  true. head

head
54.--_-}5 I .+.| 3 I '—I-*@ dequeue( ) null e

27
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Queue: array-based

Tl manld )" lFront of queue
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queue array data: B—tlil B [ C ] I K l

f 1 2 c6 C5 C4

Front of queue

Tall

data:[j—olArBICl

enqueue(N)
(next available

. /

C

IKILIM]NI

position is f+sz)

Tail

Front of queue |
daw:E»j;lexmmm ]
0 1 f C6 CS C4 C3 C2 Ca

dequeue()
(twice) .

The front of the queue drifts away from 0 with each dequeue operation.

29

It's done like that so adding and enqueing only takes O(1) time!

Queue: array-based

Java coge v.5
public class ArrayQueue<E> { ... )

Front | Tail

data: [ o— l ICI IKILIMINI | ]

0 C5 C4 C3 G2 C

Front | Tail Next available index a:

dats: [F—[ [ T .. [ [m[w[o]e] o-tsinc

0 : 6§ C5 f €3 C2 ForQ: f=C-4,52=4

enqueue(R) °:C“;'c4 YaRE

enqueue(Q) \ \ Front | Tail =0
date: [ —faTR] |.[ ] IMINIOIle f=c4,s=5

0, 1 2 C6 C £ G316z c1 a9 (C=4+5)%C

=(C+1)%C

=1

Allow the queue to ‘wrap around’ the array

(using the modulo operator %, the remainder of integer division).

32

Queue: array-based Time: 0(1)
Space: 0(C)
Java code 6.8
public class ArrayQueue<g>
lTaiI Front
data: [ f—[a[r] |.[ [ [m[nJoJe]
0 2 C-€ ( f GC3 '€
Time complexity Space complexity
Method big-Oh Reasoning Fields big-Oh Reasonlng.
size O(1) stored in variable sz, constant access array data 0(C) .ﬁ"ed capacity C,
isEmpty 0O(1) relies on size sz, same reasoning :::up::;:r;of
first O(1) constant access via stored index f O(1) primitive type int
enqueue O(1) insertion at available index (f + sz) % C sz O(1) primitive type int
dequeue 0(1) y deletion atindex f, updatef=(f+1)%C
Overall O(C)

No shifting of elements in enqueue/dequeue!
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Queue: list-based ;1;';:00((13)
i o SR, b T J
first( )/peek() <+-+--» | LAX Msp ATL (%]
Ihead (front) Itail / er:queue(BOS)
LAX MSP ATL BOS %)

Ihead (front) Itail

dequeue( )
(twice) (/ ATL BOS @

Queue SLL big-Oh
size( ) size( ) 0o(1)
isEmpty( ) isEmpty( ) 0(1)

* Implementation: Reuse SLL (adapter design pattern). enqueue(e) addLast(e) 0(1)

* Front: head, since tail deletion is not efficient. dequeue( ) removeFirst() O(1)

* Trade-off: Grows efficiently. More space/time than array. first( ) first() 0(1) 34

Queue
Hot potato game

* nchildren in a circle passing a hot potato around;
* potato is passed until a bell rings;
« at that point, the child holding the potato:
* passes the hot potato to the next;
* leaves the game.
* Game continues with the remaining children, until only one child is left.

What data structure should we use to implement this game efficiently?
Note: We don’t know beforehand how many children are joining.

ArrayQueue LinkedQueue something else?

o Java code 6.10,6.11
Qu eu e : CI rcu Ia r public insterface CircularQueue<i>

Passing to next

LinkedQueue
g.enqueue(q.dequeue( ))

* head Remove first, insert it at the end.
) " ] next next next [~ next
LinkedQueue ’ ) ‘ et +| sara Alex Jan
L)
tail
2 (implicit head)
2 Sara| o}
CircularQueue

CircularQueue Jan Alex| o q.rotate( )

36
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Deques
Java code 6.12

Deque s e s

Waiting line at restaurant:
« first person is called, but finds out the table is not yet available;
* |ast person gets impatient and leaves.

To support these use cases, we need
efficient insertion and deletion at the front and tail of the queue.

Double-Ended Queue (Deque) ADT (deque is pronounced ‘deck’)
public interface Deque<E>

Update methods Accessor methods
addFirst(e) insert element e at the front first() returns first element without removing
addLast(e) insert element e at the tail last() returns last element without removing

removeFirst() remove and return first element  size() returns number of elements in the deque
removelast() remove and return last element isEmpty() true if deque is empty, false otherwisaoe‘2

Deque: array and list

Array implementation List implementation

Circular array (as in queue) Doubly-linked list

Extra concern: when inserting first, decrement f DoublyLinkedList class (code 3.16,3.17)

in circular fashion, to make sure f doesn’t become implements all methods of our Deque ADT:
negative:

public class DoublyLinkedList<E>
f=(f-1+C)%C implements Deque<E> { ... }

What are the space complexities of these data structures?
What are the time complexities of their operations?

Deque: array and list

Array implementation List implementation
Circular array (as in queue) | Doubly-linked list
Space O(C) where Cis array capacity Space O(n) where nis number of elements

Deque ADT Time java.util.Deque (java.util.ArrayDeque / java.util.LinkedList)

throws exceptions returns special value
size() 0(1) size( )
isEmpty( ) 0(1) isEmpy( )
first() 0(1) getFirst( ) peekFirst( )
last( ) 0(1) getLast() peekLast( )
addFirst( ) 0(1) addFirst( ) offerFirst( )
addLast( ) 0(1) addLast( ) offerLast( )
removeFirst( ) O(1) removeFirst( ) pollFirst( )
removelast() O(1) removelLast( ) poliLast( ) 41
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The Stack and (De)Queues [Chapter 6 Extras]

A stack is Last In First Out abstract data type (ADT) that supports the following two update methods:

push(e): Adds element e to the top of the stack.
pop( ): Removes and returns the top element from the stack
(or null if the stack is empty).

Additionally, a stack supports the following accessor methods for convenience:

top(): Returns the top element of the stack, without removing it
(or null if the stack is empty).
size( ): Returns the number of elements in the stack.
isEmpty(): Returns a boolean indicating whether the stack is empty.

By convention, we assume that elements added to the stack can have arbitrary type
and that a newly created stack is empty.

Java’s Stack class remains only for historic reasons, and its interface is not consistent with most other
data structures in the Java library. In fact, the current documentation for the Stack class recommends
that it not be used, as LIFO functionality (and more) is provided by a more general data structure known
as a double-ended queue. Therefore we have our own stack interface, which we will implement for our
own stack-based classes.

public interface Stack<E> ({
int size();

boolean isEmpty();
void push (E e);
E top();

E pop();

Array based Stack
Pros:

1. Very efficient implmentation when the user knows how much memory he needs.

2. Returning the (popped) cell to a null reference is not mandatory but we do it to assist Java’s
garbage collection mechanism, which searches memory for objects that are no longer actively
and wipes’em out.

Cons:

1. Otherwise, there could be a big waste of data
2. orleadto an lllegalStateException if we run out of memory
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public class ArrayStack<E> implements Stack<E> {
public static final int CAPACITY = 1000; // default array capacity
private E[] data; // generic array used for storage
private int t = -1; // index of the top element in stack

public ArrayStack() {
this (CAPACITY) ;
} // constructs stack with default capacity

public ArrayStack (int capacity) { // constructs stack with given capacity
data = (E[]) new Object[capacity]l; // safe cast,; compiler may give

warning

}

public int size () {
return (t + 1);

}

public boolean isEmpty () {
return (t == -1);

}

public void push(E e) throws IllegalStateException {
if (size() == data.length) throw new IllegalStateException("Stack is

full") ;
data[++t] = e; // increment t before storing new item

}

public E top() {
if (isEmpty()) return null;
return datalt];

}

public E pop() {

if (isEmpty()) return null;

E answer = datalt];

data[t] = null; // dereference to help garbage collection
t--;

return answer;

Singly Link based Stack

Unlike our array-based implementation, the linked-list approach has memory usage that is always
proportional to the number of actual elements currently in the stack, and without an arbitrary capacity
limit. With the top of the stack stored at the front of the list, all methods execute in constant time.

Adapter Patern
The adapter design pattern applies to any context where we effectively want to modify an existing class

so that its methods match those of a related, but different, class or interface.
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Implementation of a Stack using a SinglyLinkedList as storage

public class LinkedStack<E> implements Stack<E> {

private SinglyLinkedList<E> list = new SinglyLinkedList<>(); // an empty
list

public LinkedStack() {
} // new stack relies on the initially empty list

public int size () {
return list.size():;

}

public boolean isEmpty () {
return list.isEmpty();
}

public void push (E element) {
list.addFirst (element) ;
}

public E top() {
return list.first();

}

public E pop() {
return list.removeFirst();

}

Matching Parentheses

/**
* Tests if delimiters in the given expression are properly matched.
*/

public static boolean isMatched(String expression) {

final String opening = "({["; // opening delimiters
final String closing = ")}1"; // respective closing delimiters
Stack<Character> buffer = new LinkedStack<>();
for (char c : expression.toCharArray()) {
if (opening.indexOf (c) != -1) // this is a left delimiter
buffer.push(c);
else if (closing.indexOf(c) != -1) { // this is a right delimiter

if (buffer.isEmpty()) // nothing to match with
return false;
if (closing.indexOf (c) != opening.indexOf (buffer.pop()))
return false; // mismatched delimiter
}
}

return buffer.isEmpty(); // were all opening delimiters matched?
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Matching HTML tags
/**

* Tests 1if every opening tag has a matching closing tag in HTML string.
*/
public static boolean isHTMLMatched(String html) {
Stack<String> buffer = new LinkedStack<>();
int j = html.indexOf ('<"); // find first ’<’ character (if any)

while (j !'= -1) {
int k = html.indexOf('>', j + 1); // find next ’>’ character
if (k == -1)

return false; // invalid tag
String tag = html.substring(j + 1, k); // strip away < >
if (!tag.startsWith("/")) // this is an opening tag
buffer.push(taqg);
else { // this is a closing tag
if (buffer.isEmpty())
return false; // no tag to match
if (!tag.substring(l) .equals (buffer.pop()))
return false; // mismatched tag

}
j = html.indexOf('<', k + 1); // find next ’<’ character (if any)

}

return buffer.iskEmpty(); // were all opening tags matched?
}
Queues

First in First Out data structure. Elements enter a queue at the back and are removed from the front.
The queue abstract data type (ADT) supports the following two update methods:

enqueue(e): Adds element e to the back of queue.

dequeue( ): Removes and returns the first element from the queue
(or null if the queue is empty).

The queue ADT also includes the following accessor methods (with first being
analogous to the stack’s top method):

first(): Returns the first element of the queue, without removing it
(or null if the queue is empty).

size( ): Returns the number of elements in the queue.

isEmpty(): Returns a boolean indicating whether the queue is empty.

By convention, we assume that elements added to the queue can have arbitrary type and that a newly

created queue is empty. - -
Our Queue ADT Interface java.util. Queue
public interface Queue<E> { throws exceptions | returns special value
int size(); enqueue(e) add(e) offer(e)
boolean isEmpty () ; dequeue() remove( ) poll()
void enqueue (E e);
. first() element( ) peek()
E first():; . ,
E dequeue () ; size() size()
} SEmpty () SEmpty ()
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Implementing a Queue with a Singly Linked List

/**
* The type Linked queue.

*

* @param <E> the type parameter

*/

CSE1305 Algorithms & Data Structures

public class LinkedQueue<E> implements Queue<E> {

private SinglyLinkedList<E> list =

list

/**

* Instantiates a new Linked queue.

*/
public LinkedQueue () {

new SinglyLinkedList<>();

// an empty

} // new queue relies on the initially empty list

public int size() {
return list.size();

}

public boolean isEmpty ()

{

return list.isEmpty();

}

public void enqueue (E element) {
list.addLast (element) ;

}
public E first() {
return list.first();

}
public E dequeue() {

return list.removeFirst();

}
}
A Circular Queue
/**

* Rotates the front element
of the queue to the back of
the queue. This does nothing
i1f the queue is empty.

*/
public interface
CircularQueue<E> extends
Queue<E> {

void rotate( );

}
Double-Ended (Deck) Queues
Such a structure is called a
doubleended queue, or deque, which
is usually pronounced “deck” to
avoid confusion with the dequeue
method of the regular queue ADT,
which is pronounced like the
abbreviation “D.Q.”

6.3.1 The Deque Abstract Data Type

The deque abstract data type is richer than both the stack and the queue ADTs.
To provide a symmetrical abstraction, the deque ADT is defined to support the
following update methods:

addFirst(e)
addLast(e):

removeFirst( ):

removelast( ):

Insert a new element e at the front of the deque.
Insert a new element e at the back of the deque.

Remove and return the first element of the deque
(or null if the deque is empty).

Remove and return the last element of the deque
(or null if the deque is empty).

Additionally, the deque ADT will include the following accessors:

first():
last( ):

size( ):

isEmpty():
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t

Returns the first element of the deque, without removing
(or null if the deque is empty).

t

Returns the last element of the deque, without removing
(or null if the deque is empty).

Returns the number of elements in the deque.

Returns a boolean indicating whether the deque is empty.



CSE1305 Algorithms & Data Structures

A Java interface, Deque, describing the double-ended queue ADT. Note the use of the generic
parameterized type, E, allowing a deque to contain elements of any specified class.

public interface Deque<E> ({
int size();

. Our Deque ADT Interface java.util.Deque
boolean isEmpty(); throws exceptions | returns special value
, . first() getFirst() peekFirst()
E first(); last() getlast() peekLast()
addFirst(e) addFirst(e) offerFirst(e)
E last();
ast 0 2ddLast(e) 2ddLast(e) offerLast(e)
void addFirst (E e); removeFirst() removeFirst() pollFirst()
removel ast() removelast() pollLast()
void addLast (E e); size() size()
SEmpiy() isEmpty()

E removeFirst();

E removelast () ;

}

Tail recursion example [O(n) time, O(1) memory vs O(2") time and O(n) memory]
You use the “accumlator”, that is an extra
‘FGC n - 30 o=l paramater that you use in the recursive function
signature, to update the returning value as you go
deep into the recursion, and once you hit the

ol a = a g . Y
bottom of the recursion, you can directly return
o N O = 30 (n. - 1) (0. * n.) the accumulator (instead of bouncing back like in

?_) the classic factorial definition).

https://www.youtube.com/watch?v=_JtPhF8MshA

fbn = gon (00

This saves time (yo go only one way) and space (you
don’t need to create an extremly large expression as
you will keep the returning value in just the 30 @) (q. b) = Q

chumulator. - / I 60 1 (q'b) e

utit'simportant to note that the language/compiler -

will need to support tail call optimisation, otherwise 30 . (a'b) = 30 ('L 1) (b'o”b)
it's not helping as much: For example with the

accumulator, a "naive" language implementation (243) = (31 5)

would still keep all the stack frames around until the

end, and return the just-received value back up the stack. Only if the language supports TCO will it
recognize the tail call and replace (overwrite) the current stack frame for the next call - which is where

the optimisation helps to reduce memory usage.

-F.l_—) 4 = fjo g (O,i)

foc 4 = ¢ % fac 3 wcac4=go‘*i
s hx (35D - 3o (+-1) (1x9) = op 3 (1Y)
:: tx (3% (2#&» \/S = 90 S~ e 2: (1/2)
b x (3% (2 2) s—og—B—11 2,3)
:QL*(?LZ) :3012‘/' =3°i(l
= ¢x ¢ J = 3
= = 24 -
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Chapter 7. List Abstractions

Efficient access! Efficient expansion!
(positional access)

Lists
pointer
head

List Abstractions

Chapter 7.1  List ADT
Chapter 7.2  Array-Based Lists
Dynamic Arrays

B

tail

List Abstractions aim to get both efficient access and expansion

List ADT

public interface List<E> {
int size();
boolean isEmpty();
E get(int i) throws IndexOutOfBoundsException;
E set(int i, E e) throws IndexOutOfBoundsException;
void add(int i, E e) throws IndexOutOfBoundsException;
E remove(int i) throws IndexOutOfBoundsException;

List ADT operations

size() returns the number of elements in the list

isEmpty() return true if the list is empty, false otherwise

get(i) returns the element at index i or an error if i is not in {0, .., size()-1} e -

‘ . - error if i is not in
set(l,. e) replaces the element at index / with e and returns the replaced element range {0, ..., size( )-1}
add(j, e) adds e at index i, moving subsequent elements one index forward
remove(/) removes and returns the element at index i, moving subsequent ({0, ..., size( )} for add)

elements anNndex backward

List: array-based

Linear array
[T T T R T T T T rerr
0 1 2 i n
EEEEEEN  EEEEEL
G 1 2 i n

Lists can be implemented using arrays:
* Linear array: fixed-capacity array, k'" element is always stored at index i = k-1.
* Circular array: fixed-capacity array, list can wrap around the array (see ArrayQueue, section 6.2).
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List: array-based
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Efficient operations per

implementation
Array-based list operations Time
Linear array
Obtain size size( ) 0(1) add(n, e) add last 0(1)
Check if it’s empty isEmpty( ) o(1) remove(n-1) removelast  O(1)
Get element at index i get(i) 0(1)
Set element e at index i set(i, e) o(1)n Circular array
Add element e at index i add(i, e) O(n) add(0, e) add first 0(1)
Remove element at index i remove(i) O(n) add(n, e) add last 0(1)
remove(0) remove first  O(1)

remove(n-1)  remove last 0(1)

Many applications add items last to the collection, mainly for storage/access, without frequent changes. Arrays are great for this!
Major drawback of arrays is fixed capacity. Circular arrays provide more space (wrap around), but linear arrays are easier to grow.

But what about the cost of expanding?

48

Dynamic array: amortized analysis

operations for each
insertion at the end

Each insertion (end) takes:
0O(1) time if array not full;
O(n) time if array is full,
including array size doubling
and insertion.

0O(n) operations are costly,
but they occur rarely.

What's their impact on the
average cost of an insertion?

L3

123

4 56 7 8 9101112131415 16

O{1)0(n)O{1)0{n) O{2)0{1)0(1)0(n) O(1)0{1)O{1)O(1)O(1)O(1)0{1)0(n)

number of elements

50

Dynamic array: amortized analysis

operations for each
insertion at the end

Intuition on impact of O(n)
operations on the average
cost of an insertion:

Distribute the cost of O(n)
operations over multiple values
of n (after previous size doubling
n/2+1 up to and including current n)

Average cost per insertion
looks constant, i.e. O(1).

3456 78 910111213141516

number of elements

54
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Dynamic array: amortized analysis
c-2!

withi =log; 16 = 4

Each insertion is either:
0(1), standard insertion
0(n), with size doubling

c.2 Cost of n insertions?
operations for each with = log2 8 = 3
insertion at the end 0(n) operations, each 0(1): O(n)
O(log, n) operations, each with
i 2! cost 0(2"), where i =
withi=log, 4 =2 {1‘2' ...lng n}_
with ?
| =] I [ i
O B S M 6 7 8 9101112131415 16
O[1)O{N IO 1)O{n) O{1)O{ 1 HO{ 1)0{n) O{ 1IN 1)O(1]O{1)O(1)O{ 1)O{1)0(n)
number of elements
57
Dynamic array: amortized analysis (—
geometric progression:
o ey
Overall cost of n insertions? SR T
0(n) operations costing 0(1) each. 0(n) where:
m is the number of terms
: z i ith § = 2 a, is the first term
0(log, n) operations costing 0(2') each, withi = {1,2, ..., lo%‘ gl rioli b
2x(1-2'082 " ;
Z:”f n2t = 252 W) sum of first m terms Here:
1-2 m = log,n
2x(2'%82" — 1) arith e SE)
= 2X 2T — arithmetic \ r=2 J
=2x(n-1) arithmetic
=2n-2 0O(n)
-
Cost of n insertions is O(n). Amortized (or average) cost per insertion is 0(1).
61

Amortized 0(1) time complexity per insertion at the end of an array holds:
» for growing factors other than 2 (Java uses 3/2),
* as long as the increase in size is proportional to the size of the array (geometric progression).
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With that said, Java defines a general interface, java.util.List, that includes the

following index-based methods (and more):

LR e

=

=N 00~ O LA

size( ): Returns the number of elements in the list.
isEmpty(): Returns a boolean indicating whether the list is empty.

get(i): Returns the element of the list having index i; an error condition

occurs if 7 is not in range [0, size() —1].

set(i, ¢): Replaces the element at index i with e, and returns the old element
that was replaced; an error condition occurs if 7 is not in range
[0,size() —1].

add(7, ¢): Inserts a new element e into the list so that it has index i, mov-
ing all subsequent elements one index later in the list; an error
condition occurs if i is not in range [0,size()].

remove(i): Removes and returns the element at index i, moving all subse-
quent elements one index earlier in the list; an error condition
occurs if i is not in range [0, size() —1].

1 /#x A simplified version of the java.util.List interface. */
2 public interface List<E> {

3 /#* Returns the number of elements in this list. */

4 int size();

5

6 /#% Returns whether the list is empty. %/
7 boolean isEmpty();
8
9

¢ /#* Returns (but does not remove) the element at index i. */
10 E get(int i) throws IndexOutOfBoundsException;

12 /** Replaces the element at index i with e, and returns the replaced element. %/
13 E set(int i, E e) throws IndexOutOfBoundsException;

14

15 /#* Inserts element e to be at index i, shifting all subsequent elements later. /
16 void add(int i, E e) throws IndexOutOfBoundsException;

17

18 /#%* Removes/returns the element at index i, shifting subsequent elements earlier. %/
19 E remove(int i) throws IndexOutOfBoundsException;

Code Fragment 7.1: A simple version of the List interface.

public class Arraylist<E> implements List<E> {
// instance variables
public static final int CAPACITY=16;  // default array capacity
private E[ ] data; // generic array used for storage
private int size = 0; // current number of elements
// constructors
public ArrayList() { this(CAPACITY); } // constructs list with default capacity
public ArrayList(int capacity) { // constructs list with given capacity
data = (E[ ]) new Object|capacity]; /[ safe cast; compiler may give warning

Code Fragment 7.2: An implementation of a simple ArrayList class with bounded
capacity. (Continues in Code Fragment 7.3.)
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// public methods
/#% Returns the number of elements in the array list. */
public int size( ) { return size; }
/#% Returns whether the array list is empty. #/
public boolean isEmpty( ) { return size == 0; }
/#% Returns (but does not remove) the element at index i %/
public E get{int i) throws IndexOutOfBoundsException {
checkIndex(i, size);
return datali];

/*% Heplaces the element at index i with e, and returns the replaced element. */
public E set{int i, E &) throws IndexOutCOfBoundsException |
checkIndex(i, size);
E temp = data[i];
datafi] = e;
return temp;
}
/## Inserts element & to be at index i, shifting all subsequent elements later. #/
public void add(int i, E &) throws IndexOutOfBoundsException,
llegalStateException {
checklIndex(i, size + 1);

if (size == data.length) // not enough capacity
throw new lllegalStateException("Array is full");
for (int k=size—1, k ==1, k——) /[ start by shifting rightmost
data[k+1] = data[k];
data[i] = e; /[ ready to place the new element
size++;
}

J#% Hemowes/returns the element at index i, shifting subsequent elements earlier. %/
public E remove(int i) throws IndexCutOfBoundsException |
checkIndex(i, size);
E temp = data(i];
for (int k=i; k < size—1; k++) [/ shift elements to fill hole
data[k] = data[k+1];
data[size—1] = null; // help garbage collection
size——;
return temp;,
}
/[ utility method
{/#* Checks whether the given index is in the range [0, n—1]. %/
protected void checkindex(int i, int n) throws IndexOutOfBoundsException |
if(i=0]|i==n)
throw new IndexOutOfBoundsException("Illegal index: " + i);
}

}
Code Fragment 7.3: An implementation of a simple ArrayList class with bounded
capacity. (Continued from Code Fragment 7.2.)
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Method | Running Time

size( ) | O(1)
isEmpty() | O(1)
get(i) | O(1)

set(i, e) | O(1)
add(i, €) | O(n)
remove(i) | O(n)

Table 7.1: Performance of an array list with n elements realized by a fixed-capacity
array.

Dynamic Array

he ArrayList implementation in Code Fragments 7.2 and 7.3 (as well as those for a stack, queue, and
deque from Chapter 6) has a serious limitation; it requires that a fixed maximum capacity be declared,
throwing an exception if attempting to add an element once full. This is a major weakness, because if a
user is unsure of the maximum size that will be reached for a collection, there is risk that either too

large of an array will be requested, causing an inefficient waste of memory, or that too small of an array
will be requested, causing a fatal error when exhausting that capacity.

Java’s ArrayList class provides a more robust abstraction, allowing a user to add elements to the list,
with no apparent limit on the overall capacity. To provide this abstraction, Java relies on an algorithmic
sleight of hand that is known as a dynamic array.

£+ Fesizes internal array to have given capacity == size. #
protected void resize(int capacity) |
E[ ] temp = (E[ ]) new Object[capacity]; safe cast; compiler may give warning

for (int k=0; k < size; k++)
temp[k] = data[k];
data = temp; start using the new array
}

Code Fragment 7.4: An implementation of the Arraylist.resize method.

## Inserts element e to be at index i, shifting all subsequent elements later. %
public void add(int i, E &) throws IndexOutOfBoundsException {
checkIndex(i, size + 1);
if (size == data.length) not enough capacity
resize(2 # data.length); so double the current capacity
rest of method unchangad...

Code Fragment 7.5: A revision to the ArrayList.add method. originally from Code
Fragment 7.3, which calls the resize method of Code Fragment 7.4 when more
capacity 1s needed.
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Beware of Arithmetic Progression

To avold reserving too much space at once, 1t might be tempting to implement a
dynamic array with a strategy in which a constant number of additional cells are
reserved each time an array is resized. Unfortunately, the overall performance of
such a strategy is significantly worse. At an extreme, an increase of only one cell
causes each push operation to resize the array, leading to a familiar 1 +24+34+---+
n summation and ((n?) overall cost. Using increases of 2 or 3 at a time is slightly
better, as portrayed in Figure 7.4, but the overall cost remains quadratic.

J ] J -
£ ] £
B B
B _ B _
m [}
9 [
& _ =
g g __
= b=
" [}
™ ™
& =
5 = —
£ £
) E _
E =
. [ I I I 101,
I 2345 67E8 9101112131415 16 I 2345 67E8 2101112131415 18
current number of e lements current number of e lements
(a) (b)

Justification: Let ¢ = 0 represent the fixed increment in capacity that is used for
each resize event. During the series of n push operations, time will have been spent

initializing arrays of size ¢, 2¢, 3¢, ..., me form = [n/c|, and therefore, the overall
time is proportional to ¢+ 2c+ 3¢+ -+« 4+ mc. By Proposition 4.3, this sum is
" - 1 2241 1,
Zr:’szfzchm_I_ ) o ) > —-n.
Therefore, performing the n push operations takes Q(n?) time. [ |

StringBuilder vs concatenation

The StringBuilder class represents a mutable string by storing characters in a dynamic array. it
guarantees that a series of append operations resulting in a string of length n execute in a combined
time of O(n). (Insertions at positions other than the end of a string builder do not carry this guarantee,
just as they do not for an ArrayList).
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Week 3. Position-based lists, iterators, trees, and priority queues
Positional List and iterators

List: position-based

Position-based list
Sequence of positions, each with 1 element. Traversal in both directions.
Elements accessed via positions, no direct access to nodes.

header nodes/positions trailer
/

Position ADT ~ 3
getElement() returns element stored at position r‘;"@

= &Y
Positional List ADT elements
Accessor methods Update methods
first() returns position of first element (null if empty) addFirst(e) inserts e at the front, returns position
last( ) returns position of last element (null if empty) addLast(e) inserts e at the back, returns position
before(p) returns position just before p (null if p is first) addBefore(p, e) inserts e before p
after(p) returns position just after p (null if p is last) addAfter(p, e) inserts e afterp
isEmpty( ) returns true if list is empty, false otherwise set(p, e) replaces element at position p with e
size( ) returns the number of elements in list remove(p) removes and returns element at p

No direct access to the nodes in the list, but need to traverse the list (in both directions possible).

List: position-based

The most natural way to implement a positional list is using a doubly-linked list (DLL).

Should we use references to nodes as positions? Not recommended.

node
header - — I _— vl trailer
I | swi K 1| & |k )| SFo | R )
prev prev prev prev

If we give direct access to a node, user has access to the entire list. Allows changes to list using external methods.
To prevent this, public DLL methods receive or return elements (not nodes).

Here we use position: reference to a node that prevents access to the rest of the list.
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List: position-based

Define a position (reference to a node) that does not allow access to the rest of the list.

node
next public class DoublyLinkedList<E> {
~ s | JFK | ] . private static class Node<E> { ... }
prev }
In Java we can define an position(node) public interface Position<E> {
abstraction of a node I public E getElement()
using an interface. throws IllegalStateException;
JFK }
public class LinkedPositionalList<E> {
Position interface allows private static class Node<E>
access to element only! implements Position<E> { ... }

}

Ilterator

Abstracts the process of scanning through a sequence, one element at a time.

Java.util.lterator

hasNext( ) returns true if there’s at least one additional element in the sequence
next( ) returns the next element in the sequence (or NoSuchElementException)
remove() optional method, removes the element returned by the most recent call to next()

If iter is aninstance of type Iterator<String>:

while(iter.hasNext()) {
String value = iter.next();
System.out.println(value);

}

Provides a single pass through a collection. No way to reset the iterator.

Some iterators have previous() method, which can be used to go back. But going all the way back is 0(n). To
reset, it’s better to just create new iterator (which is O(1) for iterator operating on the original data structure).
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Iterable interface

To be implemented by data structures that allow iterations through them.

Java Iterable interface
iterator( ) returns an iterator of the elements in the collection

Example: Java class Arraylist implements Iterable, it is not itself an Iterator.

Supports for-each loop:

for(String student : csel305students) { //syntax does not allow remove
System.out.println(student);

}

Is shorthand for:

Iterator<String> iter = csel305students.iterator();
while(iter.hasNext()) {

String student = iter.next();
System.out.println(student);

Iterator: implementations

Snapshot iterator

* Maintains own private copy of the collection, constructed at creation.
* Unaffected by changes to the primary collection.

* Requires 0(n) space and 0(n) time upon construction (copy and keep collection of n elements).

Lazy iterator
* Does not make a copy, directly traverses the primary data structure.
+ Affected by changes to the primary colléction.
* Requires (1) space and 0(1) construction time.
* ‘fail-fast’ behavior invalidates an iterator if its underlying collection is modified unexpectedly.

Trees
: subtree )

Tree
Abstract model of a hierarchical structure. descendant of / ‘ n n
Examples:
* Tree of languages, tree of life (evolution) {B,E,F,1,J,K} are descendants of B a n
* Inheritance between user-defined classes in Java Subtree rooted at B: tree defined .

by the descendants of B and all

edges between them.
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Tree terminology

A tree comprises nodes and edges.
Every edge denotes a hierarchical,
parent-child relation between two nodes.

< papent , : sibling
{B,C,D} are siblings
A is parent of {B,C,D}
{E,F} are siblings
Fis parent of {I,J,K} {G,H} are siblings

{1,J,K} are siblings a n

parent of

+ child : ancestor

{G,H} are children of C
{1,J,K} are children of F

Tree terminology: descendant

descendant of /’ ‘
{B,E,F,1,,K} are descendants of B ‘ ' \

Relationships between nodes

* Parent of x: node y at the other end of the unique upward edge from x (B is the parent of E).

* Child of x: node y at lower end of an edge from x (K is a child of F)

« Sibling of x: any node y other than x with same parent of x (G is sibling of H)

* Ancestor of x: any node y in the unique upward path from x to the root, including x (ancestors of K: A,B,F,K)

* Descendant of x: any node y in a downward path from x to the leaves, including x (descendants of B: B,E,F,1,J,K)
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Tree terminology:
root, internal/external nodes

* Root: node without parent (A)
* Internal nodes: nodes with at least one child (B,C,F)
* External nodes (leaves): without children (D,E,G,H,1,J,K)

Node depth

Depth of node x: number of ancestors of x other than x itself ol A

public int depth(Position<E> p) {
if (isRoot(p))
return 0;

else 2| E 2| F 2| G 2| H
return 1 + depth(parent(p));

Tree height

Height of tree: 3
Depth of node x: number of ancestors of x other than x itself (maximum node depth)

Height of tree: Depth 0 (A
maximum depth of all of its nodes, if non-empty tree
Depth1 |8 e (&

or zero, if tree is empty
oeptn2 (€] (F] (s] (u]
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Tree height 3| A

2|8 lc| 9D

Which of these methods is most efficient? Why? 7 j\ —
public int height(Position<E> p) { Ole|1|E °| g 0| H |

int h = 0; // base case (p is leaf) — —_—

for (Position<E> c : children(p)) children(p) visits every node A

h = Math.max(h, 1 + height(c)); insubtree of p once: O(n) rllallx

return h; height(c) called recursively, P g e —

} only once per node from top 0 o o0
to bottom: O(n) T

public int height() { /\

int h = 0; "MBA' "C | ﬁD-».

for (Position<E> p : positions()) positions()is executed once;

if (isExternal(p)) visits each node once: O(n) A Z\ o

h = Math.max(h,depth(p));

return h; depth(p) called per leaf, each » E | F | ‘ G | H |
} time visits all nodes in path S N —
up to root; cost proportional A
to sum of depths of ail I 3 :

leaves; worst-case 0(n?) =l B =

Depth vs. height

Depth Height
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Tree traversals

Systematic ways of visiting all nodes in a tree.
Depth-first: pre-order

Depth-first: post-order

Depth-first: in-order (only for binary trees)
Breadth-first

Pre-order (depth-first)

Node is visited before its children.

public void preorder(Position<E> p) {
visit(p); // visit performs some operation at the node, e.g. print its element

for (Position<E> c : children(p)) 1
preorder(c);

Visited nodes:

A, B EFILJLKCGHD
Legend

@ before visit (unvisited node) return to preorder(A)

return from preorder(A)

[B after visit (visited node)

\ unexplored edge

\ explored (downward, preorder call)

\ explored (upward, return from call)
1 order of visit to node

“‘\._ points to next visited node
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Post-order (depth-first)

Node is visited after its children.

public void postorder(Position<E> p) {
for (Position<E> c¢ : children(p))
postorder(c); 11
visit(p):;

} e ~

Visited nodes:
- 10 ;
{ ” ELJ,KFBGHCDA
Legend {
(A) before visit (unvisited node) \ return to postorder(A)
during visit visit{A)
(&) atervisit (visited node)
“\_ unexplored edge ™~

\ explored {downward, postorder call)

\ explored (upward, return from call)
order of visit to node

. Points to next visited node

1
—~
\

Breadth-first

Visits nodes per level (depth). Queue:
public void breadthfirst(Position<E> p) {
Queue<Position<E>> g = new Queue(); Visited nodes:
g.enqueue(p); 1 A B, C,D,EFG,HIJK
while (!g.isEmpty()) {
Position<E> p = g.degqueue();
visit(p);
for (Position<E> c¢ : children(p))
g.engueue(c);

}
}
Legend q.dequeue(K)
(&] before visit (unvisited node) q.visit(K)

(&) atervisi (visited node)
S\ unexplored edge
\ explored (downward, enqueue call)

1 order of visit to node
"\, points to next visited node
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Breadth-first traversal: applications

Example: Tic tac toe game
Use a game tree to represent all possible moves that can be made by a player.
The root of the tree represents the initial configuration for the game.

:.//.7\‘4

X

P o ] R

0 O Xjo X 0 X X X OIxX X X X X
X X 0 O 5]

O 3] 0

7 8 9 10 11 12 13 14 15 16

Using a breadth-first traversal we can consider all possible moves up to a certain depth.

Tree traversals

Pre-order (depth-first) Post-order (depth-first) Breadth-first

This tree has at most 2 children, an order paired composed of the left child and right child.

An arithmetic expression can be expressed with internal node operators and external nodes operands
where the hierarchy of the tree denotes the order in which these operations must be performed.

The higher the depth, the earlier it needs to be computed.
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Binary tree

Binary tree: a tree with the following properties:

- Each internal node has at most two children
(either 1 or 2).

- The children of a node are an ordered pair: left
child, right child.

Proper binary tree

Proper binary tree: tree in which every node has either zero or two children.

In-order traversal in binary trees (depth-first)

Node is visited after left child and before right child.

public void inorder(Position<E> p) {

if(left(p) != null) inorder(left(p)); Visited nodes:
visit(p);
if(right(p) != null) inorder(right(p)); : E.BILFJLAGCH

}
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Properties of binary trees

Relationship between number of nodes n and height h.
What is the maximum number of nodes in a binary tree with height h?

(d) 2h+l =g
#Nodes
2°=1
Sum the maximum number
of nodes at all depths/levels.
h 21=2
z 24 =20421 4.4 20
d=0
= 2h+1 _
2 1 A
23=8
. Example tree
Linked structure for trees (B)

Tree node represented by object storing:
Element
Parent node
Sequence of children nodes

Node class implements Position ADT.

Linked representation
of example tree

public class LinkedTree<iE>
implements Tree<E> {
protected static class Node<BE>
implements Position<E> {
private E element;
private Node<E> parent;
private 77777<Node<E>> children;
1 s
}
protect Node<E> root;

}

- Array if number of children is fixed when a node is created.
- Dynamic array or linked list if the number of children can change.
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Linked structure for binary trees ==

Binary tree node is an object storing
Element
Parent node

: Left child node | D
- Right child node 1 ‘
Node objects implement the Position ADT / 1\
B
e

Linked representation of example binary tree

public class LinkedBinaryTree<E> implements Tree<E> {
protected static class Node<E> implements Position<E> {

A

private E element; 2 1
private Node<E> parent; l
A

private Node<E> left:.
private Node<E> right;

£ soe
}
protected Node<E> root; g
)

O e | &
-./-

Array-based binary trees

Nodes are stored in an array.
Node v is stored at index f(v), given by:

flw)=0 if v is the root
f(w)=2-f(p)+1 ifvistheleftchild of p
fw)=2-f(p)+2 ifvistherightchild of p

Example:
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Linked tree vs. array for binary trees

Linked tree implementation
- O(n) space (where n is the size of the tree)
- 0(1) operations for insertion/removal (see book, or previous lectures)

Array-based implementation
- 0(2™) / 0(2™) space. Exponential!
- Many update operations require changing the entire array.

In summary: array-based is only efficient for binary trees of particular shape, where only specific
operations are performed (we’ll cover an example in the next lecture: heaps).

Priority queues

Priority cannot always be solved using FIFO (queue) or LIFO (stack) rules.

Air traffic control: decision on which plane lands first might depend on
* distance from runway
* time spent waiting in a holding pattern
» amount of remaining fuel

Priority:
* Key associated with an element establishes its priority.
* Usually numeric. Any type, as long as keys can be compared.

Priority: total order relation

Keys, or priorities, of different elements must be comparable.
For a comparison rule < to be self-consistent, it must define a total order relation.
It satisfies the following properties:

Comparability ky <ksork; <k,

Relation < is defined for every pair of keys

Anti-symmetry Ifky < k;and k; < ky, thenk; =k,

If < holds independently of the order of the pair of keys, then the keys in the pair are identical
Transitivity Ifky <k,and k; < k3, thenk; < k3

If < establishes orders ky < k;and k; < kg, thenk, < k; < kyandthus ky < k;
Reflexivity k<k

If the relation < defines a total order over a finite set of keys, minimal key k,,,;,, is defined as:
Kmin < k, where k is any other key in the set
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Comparable versus Comparator

Natural ordering: a class defines a natural ordering
of instances by implementing java.lang.Comparable

public interface Comparable<T> {
int compareTo(T 0);

}

External ordering can be defined for another class
by implementing java.util.Comparator interface:

public interface Comparator<T> {
int compare(T a, T b);

}

The syntaxes a.compareTo(b) and compare(a, b) must
return an integer i as follows:

Negative i<0, ifa<b

Zero i=0, ifa=bhb

Positive i>0, ifa>b

Priority Queue ADT

Priority Queue: collection of prioritized elements.

* Insertion at arbitrary positions.
* Removal of element with first priority.

CSE1305 Algorithms & Data Structures

Example: Ordering of String objects.

Natural: compareTo of String class defines
natural ordering as lexicographic.

lion < parrot < pig

External: compare strings based on length.
pig < lion < parrot

public class StringlengthComparator
implements Comparator<String> {

public int compare(String a, String b){
if (a.length() < b.length{)) return -1;
if (a.length() == b.length()) return 0;
return 1;

}

}

Priority Queue entries: (IT(ey, Value)
Priority Element
Priority Queue ADT
insert(k, v) creates an entry with key k and value v, (k, v), in the priority queue
min() returns (does not remove) an entry (k, v) with minimal key (null if empty)
removeMin() removes and returns an entry (k, v) with minimal key (null if empty)
size() returns the number of entries
isEmpty() returns true if empty, false otherwise

Multiple entries with identical keys: min and removeMin may report one of them arbitrarily.
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Java code 9.1,9.2,

Priority Queue ADT

(key, value) entry:
* contains both the element and its priority
* composition design pattern: class that pairs key and value as a single object

public interface Entry<kK,V> {
K getEey(); // key is the priority
V getValue(); f/ wvalue is the element

}

public interface PriorityQueue<E,V> {
int size();
boolean isEmpty();
Entry<K,V> insert(EK key, V value) throws IllegalArgumentException;
Entry<K,V> min();
Entry<K,V> removeMin();

Priority Queue: implementations

Unsorted list
Insertion: New entries are added at the end of the list, in O(1) time.

Removal: Access (min) and removal (removeMin) of minimal key is done by traversing list, 0(n) time.
public class UnsortedPriorityQueue<k,V> extends AbstractPriorityQueue<k,Vv> { ... } Code 9.6, p.335

Sorted list
Insertion: Entries kept in non-decreasing order of keys. Insertion needs traversal to find position: 0(n).
Removal: Minimal key is always first in the list. Access (min) and removal (removeMin) are thus O(1).

public class SortedPriorityQueue<K,V> extends AbstractPriorityQueue<k,V> { ... } Code9.7,p.337
Unsorted Sorted
insert(k,v) o(1) o(n)
min( ) 0(n) 0(1)
removeMin( ) O(n) o(1)
size( ) o(1) o)
isEmpty( ) 0(1) o(1)
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Binary heaps

Heap: definition Eniry (key; valise)

(priority, element)

Efficient realization of a
Priority Queue that allows
insertions and removals
in 0(log, n) time.

Definition: Heap T is a
binary tree storing entries
at its positions (nodes).

Heap: properties Level 0
2% = 1 nodes

(Structural property)

Level 1

Complete binary tree.
° x 2! = 2 nodes

Heap T with height h is
a complete binary tree.

Level2 (h — 1)
All levels of T except

possibly the last are full
(level i has 2! nodes,
for0<i<h-1).

Level 3 (h)
Remaining nodes in Remaining nodes
last level h occupy the (leftmost positions)

lefmost positions.
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Heap: properties
keyy, =15
>

(Relational property) keYparent(p1) =5

Heap-order. For every
position p except the root,
the key at p is greater
than or equal to the key at
its parent.

key, = keYparent(p)

Heap: height

Height
A heap T with n entries has height h = |log, n|.

Since T is complete, number of nodes in levels 0 to h — 1:
14244201 =2k_1 (geometric series)

Number of nodes in level h is at least 1 and at most 2",

Total numberof nodesn: n=>2"-1+1=2" and n<2h-14+2k

n>2h and n+1<2h! arithmetic
h<log;n and h+12log;(n+1) take logarithm
and h>log,(n+1)-1
Note that: log,(n + 1 1 <logz(n)

Since h is a natural number, these inequalities imply that h = |log, n/|.
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Heap: insert

73
insert(k, v)ina heap T e‘ 2
(we represent only the key)

YR
#L Create new node with entry. %Q ° °‘ g

Z/Z insert(k, v)inaheap T

773

Insert new node with (k, v) at position p:
- Just beyond rightmost node at last level
- As leftmost position of a new level

e P
Process position p:

To preserve heap-order:
If p is the root of T, heap-order is satisfied.

To preserve completeness: e ° 0 @aa
#

Otherwise, compare key at p to that of p’s
parent, denoted as g:

- Ifky, = kg, heap-order is satisfied.
- Ifk, < kg, restore heap-order by swapping.

Heap: up-heap bubbling

insert(k, v)inaheap T

Starts at the bottom.

Each pairwise swap between a node
and its parent either:

* Reestablishes heap-order
* Propagates the issue one level up

Worst-case:
* Entry (or key) moves all the way up to root.

* Number of moves is proportional to the
height h of heap (recall that h = |log, n]).

O(logz n)
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Heap: removeMin

Entry with smallest key is at the root.

Cannot delete root node!

To preserve completeness, replace
root by last node.

To preserve heap-order ...

To preserve heap-order:

Process position p (initially root of 7):

[One node] If T has one node, heap-
order is satisfied.

[Multiple nodes]
- If p has no right child, c is left child;
- Otherwise, ¢ is child with minimal key.

- If kp < k,, the heap-order is satisfied.

- If kp > k¢, restore heap-order, i.e.
swap entries at p and c.
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Heap: down-heap bubbling

Starts at the root. °

Each pairwise swap between a node

and its child either:

* Reestablishes heap-order ° °
* Propagates the issue one level down.

Worst-case:
* Entry (or key) moves all the way down ° ° ° 6
to the bottom.

* Number of moves is proportional to
height h of heap (recall h = |log, n}).

o 00 60 @

Heap representations

Array heap 0

Arrays are suited for complete
binary trees (e.g. heap).

Neatly “packed”: no empty
spaces in-between.

@cC) | (5A) | (62) | (15K) | (9,F) | (7.Q) | (20,8) | (16,X) | (25)) | (14,F) | (12,H) | (11,5) | (13W)
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Array heap: access parent/children o

Accessing parent or chidren:
For position with index p:
Leftchildindex 2p+1
Rightchildindex 2p + 2

(4C) | (5A) | (62) | (15K) | (9,F)

0 1 2 3 4

(13w)

Additional properties:

Internal nodes leftmost

o

Leaf nodes rightmost
[["2;' e 1}

3 S
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Heap: array versus linked tree 0

Methods insert and
removeMin rely on:
- locating the last position;

- local swapping between
parent and child.

Local swapping: 0(1) per
swap, 0(log, n) in total (both
array and linked tree).

Accessing last position:
In array, always indexn — 1,
thus access is 0(1).

In linked tree, requires
traversal in O(log, n).

4C) | (5A) | (62) | (15K) | (9,F) | (7.Q) | (20,8) | (16X) | (25)) | (14.F) | (12,H) | (11,5) | (13W)

0 1 2 3 4 5 6 7 8 9 10 11 12
Linked-tree: access last position - g
Right 1

We are interested in last node at last level.

Let us give indexes to nodes in last level.
Binary path denotes node index!

Node index is (#nodesLastLevel - 1).
How many nodes are in the last level?

Number of nodes in last level:

l=n- (z:z' )

(n - sum of all full levels, Oupto h — 1)

l=n-2"+1
=n—2“082"| +1 (h = |logs nj) 0 1 2 3 4 5
(000) (001) (010) (011) (100) (101)
Index of last node is n — 21082 7], Last node
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Linked-tree: access last position Tron e ey
Right 1

If index is encoded in 16-bit integer (Java short):
00000000 00000101

Index of last node:

n — 2\togzn|

Path: take [log, n] rightmost bits
00000000 00000101

Index of a new node:
n+ 1 — 2ltegz(n+1)]
Path of new node:

|log,(n + 1)] rightmost bits
00000000 00000110

Path of parent:
|logz(n + 1)] rightmost but one bits
00000000 00000110

(000) (001) (010) (011) (100) (101) (110)
Last node New node

Priority Queue: complexity

Implementations of a Priority Queue with n elements.
Assumes that two keys can be compared in 0(1) time.

Space complexity 0(n)

Time complexity

Method List Sorted List Heap Motivation (heap with height 0(log, n))
min( ) omn) 0(Q1) 0o(1) Root contains minimal key.

removeMin() O(n) 0(1) O(log, n)* Down-heap bubbling performs 0 (log, n) swaps.
insert(k, v) 0(1) 0 O(log, n)” Up-heap bubbling performs 0(log; n) swaps.
size o) o0Q) 0(1) Size is stored by an instance variable.

isEmpty o) oQ) 0(1) Checks size variable.

*Amortized time complexity for dynamic array-based representation, due to occasional resizing.
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Heap construction

Heap construction
Building a heap with n keys.

Keys not known in advance:

- Start with empty heap.
- Call insert method for every new key.
O(nlog, n)

Keys known beforehand:
How do we build a heap efficiently?

Bottom-up heap merging (idea) New key ©

(merging idea as prelude for construction only) o v

Input: two heaps and new key k. o ° ° °

Create new heap:
- Root node storing k.
- Two given heaps as subtrees.

Down-heap bubbling to restore
heap-order property.

Note: simplified example using a linked-tree structure and two heaps with all levels full.
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Bottom-up heap construction

Building a heap with n keys.

Keys known beforehand:
Build heap using bottom-up approach.

At iteration i, pairs of heaps with 2' — 1
keys are merged into heaps with 2'¥1 — 1.

Leaf keys do not need to preserve any particular order since by not having any childs nor parents and
just siblings they are heap compliant already.

Bottom-up heap construction

Iteration 1: R yr
lnsert—nodes — »-\ ¢ = 2

SO 6060 6

-

Iteratlonz 5" ~~-‘, \\
Insert X nodes. - S
@ (1) 0 1) 0 @ (20)
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Iteration 3:
Insert "T“ nodes.

lteratlon 3
Insert ~— nodes

Iteration 4:
n+1
Insert = nodes.

Iteration 4
Insert —— nodes
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Bottom-up heap construction

At Iteration i, with i = 0:
Insert %‘- nodes.

Down-heap them.
Worst-case: down-heaping cost i

|
it
— X1
2!

=0

=(n+1) Z{'Og: nj i Using identity for the sum of a geometric series, we can show the sum converges to 2.
= Zl

Bottom-up heap construction takes 0(n) time.

=2n+2 Faster than construction by entry insertion in O(n log, n) time.

Heapify: bottom-up heap construction (array)

Java code 9.10, page 350
[ x*
* Constructor of array-based heap with keys ks and values vs.
*/
ublic HeapPriorityQueue(K ka; V vs TR £
4 super ( )‘,’ e ({1 t) ’ { // initialize array variable heap
for (int j = 0; j < Math.min(ks.length, vs.length); j++) // iterate over keys and values
heap.add(new PQEntry<>(keys(j], values(j])): // add all entries to the heap
heapify(); // call heapify to bottom-up restore heap-order

}
e
* Heapify: Restores heap-order property in a bottom-up fashion.
* Starting from the parent of the rightmost position (last level doesn’t need
* down-heap bubbling), and traverses backwards through all indices up to 0 (root).
* For each node, performs down-heap bubbling to restore the heap-order property.
*/
protected void heapify() {
int startIndex = parent(size()-1);
for (int j = startindex; j >= 0; j--)
downheap(j);

1. Dump all the elements into the array

2. Heapify fixes the order in a bottom-up fashion. It will start from the parent of the right most
position (the las level doesnt need to be sorted) and then traverse backwards through all indices
up to O/root and then perform down-heap bubbeling.
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Bottom-up heap construction in O(n) is intuitive using linked tree heaps.
What if we have an array-based heap?

Adaptable Priority Queue

Earlier, our Priority Queue ADT defined operations: min, removeMin, insert, size, isEmpty.

Some scenarios require additional operations.

At the airport:
* If a passenger withdraws from a waiting list, entry needs to be removed from the PQ.
« |If a passenger finds gold frequent-flyer card, priority in the PQ needs to be updated.
* |If the name of a passenger is misspelled, the entry needs to be corrected.

Adaptable PQ ADT:

remove(e) Removes entry e from the priority queue (error if e is invalid; e.g. not in PQ anymore)
replaceKey(e,k) Replaces the key of entry e with k (error if e is invalid; e.g. not in PQ anymore)
replaceValue(e,v) Replaces the value of entry e with v (error if e is invalid; e.g. not in PQ anymore)

min( )

removeMin( )

insert(k, v)

size( )

isEmpty ()

105



Adaptable PQ

CSE1305 Algorithms & Data Structures

Entry
() || () =) | ) )| ) 2| (=) | ) | ) | ) | )
value |(Cc )| 12| (G| (GO | CEO | C | Ce) (GO Cy Cef | Ce) (GO &)

indexmmmmmm‘

ool

J

0 1 2 3

= 5

Array heap with location-aware entries:
To implement remove(e), replaceKey(e, k) and replaceValue(e, k) efficiently, we need fast way to locate entry e.

Store the index in the entry itself.

public class HeapAdaptablePQ<K,V> extends HeapPQ<K,V> implements AdaptablePQ<K,V> { ... }

Note: in list or linked-tree implementations, entry contains a reference to its encapsulating node.

Adaptable Priority Queue: complexity

Implementations of a Priority Queue with n elements.
Assumes that two keys can be compared in 0(1) time.

Space complexity O(n)
Time complexity

Method List
min() 0(n)
removeMin( ) 0(n)
insert(k, v) o(1)
size( ) 0(1)
isEmpty( ) 0(1)
remove( ) -
replaceKey(e, k) -

replaceValue(e, v) -

Sorted List
0(1)
0(1)
0(n)
0(1)
0o(1)

Heap
0o(1)
O(log; n)"
O(log,; n)’
0(1)
0(1)

Adaptable Heap
0oQ1)

O(log; n)*
O(log, n)’
o(1)

o(1)

O(log; )
O(log; n)

0(1)

‘Amortized time complexity for dynamic array-based representation, due to occasional resizing.
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7.3 Position-based lists

Numeric indices are not a good choice for describing positions within a linked list because, knowing only
an element’s index, the only way to reach it is to traverse the list incrementally from its beginning or
end, counting elements along the way.

Unfortunately, the public use of nodes in the ADT would violate the objectoriented design principles of
abstraction and encapsulation, which were introduced in Chapter 2. There are several reasons to prefer
that we encapsulate the nodes of a linked list, for both our sake and for the benefit of users of our
abstraction:

1. It will be simpler for users of our data structure if they are not bothered with unnecessary
details of our implementation, such as low-level manipulation of nodes, or our reliance on the
use of sentinel nodes

2. We can provide a more robust data structure if we do not permit users to directly access or
manipulate the nodes.

3. By better encapsulating the internal details of our implementation, we have greater flexibility to
redesign the data structure and improve its performance.

We introduce the concept of positoin, which formalizes the intuitive notion of the “location” of an
element relative to others in the list.

A position

p, which is associated with some element e in a list L, does not change, even if the index of e changes in
L due to insertions or deletions elsewhere in the list. Nor does position p change if we replace the
element e stored at p with another element. The only way in which a position becomes invalid is if that
position (and its element) are explicitly removed from the list.

It has support for the method getElement(), which returns the element storeda t this position.

A positional list is a collection of positions, each which stores an element. It should support the following

first(): Returns the position of the first element of L (or null if empty).
last( ): Returns the position of the last element of L (or null if empty).

before(p): Returns the position of L immediately before position p
(or null if p is the first position).

after(p): Returns the position of L immediately after position p
(or null if p is the last position).

isEmpty( ): Returns true if list L does not contain any elements.

size( ): Returns the number of elements in list L.

The first( ) and last( ) methods of the positional list ADT return the associated positions, not the element.
To get the element you could do something like first().getElement()
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Updated Methods of a Positional List
The positional list ADT also includes the following update methods:

addFirst(e): Inserts a new element e at the front of the list, returning the
position of the new element.

addLast(e): Inserts a new element e at the back of the list, returning the
position of the new element.

addBefore(p, ¢): Inserts a new element e in the list, just before position p,
returning the position of the new element.

addAfter(p, ¢): Inserts a new element e in the list, just after position p,
returning the position of the new element.

set(p, ¢): Replaces the element at position p with element e, return-
ing the element formerly at position p.

remove(p): Removes and returns the element at position p in the list,
invalidating the position.

If the getElement( ) method is called on a Position instance that has previously been removed from its
list, an lllegalStateException is thrown. If an invalid Position instance is sent as a parameter to a method
of a PositionalList, an IllegalArgumentException is thrown.

Doubly Linked List Implementation

The obvious way to identify locations within a linked list are node references. Therefore, we declare the
nested Node class of our linked list so as to implement the Position interface, supporting the required
getElement method. So the nodes are the positions.

DoublyLinkedList //Implementation code available in Intelli) worskpace
The positional list ADT is ideally suited for implementation with a doubly linked list, as all operations run
in worst-case constant time. Index-based methods require traversing the nodes which would be O(n).

Method | Running Time
size() | O(1)
iSEmpty()
first(), last()
before(p). after(p)
addFirst(e). addLast(e)
addBefore(p, €), addAfter(p, e)
set(p, e)
remove(p)

SIS S

(1)
(1)
()
(D
(1)
(1)
(1)

SIS SIS

Table 7.2: Performance of a positional list with n elements realized by a doubly
linked list. The space usage is O(n).

108



CSE1305 Algorithms & Data Structures

Array Implementation
Hence, if we are going to implement a positional list with an array, we need a
different approach. We recommend the following representation. Instead of storing
the elements of L directly in array A, we store a new kind of position object in each
cell of A. A position p stores the element e as well as the current index i of that
element within the list. Such a data structure is illustrated in Figure 7.8.

(0JFK)| |(.Bwi)| [@2PVvD)| [(3.5FO)
RLKE é/‘JK—J

0 1 2 3 N-1

Figure 7.8: An array-based representation of a positional list.

With this representation, we can determine the index currently associated with
a position, and we can determine the position currently associated with a specific
index. We can therefore implement an accessor, such as before(p), by finding the
index of the given position and using the array to find the neighboring position.

When an element is inserted or deleted somewhere in the list, we can loop
through the array to update the index variable stored in all later positions in the list
that are shifted during the update.

In this array implementation of a sequence, the addFirst, addBefore, addAfter, and
remove methods take O(n) time, because we have to shift position objects to make
room for the new position or to fill in the hole created by the removal of the old
position (just as in the insert and remove methods based on index). All the other
position-based methods take O(1) time.

7.4 Iterator
hasNext( ): Returns true if there is at least one additional element in the
sequence, and false otherwise.
next( ): Returns the next element in the sequence.

The combination of these two methods allows a general loop construct for pro-
cessing elements of the iterator. For example, if we let variable, iter. denote an
instance of the lterator<String> type, then we can write the following:

while (iter.hasNext()) {
String value = iter.next( );
System.out.printIn(value);

}
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The java.util.lterator interface contains a third method, which is optionally
supported by some iterators:

remove( ): Removes from the collection the element returned by the most
recent call to next( ). Throws an lllegalStateException if next
has not yet been called, or if remove was already called since
the most recent call to next.

A single iterator instance supports only one pass through a collection; calls to next can be made until all
elements have been reported, but there is no way to “reset” the iterator back to the beginning of the
sequence.

Java defines another parameterized interface. named lterable, that
includes the following single method:

iterator( ): Returns an iterator of the elements in the collection.

An instance of a typical collection class in Java, such as an ArrayList, is iterable
(but not itself an iferator); it produces an iterator for its collection as the return value
of the iterator() method. Each call to iterator() returns a new iterator instance,
thereby allowing multiple (even simultaneous) traversals of a collection.

Java’s Iterable class also plays a fundamental role in support of the “for-each”
loop syntax (described in Section 1.5.2). The loop syntax,

for (ElementType variable : collection) {
loopBody // may refer to "variable"

}

is supported for any instance, collection, of an iterable class. ElementType must be
the type of object returned by its iterator, and variable will take on element values
within the loopBody. Essentially, this syntax is shorthand for the following:

Iterator<ElementType > iter = collection iterator( );
while (iter.hasNext()) {
ElementType variable = iter.next();
loopBody // may refer to "variable"

}
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We note that the iterator’s remove method cannot be invoked when using the
for-each loop syntax. Instead, we must explicitly use an iterator. As an example,
the following loop can be used to remove all negative numbers from an ArrayList
of floating-point values.

ArrayList<Double> data; // populate with random numbers (not shown)
Iterator<.Double> walk = data.iterator( );
while (walk.hasNext())
if (walk.next() < 0.0)
walk.remove( );

Iterator: implementations

Snapshot iterator

* Maintains own private copy of the collection, constructed at creation.
* Unaffected by changes to the primary collection.

* Requires 0(n) space and 0(n) time upon construction (copy and keep collection of n elements).

Lazy iterator
* Does not make a copy, directly traverses the primary data structure.
» Affected by changes to the primary colléction.
* Requires (1) space and 0(1) construction time.
+ ‘fail-fast’ behavior invalidates an iterator if its underlying collection is modified unexpectedly.

8.1-8.4 Trees
Formal Tree Definition

Formally, we define a free T as a set of nedes storing elements such that the nodes
have a pareni-child relationship that satisfies the following properties:
e If T is nonempty, it has a special node, called the roof of T', that has no parent.
¢ Each node v of T different from the root has a unique parent node w; every
node with parent w is a child of w.
Note that according to our definition, a tree can be empty, meaning that it does not
have any nodes. This convention also allows us to define a tree recursively such
that a tree T is either empty or consists of a node r, called the root of T, and a
(possibly empty) set of subtrees whose roots are the children of r.
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concept of a position as an abstraction for a node of a tree. An element is stored
at each position, and positions satisfy parent-child relationships that define the tree
structure. A position object for a tree supports the method:

getElement( ): Returns the element stored at this position.

The tree ADT then supports the following accessor methods, allowing a user
to navigate the various positions of a tree T

root( ): Returns the position of the root of the tree
(or null if empty).

parent(p): Returns the position of the parent of position p
(or null if p is the root).

children(p): Returns an iterable collection containing the children of
position p (if any).
numChildren(p): Returns the number of children of position p.

If a tree T is ordered, then children(p) reports the children of p in order.
In addition to the above fundamental accessor methods, a tree supports the
following query methods:

islnternal( p): Returns true if position p has at least one child.
isExternal(p): Returns true if position p does not have any children.
isRoot(p): Returns true if position p is the root of the tree.

These methods make programming with trees easier and more readable, since
we can use them in the conditionals of if statements and while loops.

Trees support a number of more general methods, unrelated to the specific
structure of the tree. These incude:

size( ): Returns the number of positions (and hence elements)
that are contained in the tree.

isEmpty( ): Returns true if the tree does not contain any positions
(and thus no elements).

iterator( ): Returns an iterator for all elements in the tree
(so that the tree itself is lterable).

positions( ): Returns an iterable collection of all positions of the tree.
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Computing Depth
1 /%% Returns the number of levels separating Position p from the root. */
public int depth(Position<E> p) {
if (isRoot(p))
return 0;
else
return 1 + depth(parent(p));
}

Code Fragment 8.3: Method depth, as implemented within the Abstract Tree class.

=1 O Lh o da L b2

Computing Height

/#% Returns the height of the subtree rooted at Position p. */

1

2 public int height(Position<E> p) {

3 int h =0; // base case if p is external
4 for (Position<E> c : children(p))

5 h = Math.max(h, 1 + height(c));

6 return h:

7}

Code Fragment 8.5: Method height for computing the height of a subtree rooted at
a position p of an AbstractTree.

8.2.1 The Binary Tree Abstract Data Type

As an abstract data type, a binary tree is a specialization of a tree that supports three
additional accessor methods:

left( p): Returns the position of the left child of p
(or null if p has no left child).

right(p): Returns the position of the right child of p
(or null if p has no right child).

sibling(p): Returns the position of the sibling of p
(or null if p has no sibling).
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Operations for Updating a Linked Binary Tree

addRoot(e): Creates a root for an empty tree, storing ¢ as the element,
and returns the position of that root; an error occurs if the
tree is not empty.

addleft(p, ¢): Creates a left child of position p, storing element e, and
returns the position of the new node; an error occurs if p
already has a left child.

addRight(p, ¢): Creates a right child of position p, storing element ¢, and
returns the position of the new node; an error occurs if p
already has a right child.

set(p, ¢): Replaces the element stored at position p with element e,
and returns the previously stored element.

attach(p, Ty, T5): Attaches the internal structure of trees Tj and T3 as the
respective left and right subtrees of leaf position p and
resets Ty and 75 to empty trees; an error condition occurs
if p is not a leaf.

remove( p): Removes the node at position p, replacing it with its child
(if any ), and returns the element that had been stored at p;
an error occurs if p has two children.

Method | Running Time
size, iskEmpty | O(1)
root, parent, left, right. sibling, children, numChildren | O(1)
islnternal, isExternal, isRoot | O(1)
addRoot, addleft, addRight, set, attach, remove | O(1)
depth(p) | Old, + 1)
height | O(n)

Table 8.1: Running times for the methods of an n-node binary tree implemented
with a linked structure. The space usage is O(n).
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9.1 Priority queues
When an element is added to a priority queue, the user designates its priority by providing an associated
key. The element with the minimal key will be the next to be removed from the queue.

We define the priority queue ADT to support the following methods:

insert(k, v): Creates an entry with key &k and value v in the priority queue.

min( ): Returns (but does not remove) a priority queue entry (k.v)
having minimal key: returns null if the priority queue is empty.

removeMin( ): Removes and returns an entry (k,v) having minimal key from
the priority queue; returns null if the priority queue is empty.

size( ): Returns the number of entries in the priority queue.

isEmpty( ): Returns a boolean indicating whether the priority queue is
empty.

A priority queue may have multiple entries with equivalent keys, in which case methods min and
removeMin may report an arbitrary choice among those entry having minimal key. Values may be any
type of object.

9.2 List-based priority queues
9.2.2 Comparing Keys with Total Orders

In defining the priority queue ADT, we can allow any type of object to serve as a
key, but we must be able to compare keys to each other in a meaningful way. More
s0, the results of the comparisons must not be contradictory. For a comparison rule,
which we denote by <, to be self-consistent, it must define a tefal order relation,
which is to say that it satisfies the following properties for any keys ky, ka2, and ks:

o Comparability property: k; <k, ork, <k,.

¢ Antisymmetric property: if ky < k; and k> < k. then k) =ks.

e Transitive property: if k; < k> and k> < k3. then k; < k3.
The comparability property states that comparison rule is defined for every pair of
keys. Note that this property implies the following one:

o Reflexive property: k < k.

Such a rule defines a linear ordering among a set of keys; hence, if a (finite) set of elements has a total
order defined for it, then the notion of a minimal key, kmin, is well defined.
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The Comparable Interface

Java provides two means for defining comparisons between object types. The first
of these is that a class may define what is known as the natural ordering of its
instances by formally implementing the java.lang.Comparable interface, which in-
cludes a single method, compareTo. The syntax a.compareTo(£) must return an
integer ¢ with the following meaning:

e [ < 0 designates that a < b.

e | = () designates that a = b.

e i > 0 designates that a > b.

For example. the compareTo method of the String class defines the natural
ordering of strings to be lexicographic. which is a case-sensitive extension of the
alphabetic ordering to Unicode.

The Comparator Interface

In some applications, we may want to compare objects according to some notion
other than their natural ordering. For example. we might be interested in which
of two strings is the shortest, or in defining our own complex rules for judging
which of two stocks is more promising. To support generality, Java defines the
java.util.Comparator interface. A comparator is an object that is external to the
class of the keys it compares. It provides a method with the signature compare(a, b)
that returns an integer with similar meaning to the compareTo method described
above.

I public class StringlLengthComparator implements Comparator<String> {
2 /4% Compares two strings according to their lengths. */
3 public int compare(String a, String b) {
4 if (a.length() < b.length()) return —1;
5 else if (a.length() == b.length()) return 0;
6 else return 1;
7
5}
Code Fragment 9.3: A comparator that evaluates strings based on their lengths.
| public class DefaultComparator<E> implements Comparator<E> {
2 public int compare(E a, E b) throws ClassCastException {
3 return ((Comparable<E=>) a).compareTo(b);
S
5}

Code Fragment 9.4: A DefaultComparator class that implements a comparator
based upon the natural ordering of its element type.
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Method Unsorted List | Sorted List
size O(1) o(1)
isEmpty O(1) o(1)
insert Oo(1) O(n)
min O(n) o(1)
removeMin O(n) 0o(1)

Table 9.2: Worst-case running times of the methods of a priority queue of size n,
realized by means of an unsorted or sorted list, respectively. We assume that the
list is implemented by a doubly linked list. The space requirement is O(n).

9.3 Tree-based priority queues: heaps
Trees allows us to perform both insertions and removals in logarithmic time, which is a significant
improvement over the list-based implementations.

The fundamental way the heap achieves this improvement is to use the structure of a binary tree to find
a compromise between elements being entirely unsorted and perfectly sorted.

Heap-Order Property: In a heap T, for every position p other than the root, the
key stored at p is greater than or equal to the key stored at p’s parent.

Complete Binary Tree Property: A heap T with height £ is a complete binary tree
if levels 0,1,2,....h—1 of T have the maximal number of nodes possible
(namely, level i has 2" nodes, for 0 <i < h—1) and the remaining nodes at
level h reside in the leftmost possible positions at that level.

Figure 9.1: Example of a heap storing 13 entries with integer keys. The last position
is the one storing entry (13,W).

A heap T storing n entries has height h = [log n|.
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Up-heap Bubbling After an Insertion (at the bottom)

Figure 9.2: Insertion of a new entry with key 2 into the heap of Figure 9.1: (a) initial
heap: (b) after adding a new node: (c and d) swap to locally restore the partial order
property: (e and f) another swap; (g and h) final swap.
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Down-heap bubbling after a removal

Figure 9.3: Removal of the entry with the smallest key from a heap: (a and b)
deletion of the last node, whose entry gets stored into the root; (c and d) swap to
locally restore the heap-order property; (e and f) another swap: (g and h) final swap.
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Array-Based Representation of a Complete Binary Tree
0

(4.0) | (5.A) | (6,Z) |(15.K)| (9.F) | (7.Q) [(20,B) | (16,X) | (25.J) | (14.E) | (12,H) | (11.5) |(13.W)

0 | 2 3 4 3 6 7 8 0 10 11 12
Figure 9.4: Array-based representation of a heap.

Breadth first traversion leads to inner nodes being kept in the left side indexes and leafs on the right.

Method | Running Time
size, iskmpty | O(1)
min | O(1)
insert | O(logn)*
removeMin | O(logn)*

*amortized, if using dynamic array

Table 9.3: Performance of a priority queue realized by means of a heap. We let n
denote the number of entries in the priority queue at the time an operation is ex-
ecuted. The space requirement is O(n). The running time of operations min and
removeMin are amortized for an array-based representation, due to occasional re-
sizing of a dynamic array; those bounds are worst case with a linked tree structure.

Proposition 9.3: Bottom-up construction of a heap with n entries takes O(n)
time, assuming two keys can be compared in O(1) time.
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Bottom-up construction

P A

Figure 9.5: Bottom-up construction of a heap with 15 entries: (a and b) we begin by
constructing 1-entry heaps on the bottom level; (¢ and d) we combine these heaps
into 3-entry heaps: (e and f) we build 7-entry heaps: (g and h) we create the final
heap. The paths of the down-heap bubblings are highlighted in (d, f, and h). For
simplicity, we only show the key within each node instead of the entire entry.
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9.5 Adaptable priority queues

Formally, the adaptable priority queue ADT includes the following methods
(in addition to those of the standard priority queue):

remove(e): Removes entry e from the priority queue.
replaceKey(e, k): Replaces the key of existing entry e with k.
replaceValue(e, v): Replaces the value of existing entry e with v.

A third value “token” corresponds to the index of an entry.

'

@co| [ean| |6z |15K3)| | (0F4 ]| [(7.Q5) ] [(208B6)| |(16.X.7)

$ b 4 i & b 4 8
: : s ! . i } 4

0 1 2 3 4 5 6 7

Figure 9.10: Representing a heap using an array of location-aware entries. The third
field of each entry instance corresponds to the index of that entry within the array.
Identifier token is presumed to be an entry reference in the user’s scope.

Method | Running Time
size, isEmpty, min | O(1)
insert | O(logn)
remove | O(logn)
removeMin | O(logn)
replaceKey | O(logn)
replaceValue | O(1)

Table 9.5: Running times of the methods of an adaptable priority queue with size n,
realized by means of our array-based heap representation. The space requirement
is O(n).
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Week 4.1 Sort

The algorithm for sorting a sequence S with a priority queue P is quite simple and consists of the
following two phases:

1. In the first phase, we insert the elements of S as keys into an initially empty
priority queue P by means of a series of n insert operations, one for each
element.

2. In the second phase, we extract the elements from P in nondecreasing order
by means of a series of n removeMin operations, putting them back into S in
that order.

Insertion vs selection sorts both O(n”2)

They both follow the steps above and they take the name in relation to the bottleneck of their
approach. In selection popping the sequence into the priority que is done fast by just adding the at the
end, then they are selected before they are popped back into the final sequence. In Insertion they are
inserted in order into the priority queue, then first element is popped back into S until P is empty.

Sorting with a priority queue
Sorting a sequence S with a priority queue.
Algorithm PQ-Sort(S, C) H_._‘_.
Input sequence S, comparator C for elements of § ° ° o e o
& & 4

Output sequence S in non-decreasing order based on C @ @ \3j \4j @

. . A Algorithm PQ-Sort(S, C)
Sort' ng Wlth l ISt-based PQS Input sequence S, comparator C

Output ordered sequence §
P < priority queue using C

while — S.isEmpty () ‘ Phase 1 .
e « S.remove(S.first ()) Insert consecutively into priority queue P.

P.insert (e, D) ‘
Priority Queue P

while — PisEmpty() ol
SN ” y' Call removeMin on P consecutively, addLast into S.
e < P.removeMin() . ‘
S.addlLast(e)

Ordered Sequence S
OmOnOn0n0 .
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Sorting with list-based PQs

Insert consecutive!y into priority queue P.

Unsorted list P

Order established

Sorted list P

00600 P"°"tv°"e"e" 00000

Call removeMin on P consecutlvely, addLast into S.

Order established \ Ordered Sequence S

Insertion sort

Sequence S
Sorting n elements. Input: (7,4,8,2,5,3,9)
Sorted list priority queue P. —
(a) (4,8,2,5,3,9)
Phase 1: insertion (b) (8,2,5,3,9)
Repeated insertions into priority queue P. (©) (2,5,3,9)
Entries inserted at final sorted position. (d) (5,3,9)
Runtime of insert proportional to size of P: E?)) g')g)
le+2c++Mm—1)c+ n-c © 0
n (n+1) Phase 2
> L 2 (a) (2)
= Czl = ( —— 0(1’1 )
, 2 (b) (2,3)
o (c) (2,3,4)
d 2,3,45
Phase 2: removal ((e; 22,3,4,5,)7)
Repeated removal of minimal key from P. ) (2,3,4,5,7,8)
Each removal is 0(1), n removals O (n). (9) (2,3,4,5,7,8,9)

124

Priority queue P

0

()

(4,7)

(4,7,8)
(2,4,7,8)
(2,4,5,7,8)
(2,3,4,5,7,8)
(2‘3/41517/819)

(3,4,5,7,8,9)
(4,5,7,8,9)
(5.7,8,9)
(7,8,9)

(8,9)

(9)
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Selection sort

Sequence S Priority Queue P
Sorting n elements. Input (7,4,8,2,5,3,9) O
Unsorted list priority queue P. Phase 1
(a) (4,8,2,5,3,9) (7)
Phase 1: insertion (b) (8,2,5,3,9) (7,4)
Insertion into priority queue. Eg)) g'g’g')g) g'::'g)z)
An insertion is 0(1), n insertions O(n). () (3'9') (7'4'8’2 5)
(f (9) (7,4,8,2,5,3)
Phase 2: removal (g) ( ) (7/4/8/215/3/9)
Repeated removal of minimal key from P. Phase 2 (7,4,8,2,5,3,9)
Runtime of each removeMin is @) @) (7,4/8,5,3’9,)
proportional to the size of P (b) (2,3) (7:41,8,,51,9,)
(9 (2,34) (7,8,5,9)
nc+(n—=1c+ .. +2c+1c (d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
n
+1 (f) (2/3/4/5/7/8) (9)
=) =MD o) (9) (23/45,7,89) 0
il ' 10
Insertion sort: space complexity
(sequence S is a linked list and modified) Sequence S Priority queue P
Sorti I t Linked list
orting nn elements. Input: (7,482,539 () n elements
Sorted list priority queue P.
Phase 1 insert
o (a) (4,8,2,5,3,9) (7) n elements
Space complexity: (b) (8,2,5,3,9) (4,7) n elements
Depends on implementation. (c) (2,5,3,9) (4,7,8) n elements
(d) (5,3,9) (2,4,7,8) n elements
If S is linked list whose size is (e) (39) (2,4,5,7,8) LA
Ao y (f) 9) (2,3,4,5,7,8) n elements
modified by insert/remove. (9) 0 (2,3,4,5,7,8,9) n elements
The total number of elements in $ and P
combined is always equal to the number Phase 2 remove
of elements originally in S (given as input). @) (2) (3,4,5,7,8,9) n elements
Then space s O(1). ¢ (b) (23) (4,5,7,89) n elements
v (c) (2,3,4) (5,7,8,9) n elements
ifSi ist? (d) (2,3,4,5) (7,8,9) n elements
What if S is an array list? © (23457) (8.9) oy
() (2,3,4,57,8) (9) n elements
(9) (2345,7839). () n elements
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Insertion sort: space complexity

(sequence S is array or read-only linked list) Sequence § PR— e e

Insert/remove Read/override

Sorting n elements. (array list) (array or linked list)
Sorted list priority queue P. Input: (748,2,53,9) (748253,9) ()
Phase 1
Space complexity: (i)) ( ,4,2,2,5,3,3) (7,4,3/5,5%,3) (7) )
i i = 12/5/ G 714/ 0 /5/ ’ 4/7
EENGS S e, © LAY Gassaae (478
(d) (040539 (7482539 (24,7,8)
If S is linked list modified by (e) (rrvei39) (7482539 (245,7,8)
insert/remove. (f) ( A A /9) (714/8/2/5/3/9) 52/3/4/5/7/8)
o assaaw AL (9) (vvvens) (7482539 (2345789
Phase 2
IfSis an array of CapaCityn(Of any (a) (2/ o I) (214/8/2/5/3/9) (3/4/5/7/8/9)
linked list that does not shrink, (b)) 55/2141 o I)) (%glg,%ss'g’g)) (;’;,319859)
i C ey e r .3 b Bl dr dond el { Al ool 4
SOTISANE SN @ Gaas | ) (2345539 (789
TN N D N SO P (e) (23457, ,) (2345739 (89)
(f) (2’3141517181 ) (213l4/5/7/819) (9)
Space complexity is O (n) with array. (9) (234,5,789) (234,578)9) ()

Can we use less space?

ar

Similar concept applies to selection sort.

In-place insertion sort

Selection and insertion sort can be
implemented in-place.

In-place sorting:

Only O(1) space used (in addition to
the sequence being sorted).

Sorted
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& . Sorted U rted
In-place insertion sort — neore

Insertion sort implemented in-place.

o¥o)
o4o
ofo

Only O(1) space used (in addition to
the sequence being sorted).

) O ©

A portion of the input sequence itself
serves as the priority queue P.

(

__ORC
® ¢
® @O CXC

f

In-place insertion sort:

Iterate left to right, one index i at a time
(wherei =1uptoi=n-—1). -

* |terate backwards within 0, ..., i — 1:

* If element larger than the element at
index i, shift a position to the right.

* Insert element at its correct position.

© O

'Y
?;ﬂ
w

Ol OLOZONONONO

In-place selection sort

Unsorted

w
<}
-
o
o

Selection sort implemented in-place.

£
&
f}

Only 0(1) space used (in addition to
the sequence being sorted).

O,

| ONONONO

A portion of the input sequence itself
serves as the priority queue P.

-

In-place selection sort:

Iterate left to right, one index i at a time

(wherei =Quptoi=n-—2).

* Find index m of minimum element
within indexes i, ...,n — 1.

* Swap elements at i and m.

@O © © O]
@O © O
OO

oL ©

127



CSE1305 Algorithms & Data Structures

Heap sort O(n log n) — array -> heapify -> popback

Add all elements to array heap 9
AR muten[s]7]5[2]6]a] 7 s
Sorting n elements (non-decreasing). result || ||| N @ @ 4
Heap-based priority queue P (min-heap).
Hapliy @
Phase 1: insertion | 2 | 6 [ 4 I 7 ] 9 ] 5 l @ ' i
The i*" insertion takes 0 (log, i) time, since it Vi g /\ l
performs upheap on the heap with i entries. I J I | | | I @ O S)
Takes O(nlog, n) time for all insertions.
Can be 0(n) using bottom-up construction. Repeated calls to removeMin @
Phase 2: removal [ 2 I b I % I L | i | l 6 ) <:5:-'
The jth removeMin is O(logz(n — j + 1)), | 2 | [ | I | | 7 9
since it downheaps heap of n — j + 1 entries. o
Takes O(n log; n) time for all removals. : 9
Heap sort time complexity 1 9 [ [ | J l I
O(nlogy m) le[slel7] ] i

Each time we do removeMin we have to reorganize the heap.
Time complexity is 0(nlog, n).

Space complexity is O(n).

How to remove the heap entries to the final array spot without having to reorganize the heap? In place-
heap sort by using max-heap (remove max)

2
In_place heap sort Add all elements to array heap (6 4
l2]6|a72]o]s]| @ ® G
To sort n elements in non- @
decreasing order in-place using A ;
a heap: Heapify ( (5)
max-heap |9 [ 7[5 |2 |6 |4 (2 @
Use max-heap instead! . ‘
Comparator produces reverse Repeated calls to removeMax 7
outcome of a min-heap, such that: Swap root & last A
- Maximal key at the root. indices {0,n — 1} l g I U I 5 I 2 J 6 I 9 I 6 5
- Parent’s key larger than or equal Down-heap bubble 716151212 ol \
to its children’s keys. indices {0, ...,n — 2} l | | | I | 2 l ® ©
(6)
If we repeatedly remove the Swap root & last | 4 | | | [ = I = | =
largest, we can place it at the indices {0,n — 2} 6|52 9 (4) 5
position made free by the removal,  Down-heap bubble T e ‘
at end of the array. indices {0, ..., n — 3} 16 ]a]s]2[7]e]
[2[a]s]s[7]9] 2 33
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Divide-and-conquer is an algorithmic design pattern consisting of 3 steps:

1. Divide:
[Small input: base case]

If input is small (e.g. 1-2 elements), solve problem directly.

[Larger input: recurrence]

Divide the input into two or more disjoint subsets.

2. Conquer: Recursively solve the subproblems associated with the subsets.
3. Combine: Take the solutions of the subproblems and merge them into a solution to the larger problem.

Merge sort uses divide-and-conquer to sort a sequence S with n elements:

1. Divide:
[Base case]

If § has less than 2 element(s), return S (already sorted).

[Recurrence]

If S has at least 2 element(s), split elements of S into 2 sequences S; and S,.
Sy and S, contain each about half of the elements: S, the first |*/,], S, the remaining ["/,].

2. Conquer: Recursively sort sequences S; and S,.

3. Combine: Put elements back into S by merging the sorted sequences S; and S, into a sorted sequence.

Execution of merge sort depicted by its
recursion tree.

Warning: This is not a tree data structure!

Each node represents a recursive call of
merge sort with:

- unsorted sequence before the execution
and its partition (left);

- sorted sequence at the end of the
execution (right).

Root contains initial call, and final result.

Leaves are calls on sequences of size 1.

Input S Output S

S$118;

[72|94»z439 ]
/\

[7|2»z7]

[9[4»49]
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Figure 12.2: Visualization of an execution of merge-sort. Each node of the tree
represents a recursive call of merge-sort. The nodes drawn with dashed lines repre-
sent calls that have not been made yet. The node drawn with thick lines represents
the current call. The empty nodes drawn with thin lines represent completed calls.
The remaining nodes (drawn with thin lines and not empty) represent calls that are
waiting for a child call to return. (Continues in Figure 12.3.)
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Merge SOI’t. CompleXIty Level #seqs size Work

Total number of elements in all nodes (per level)

0 1 n 0(n)

1 2 ", o)

i 20 ", om)

. 0(n)
*may differ by 1 for
. . ) sequences with an odd
The height h of the merge sort recursion tree is 0(log, n). number of elements.
* At each call, divide, make 2 recursive calls: recursion tree is a complete binary tree.
The total amount or work done by all the calls at level i is always O(n):
* Partition and merge 2! sequences of approximately size ot
« Make 2+ recursive calls.
Total running time of merge sortis 0(nlog, n). »
=<, |
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The merged arrays are supposed to be sorted, therefore only the first index of each array are compared,
then poped into the (sub) final sequence. Since eventually every element of the array must have been
evaluated, we get O(n) for those (comparisions are O(1)). The number of evaluations is relative to the
height of the tree O(log n). Multiplying these yields O(n log n)

Merge sort (bottom-up, non-recursive)

Merge.
[ 1 2 3 4 6 7 8 9 ]
Outer iteration [log, n| Inner 1: merge 2 runs
Perform 1 merge of runs of length [log, n| (start 0, len [log, n|) A
.......................................... A sreteeteessescestecastssessessassasssarsanns, )
T [z 47 2R 9 i ¢ ¥( B ¥& K%
lllllllllllllllllllllllllllllllllllllllllll 'l..lll.llll.llll.llll.l‘llllll.llllllll.ll.J
Outer iteration i Inner 1: merge 2 runs Inner "/, : merge 2 runs
Perform all merges of runs of length i (start 0, len i) (startn — 2 « i, len i)
—- —)
[ wesscesssnsncscnsey  _sessesseEsEsEEEEEE, = ,eNEessEUERENeEsEsey 2 _eeeseweEEEENSEEvEvy Y
P2 7 ¢ ! a4 9 : i 3 8 i : 1 6 1
| ®essnncasannansannss U aasshasassnannanss C R . S ihAaazasonssio s *
Outer iteration 1 Inner 1: merge Inner 2: merge Inner 3: merge Inner 4: merge
Perf Il f f length 1 (start 0, len 1) (start 2, len 1) (starM.lal) (start 6, len 1)
erform all merges of runs of ien, ) /a en a /a en L - e 3 /a en 4 .
E 7 4 t 3 & 8 6 1 1
 Ceereeeesr  tessessas®  "assseeses’  Sessesesa™  Cessssesss’ essssesss®  Cesnssccess’  Vesesesss’ J
Sorting algorithms: comparison
Hg;rithm Timeiworst) Time (average) Time (best) Space Properties
Selection 0(n?) 0(n?) 0(n?) 0(1)  Slow. In-place. For small datasets (< 1K).
: Generally slow. In-place. For small datasets (< 1K).
2 2
Insertion:  0(n”) 0(n%) O(n) o) Can be 0(n) time for nearly sorted sequences.
Heap 0(nlogn) 0(nlogn) O(nlogn)t 0(1) Fast. In-place. For large datasets (1K — 1M).

Best O(n) time only if all elements are equall

Fast. Sequential data access. For huge data sets (> 1M).
Merge O(nlogn) O(nlogn) O(nlogn)? 0(n)? i be made to have best 0(n) time, but f sequence is sorted

nly

COUrse

Merge sort notes (see also Section 13.1.5 Alternative Implementations of Merge Sort):
Merge sort can be implemented both top-down and bottom-up on arrays and linked lists with same complexities.
Non-recursive merge sort also runs in O(n log, n), but it is faster in practice, since it avoids overhead of recursive calls

and temporary memory allocation.
Realizing a priority queue with a heap has the advantage that all the methods in the priority queue ADT
run in logarithmic time or better. In general, we say that a sorting algorithm is in-place if it uses only a
small amount of memory in addition to the sequence storing the objects to be sorted.

The running time of merge-sort is equal to the sum of the times spent at the nodes. the overall time
spent at all the nodes of T at depth i is O(2' -n/2'), which is O(n), the height of T is [logn] thus the overall
time complexity is O(n log n).
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Array-based implementation of Merge-Sort

1 /+* Merge contents of arrays S1 and 52 into properly sized array S. #/
2 public static <K= void merge(K[] 51, K[] 52, K[ ] S, Comparator<K> comp) {
3 inti=20,j=0
4 while (i + j < S.length) {
5 if (j == S2.length || (i < Sl.length && comp.compare(S1[i], S2[j]) < 0))
6 S[i++j] = S1[i++]; // copy ith element of 51 and increment i
7 else
8 S[i+j] = S2[j++]; /| copy jth element of S2 and increment j
9
10 } }
Code Fragment 12.1: An implementation of the merge operation for a Java array.
01 2 3 4 5 6 01 2 3 45 6
Sy [ 2] 5] s [1n]12]1a]15] S |2 ]5] s [iniz[14]15]
[ i
01 2 3 4 5 6 01 2 3 45 6
s> [3 ]9 [10[18]19]22]25] S, [3 [9[10[18[19]22]25]
01;3415678910111213 onz&retsa?sgmnul;
seEfsyse] [ [ [ [ [T 1] sEslsrsiefel [ [ [ [[]]]
i+] i+j
(a) (b)
Figure 12.5: A step in the merge of two sorted arrays for which Sy [j] < S;[i]. We
show the arrays before the copy step in (a) and after it in (b).
1 /** Merge-sort contents of array S. #/
2 public static <K= void mergeSort(K[ | S, Comparator<K=> comp) {
3 int n = S.length;
4 if (n < 2) return; [/ array is trivially sorted
5 /[ divide
6 int mid = n/2;
7 K[ ] S1 = Arrays.copyOfRange(5, 0, mid); // copy of first half
8 K[ ] 52 = Arrays.copyOfRange(5S, mid, n); /| copy of second half
9 // conquer (with recursion)
L0 mergeSort(S1, comp); // sort copy of first half
[1 mergeSort(52, comp); // sort copy of second half
12 // merge results
3 merge(S1, S2, S, comp); // merge sorted halves back into original
14 }

Code Fragment 12.2: An implementation of the recursive merge-sort algorithm for
a Java array (using the merge method defined in Code Fragment 12.1).
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12.1.4 Merge-Sort and Recurrence Equations *

There is another way to justify that the running time of the merge-sort algorithm is
O(nlogn) (Proposition 12.2). Namely, we can deal more directly with the recursive
nature of the merge-sort algorithm. In this section, we will present such an analysis
of the running time of merge-sort, and in so doing, introduce the mathematical
concept of a recurrence equation (also known as recurrence relation).

Let the function 7(n) denote the worst-case running time of merge-sort on an
input sequence of size n. Since merge-sort is recursive, we can characterize func-
tion f(n) by means of an equation where the function 7(n) is recursively expressed
in terms of itself. In order to simplify our characterization of ¢(n), let us restrict
our attention to the case when n is a power of 2. (We leave the problem of showing
that our asymptotic characterization still holds in the general case as an exercise.)
In this case, we can specify the definition of 7(n) as

1(n) = b ifn<1
| 2(n/2)+cn otherwise.

An expression such as the one above is called a recurrence equation, since the
function appears on both the left- and right-hand sides of the equal sign. Although
such a characterization is correct and accurate, what we really desire is a big-Oh
type of characterization of r(n) that does not involve the function #(n) itself. That
is, we want a closed-form characterization of  (n).

We can obtain a closed-form solution by applying the definition of a recurrence
equation, assuming n is relatively large. For example, after one more application
of the equation above, we can write a new recurrence for 7(n) as

t(n) = 2(2t(n/2%)+(cn/2))+cn
= 2%(n/2*)+2(cn/2)+cn = 2%t(n/2%) + 2cn.
If we apply the equation again, we get #(n) = 2°1(n/2%) 4 3cn. At this point, we
should see a pattern emerging, so that after applying this equation i times, we get
t(n) = 2't(n/2")+icn.

The issue that remains, then, is to determine when to stop this process. To see when
to stop, recall that we switch to the closed form 7(n) = b when n < 1, which will
occur when 2' = n. In other words, this will occur when i = logn. Making this
substitution, then, yields

t(n) = 2% (n/2'92") 4 (logn)cn
— nt(1)+cnlogn
= nb+cnlogn.

That is, we get an alternative justification of the fact that 7(n) is O(nlogn).
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Quick sort

Quick sort uses divide-and-conquer to sort a sequence S with n elements.
In quick sort the hard work is mostly done before the recursive calls.

1.

Divide:

[Base case]

If S has less than 2 element(s), return (nothing to do).
[Recurrence] b

If S has at least 2 element(s), select a specific element from S, called the pivot. E.g. choose pivot as the last
element in S (other choices possible: e.g. middle).
Remove all elements from S and split them into 3 sequences:
Sequence L: elements from S that are smaller than pivot.
Sequence E: elements from S that are equal to pivot. (If all elements in S are unique, then only the pivot)
Sequence R: elements from S that are larger than pivot.

Conquer: Recursively sort sequences L and R.

Combine: Put elements back into S as follows: first all elements of L, then elements of E, finally elements of R.

Sequence §
D 0 |£| D Pick pivot element x.
\ J
Y
s . .
Divide:
Partition S into:
I . . EI L: elements less than x.
\ )\ )\ ) E: elements equal to x.
R: elements greater than x.

Conquer (recursion):
Sort L and R.

Combine:
JoinL, E, and R.
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Quick sort: time complexity

Level #Seqs Size  Work

0 1 Oo(n) O0(n)
1 2 o™, om
i 2t 0("y) o)

Ko 2h 0(MY,,) 0m)

Good case: when pivot choice leads to nearly equally sized partitions. lChi"CIZOf p't"Ot:
ast elemen

Then the height h of the quick sort tree is 0 (log, n).
Overall amount or work done at level i is O(n):
* Partition and combine 2! sequences of'size ™ "ot
* Make 21+ recursive calls.

Good case running time of quick sort is O(nlog, n). Space in stack for recursion tree is 0(log, n). 30

Quick sort: time complexity

Level #Seqs Sizes
Total number of elements in all nodes (per level)

1 {n}

Height 2 {0,n—1}

o(n)
2 {on—i}
2 0,1}

If § is sorted, last as pivot leads to unbalanced partition sizes! i

Then the height of the quick sort tree is 0(n). ' % _85_63 |

The work per level i is proportional to size of largest sequence, n — i.

Overallnodes: n+n—-1)+ .. +2+1=3",1i ="("2—+1)

Worst-case running time of quick sort is 0(n?). Space is 0(n). 33
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Quick sort: randomized

To guarantee that quick sort is efficient, partitions should be balanced.
Deterministic choice of pivot can lead to worst-case performance for certain distributions of the input.

Randomized quick sort
Introduces randomization when choosing the pivot:
Instead of always picking the first, last, or any other fixed element of S, we choose an element at random.

Time complexity analysis
The running time of quick sort is proportional to the number of comparisons.
In each recursive call: divide compares each element to the pivot, so it can partition the input sequence into 3.

How do we calculate the total number of comparisons performed by quick sort?

Quick sort: randomized

(4 10 17@ 45 50 63 85 9 )

o @0 e) (o w
O d &

Time complexity analysis (number of comparisons)
Non-pivot elements: per level, a non-pivot element is only compared once to the pivot, or not at all.
Specifically, an element x is involved as a non-pivot in only one comparison per level until it either:

- becomes the pivot (examples: elements 4, 17, 31, 45, 50, 85)

- becomes the only element (examples: 10, 24, 63, 96) What other examples do you see?
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Time complexity analysis

The total number of comparisons is },,cs C(x), where C(x) is the number of comparisons with x as a non-pivot.
C(x) is path length, as x is in 1 comparison as non-pivot per level until it becomes the pivot or the only element.

Input size (at level d): Let ny be the input size for a node of such path at level d of the tree, for 0 < d < C(x).
For the root, ny = n. For a recursive call at level d + 1, size is at most one less than the parent: ng4, <ng — 1.

Example:

Forx =31,C(x) = 3.

ng = 10,"1 = 6, n; = 5,713 = 2.
Pivot choices of 50 and 17 are good.

Quick sort

randomized

Example:
Forx=31,C(x)=3.

ny =10,n, = 6,
n,=5n;=2

Pivots 50 and 17 are “good”.

(12345678 91011 12 13 14 15 16|
H_I\ ~- 7\ v J
Bad pivots  Good pivots Bad pivots
Probability 1/2

Time complexity analysis
The runtime is proportional to the number of comparisons: },.cs C(x), where C(x) is #comparisons w/ x as non-pivot.

C(x) is path length, as x is in one non-pivot comparison per level until it becomes the pivot or the only element.
Let ny be the input size for node at level d, for 0 < d < C(x). Root, nyg = n. Foranycallatd: ng.q, <ng — 1.

Choice of pivot at level d is “good” if ng4+1 < 3ny/4.
Choice of pivot is “good” with probability at |eas$1/2.

There are at least ny/2 elements in the input that, if chosen as pivot, leave at least ny/4 in a subproblem, and x in set w/ at most 3n,4/4 elements.
There are at most log4 /3 n good pivot choices before x is isolated. Since choice is good with probability 1/2, expected number of choices to get logs /3 n
good choices is at most 2 log, 3 n. Expected value of C(x) is O(log; n).

The expected value of sum ) ,es C(x) is the sum of expected values of its terms.

Since C(x) is 0(log, n), then Y, C(x) is O(nlog, n). 44
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Quick sort (in-place)

Uses element swapping, no
subsequences are created.

A subsequence of the input is
represented implicitly by the
range given by indices a and b.

Divide step scans the array
simultaneously:

- forward, using index [, and
- backward, using index r.

When [ and r cross, division is
complete, and the algorithm
recurs on the two subsequences.

No explicit combine needed.

In-place quicksort:
Java code 13.6, page 553.

CSE1305 Algorithms & Data Structures

/#* Sort the subarray S[a..b] inclusive. %/

|
2 private static <K> void quickSortInPlace(K[ ] S, Comparator<K> comp,
3 * int a, int b) {
4 if (a >= b) return; /I/ subarray is trivially sorted
5 int left = a;
6 int right = b—1,
7 K pivot = S[b];
8 K temp; // temp object used for swapping
9 while (left <= right) {
10 // scan until reaching value equal or larger than pivot (or right marker)
Il while (left <= right && comp.compare(S[left], pivot) < 0) left++;
12 // scan until reaching value equal or smaller than pivot (or left marker)
13 while (left <= right && comp.compare(S[right], pivot) > 0) right——;
14 if (left <= right) { // indices did not strictly cross
15 // so swap values and shrink range
16 temp = S[left]; S[left] = S[right]; S[right] = temp;
17 left++; right——;
18 }
19 }
20 // put pivot into its final place (currently marked by left index)
21 temp = S[left]; S[left] = S[b]; S[b] = temp;
22 // make recursive calls
23 quickSortInPlace(S, comp, a, left — 1);
24 quickSortInPlace(S, comp, left + 1, b);
25
46
24 63 45 17 31 9% 50 )

4 63 45 17T 3 9% 50 )
!
(b) r
( 31 24 6 45 17 8 9% 50 )
I
(© "
( 31 24 6 45 17 8 9% 50 )
!
(d)
( 31 24 17 45 6 B 9% 50 )
IL.r
(B}h
( 31 24 17 45 6 8 9% 50 )
ro< I
(f)
( 31 24 17 45 S0 85 9% 63

(g)
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Sorting algorithms: comparison

Algorithm Time Properties

Selection sort 0(n?) In-place. Slow. OK for small input, but insertion sort is typically better.

Insertion sort  0(n?) In-place. Slow, good for small input. Can be O(n) for nearly sorted input.

Quick sort O(nlog,n)" In-place. Randomized. Fastest (good for large inputs). Worst-case 0 (n?).
3

Heap sort O(nlog, n) In-place. Fast (good for large inputs).

Merge sort O(nlog, n) Sequential data access. Fast (good for huge inputs).

‘expected

Hybrid approaches. Sorts in library implementations usually combine multiple algorithms (e.g. insertion
sort for small inputs, improved versions of quick sort or merge sort for large inputs).

Unlike merge-sort, however, the height of the quick-sort tree associated with an execution of quick-sort
is linear in the worst case. This happens, for example, if the sequence consists of n distinct elements and
is already sorted.

Quicksort has O(n?) worst-case runtime and O(nlogn) average case runtime. However, it's superior
to merge sort in many scenarios because many factors influence an algorithm'’s runtime, and, when
taking them all together, quicksort wins out.

In particular, the often-quoted runtime of sorting algorithms refers to the number of comparisons or
the number of swaps necessary to perform to sort the data. This is indeed a good measure of
performance, especially since it's independent of the underlying hardware design. However, other
things — such as locality of reference (i.e. do we read lots of elements which are probably in
cache?) — also play an important role on current hardware. Quicksort in particular requires little
additional space and exhibits good cache locality, and this makes it faster than merge sort in many
cases.

In addition, it's very easy to avoid quicksort's worst-case run time of O(n?) almost entirely by using
an appropriate choice of the pivot — such as picking it at random (this is an excellent strategy).

In practice, many modern implementations of quicksort (in particular libstdc++'s std::sort ) are
actually introsort, whose theoretical worst-case is O(nlogn), same as merge sort. It achieves this by
limiting the recursion depth, and switching to a different algorithm (heapsort) once it exceeds logn.

share edit follow edited May 19 '14 at 6:59 answered Sep 16 '08 at 9:14

Konrad Rudolph
468k # 118 = 869 * 1120
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Week 6. lower bound & key-based sorting, selection

Lower bound
l.e. minimum running time to sort any given sequence.

Sorting algorithms

Algorithm Time Properties

Selection sort 0(n?) In-place. Slow, OK for small inputs but insertion sort is better.
Insertion sort  0(n?) In-place. Slow, good for small inputs, O(n) for nearly sorted inputs.
Quick sort O(nlogn)” In-place. Randomized. Fastest in practice (good for large inputs).
Heap sort O(nlog nl In-place. Fast (good for large inputs).

Merge sort O(nlogn) Sequential data access. Fast (good for huge inputs).

‘expected

Is there a lower bound on the time complexity of sorting?
Can we design sorting algorithms faster than O(nlogn)?

Lower bound on sorting

Sorting a sequence S = {xg, X1, ..., X,_1} With n elements.
»
All algorithms seen so far rely on comparisons to establish an order.

Let’s only count comparisons for a lower bound £ on the worst-case:
* Implementation of S does not matter (only counting comparisons).
* Comparing x; and x; (is x; < x; true?), has 2 outcomes: YES,NO.
* Based on the result of a comparison, the algorithm performs some
internal calculations and eventually another comparison.

We can represent a comparison-based sorting algorithm with a binary
decision tree T'.
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Input:

Lower bound on sorting Any pesmation of s sequence S

Permutation P; = [1,2,3,4,5,6]
Permutation P, = (2, 1,3,4,5, 6]

Permutation P, = [6,5,4,3,2,1]

Output: always the same (sorted S):
[1,2,3,4,5,6]

Each possible permutation leads to a
specific series of comparisons in
. path from the root to a leaf.

Sorting S = {xg, X1, ..., Xpn-1}

Binary decision tree 7" represents all comparisons made by a comparison-based sorting algorithm.
* Nodes denote comparison operations.
* Each possible run of the algorithm corresponds to a root-to-leaf path in the decision tree T'.

Lower bound on sorting

L 3

Height h at least log; k

(minimum, worst-case running time)

v
4 Number of leaves k =——————>
Sorting S= {xo, X1, e ,xn_l}

Running time of comparison-based sorting is at least equal to the height h of tree 7 (minimum).

Each leaf in T denotes the sequence of comparisons for at most one permutation of S.
Proof by contradiction. If different permutations P, and P, are associated with the same leaf, then there are
at least two elements x; and x; from S such that their order is different in P, and P,. This would mean that

x; and x; are in the wrong order in P; or P,, which is not possible for a correct sorting algorithm. "
.
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Lower bound on sorting

Ed

Height h is Q(log, (n!))

CSE1305 Algorithms & Data Structures

Since at least n/2 terms in n! are
greater than or equal ton/2:

loge(n!) > log, ((g)i)

n n
- S s
_210g22

+ Number of leaves

Arerem— kis Q(n!)
Sorting S = {xg, X1, ..., Xp-1}

Q(nlog, n)

—_—

Running time of comparison-based sorting is at least equal to the height h of tree 7' (minimum).
Each leaf in T denotes the sequence of comparisons for at most one permutation of S.
Each permutation of S results in a different leaf. Number of leaves n!=n(n—-1)(n—2)--2-1.

Height of T is at least log, (n!).

Bucket sort

Bucket sort

Chapter 13.3.2
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Key-based sorting

input sorted result
name  section (by section)

Anderson | 2 Harris [1]

Let S be a sequence of n (key, element) items. g::;"s‘ ; ::; :;" i
Keys are (small) integers in the range {0, ..., N — 1}. ] P Ahdaraon I3
Harris 1 Martinez | 2
. Jackson |3 Miller 2
Bucket Sort: . Johnson |4 Robinson | 2
No need for comparisons. Jones 3 white 2
Can use key as index into an auxiliary array: Martin |1 Brown 3
2 . " P PRI Martinez |2 Davis 3
All entries with key k are placed in a “bucket” at index k. Miller |2 Tackéon |3
Moore 1 Jones 3
Robinson | 2 Taylor 3
Applications. Smith |4 Williams |3
* Sort string by first letter. Taylor |3 Carcia. |4
* Sort class list by group. Thomas |4 Johnson |4
* Sort phone numbers by area code. Thompson | 4 Smith |4
+ Subroutine in a sorting algorithm i O Lo
galg ‘ Williams |3 Thompson | 4

»
Wilson % Wilson [4)
Keys are
small integers 14

Bucket sort

For simplicity, we only look at keys.

[4]2]1]2]0[3]2[1]4]0]2]3]0]

Algorithm bucketSort(S):
Input: Sequence S of entries w/ integer keys in range {0, ..., N — 1}.
Output: Sequence S sorted in non-decreasing order of keys.

2
Let B be an array of N sequences, each initially empty. 0 2
For each entry e in S do * ‘ ﬁ *
Let k be the key of entry e.
Remove entry e from S and insert it at the end of B[k]. 0 1 3 3 4
Fori =0toN — 1do

F hentryei Bli] d
orR:anfovZnem;IZ:rec)q;?ﬁT arEtlj]in:ert it at the end of S. I ¢ I g I 0 | i | : I 2 | £ I - | 2 I ) l - | B | " l
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Bucket sort Sequence S: n elements.

Keys: N possible values.

N 6 1 - )| [
Sequence S [7,dJ 1 1¢ 13,0 17,9 l3'bJ l7,e]

Key range {0, ..., 9} o Time complexity
1 - Phase1 O(n + N)
including creation of B

/[7'4H7'aH7.e]

Bucket array B Q\ Q“QQQJQQ
01 2 3 45 6 7 8 9

Time complexity
l Phase 2 Phase2 O(n + N)

sonees (12} 2} (30 —(28—E0—5)

Bucket sort

Time and space complexity: O(n + Na. Depending on implementation, space can be O(N) for buckets.
Efficient when range of keys N is small compared to sequence size n: e.g. N is O(n) or O(nlogn).

Properties
Key type: keys are used as indices into an array, cannot be arbitrary objects.
Stable sorting: preserves the relative order of any two items with the same key.
For any two items (k;, v;) and (k;, v;) such that k; = k;
and (k;, v;) precedes (k;, v;), or i < j, in S before sorting,
then (k;, v;) also precedes (k;, v;), or i < j, in § after sorting.

Sequence § 7 _eJ
Stable sorting
Lines of same
color do not cross.
Sequence § 7 e ]
(sorted) 36
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Stable sorting

A stable sorting algorithm preserves the relative order of items with the same or equivalent key.

When is this relevant?

Imagine that we are sorting based on multiple criteria.

If an order has already been established so far, we don’t want to break it if the item keys are
equivalent according to the next criterium.

Which of these algorithms are naturally stable?
Selection sort yes

Insertion sort  yes
Quick sort no due to the swapping of elements relative to the pivot

Heap sort no due to the heap structure and operations

Merge sort yes
Bucket sort yes

Radix sorts (LSD, MSD)

Key types Radix Alphabet
Type of key (N) (possible keys)
BINARY 2 01
DNA 4 ACTG
OCTAL 8 01234567
DECIMAL 10 012 34~56789 At codes
HEXADECIMAL 16 0123456789ABCDEF {65, 66, ...,90}
PROTEIN 20 ACDEFGHIKLMNPQRSTVWY Keys: code — 65
LOWERCASE 26 abcdefghijkImnopgrstuvwxyz {01,...,25}
UPPERCASE 26 ABCDEFGHIJKLMNOPQRSTUVWXYZ
R
ASCII 128 ASCII characters
EXTENDED_ASCII 256 extended ASCII characters
UNICODE16 65536 Unicode characters 40
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Radix sort

Composite keys: keys in a sequence S are d-tuples of elementary keys
key — (klr kz, A k(‘)

Examples:

Keys Tuple description Alphabet Radix (N)

06 1234 5678 phone number is a 10-tuple of decimal digits  {0,1, ..., 9} 10 possible digits
AMS airport code is a 3-tuple of capital letters {A;B, ..., 2} 26 possible letters

Idea of radix sort
To sort sequence S of n keys that are d-tuples of radix N:
Apply stable bucket sort sequentially, using a different elementary key of the tuple at each iteration.

How should we process the elementary keys in the d-tuple?
A. Forward AMS > AMS > AMS

B. Backward MS > AMS > AMS a

Because it preserves the lexicographic order.

Key length d=3

Radix sort (LSD) Radix N =26
#Elements n=>5
Composite keys n>» N ir’ real
(d-tuples of elementary keys) applications
~
Z@ ] Radix, or # possible values per elementary key (/¥)

H

ARN
I Backward! (LSD: least-significant digit first)
Sequence S Example: sorting 3-letter airport codes
2 AMS
(n entries)

EHEH

42
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. d=3
Radix sort (LSD) N =26
n=>5
Bucket sort applied d times: 0(d(n + N)) n > N in real
applications

>
E)
2
>
E)
=
>
X
=
>
E)
4

e
fok
HiHE)
R
HEHE

,_
I
)
N
=
=S
=
=~
o
=
= =
=

EHEHEH
HEH
EHEH
Hatly
Hatly

48

Radix sort (LSD)

Generally works with keys of equal-length.

Strings of equal-length (e.g. airport codes).

Integers of equal-length (e.g. integers using their bit representation, telephone numbers).
L3

More:

Can be made to work with variable-length keys that align right.

But needs to either process the keys per length or use padding with zeros on the left.

Example: multi-digit integers

40
2
315
8

Not really suited for variable-length keys that use lexicographic order (e.g. strings in general).

149



CSE1305 Algorithms & Data Structures

Radix sort (MSD)

It works, if we apply bucket sort recursively within each bucket formed in the previous iteration!

Buckets
P

)
ARN AMS

#B&d%dsc

Y
at

>
=
<
>
=
7]
>
=
2

H
I
A

>
=
@
-

H
|
A

@
[}
2
N
N
=
=
N
o
Xz

H
i
EH

e/

51

|
[[

Radix sort (MSD)

Works with keys of different length.

General strings.
Integers (e.g. because it can make use of their bit representation).

pig | lio

lion 0 oV Three strings sorted after
parrot pig pa one character, 2 sorted after
owl parrot p| two characters.

zebra zebra z

Can be faster than LSD, since it may not need to process all elementary keys.

Overhead due to recursive calls.
Improvements: check 3-way radix quicksort.
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Sorting algorithms

In- Best-case Worst-case

Stable place prihng thit Space Application

:z::cnon Yes Yes 0(n?) 0(n?) 0(1) Small sequences, but insertion is better.
Insertion 2 Small sequences. It's 0(n) for nearly
sort s b O(n+m) 0(n%) 0(1) sorted (since # inversions m is small).

Small to mid-size sequences that fit into
Heap sort No Yes O(nlogn) O(nlogn) 0(1) memory. Slower than quick, merge sort.

& General purpose if space is tight and
* 2 *

Quick sort No Yes O(nlogn) 0(n?) O(logn) L e i

General purpose for very large data that
Merge sort Yes No O(nlogn) O(nlogn) 0(n) doesnit Bttt Ak heTIony;

Integers, strings, other d-tuples. If
Radix sort Yes No O(d(n+N)) 0(dn+N)) OMm+N) d(n+N)<nlogn, radixare faster

% s than comparison-based algorithms.

Values for stable and in-place columns based on the most common
implementations of the algorithms. Other variants may be possible.

54

*also expected

Randomized (in-place) quick select

Selection problem

Selection problem.
Select the k' smallest element from an unsorted collection of n comparable elements.
Also called order statistics (selecting an element with a given rank).

For instance:
15t smallest (minimum) rank 1

[/, ™ smallest (median) rank |"/5)

nth smallest (maximum) rank n

Solutions? Complexity?
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Selection problem

Problem. Select the k" smallest element from an unsorted collection of n comparable elements.

Solution 1. Sort collection, pick element at index k — 1 in sorted sequence. Takes O(n logn) time.
Solution 2. Build heap with n elements in O(n) time, remove k elements. Takes O(n + k logn) time.

Slow, since we can solve the selection problem for k = 1, k = n, and other values of k in 0(n) time.

Can we achieve 0(n) running time for all values of k?
For instance, finding the median, where k = |"/,].

Algorithm that uses design pattern prune-and-search or decrease-and-conquer:
Prune away a fraction of the n elements.
Recursively solve the smaller problem.
Find solution for base case using a brute-force method.

59

Randomized quick-select (in-place)

public static int selectInPlace(int[] array, int k) {
return selectInPlace(arriy, 0, array.length-1, k-1);

}

private static int selectInPlace(int[] array, int left, int right, int i) { //i index of k-th

if (left == right)
return array[left]); // if there’s only one element, return that element

// select random pivot index between left and right (same as quick sort)

int pivotIdx = randomPivot(left, right);
// swap pivot with last element, partition, assign updated pivot index (same as quick sort)

pivotIdx = partition(array, left, right, pivotlIdx);

if (i == pivotIdx)
return array(i);
else if (i < pivotIdx)

// k-th element is the pivot

return selectInPlace(array, left, pivotIdx - 1, i); // k-th element is <= pivot
else
return selectInPlace(array, pivotIdx + 1, right, i); // k-th element is >= pivot
}
61
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Randomized quick-select

Algorithm quickSelect(S, k)
Input: Sequence S of n elements, and an integer k € {1, ...,n}
Output: The k'" smallest element of S
Ifn == 1 then
return the (first) element of §
Pick a random (pivot) element x of S and divide S into three sequences:
L, storing the elements in S less than x
E, storing the elements in S equal to x
R, storing the elements in S greater than x
If k < |L| then
return quickSelect(L, k)
elseif k < |L| + |E| then
return x
else
return quickSelect(R, k — |L| — |E])

Randomized quick-select (in-place) e

Call: selectInPlace(array, 0, 5, 3)
Expected output: 10.

Remember that i = 3.

78 104 BN B F208 51 S Pivot choice: 7 (swap with 15, partition)
N
=
SENAN 7 EI51204E50 Pivot index p is 2.
p=2 Isi = p? No, so k' is not the pivot.

Isi < p? No, so k" is not in left subarray.
Must be in right then, recur on right subarray.

15 20 10 Pivot choice: 10 (already last, partition)
2
10 201 S5 Pivot index p: 3
p=3 Isi = p true? Yes, so k™ is the pivot. Return 10.

62
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Randomized quick-select

Quick-select on sequence of n elements.

Best case:
Pivot choice always results in equally sized partitions (sizes of approximately 1/2 each).
Only recurs on one of the partitions, so number of compar?sons is

n n n [logz n] i
N e "zi=o 1/2)

Since Z!':gz "](I/Z)i is a geometric sum with base 1/2, a positive number < 1, time complexity is O(n).
Space is O(log, n) if in-place, since we need space for the stack frames (given by height of recursion tree).

Worst-case:

Pivot choice always results in one partition of size 0, and one partition of size n — 1.

Number of comparisons isn + (n — 1) + (n — 2)+.. + 1. Gauss’ sum, so time complexity is O(n?).
Space is 0(n), since we need space for the stack frames and height of recursion tree is proportional to n.

Expected given random pivot choice?

63
s i~ Time expected: O(n)
Randomized quick-select it
Random pivot choice at each recursive call results in: Space expected: O(logn)
“good” partitions (one of size at least 1/4, other of size at most 3/4) Space worst: 0(n)

- with probability at least 1/2
For the upper bound (big-Oh), we recur on the largest partition (size at most 3/4).

Let t(n) be the running time of randomized quick-select on sequence of size n (total time for all recursive calls).
Running time t(n) depends on partition sizes at each recursive call resulting from random pivot choices.
So t(n) is a random variable, and we want to bound its expected value E (t(n)).

Say g(n) is number of consecutive recursive calls we make before we get a good one (including the current call).
The recurrence equation is t(n) < bn-g(n)+ t(3n/4), where b > 1 is a constant
The expectation forn > 1is E(t(n)) <EMbn-gn)+t(3n/4) =bn- E(g(n)) + E(t(3n/4))

A recursive call is good w/ prob. > 1/2, independent of previous calls being good: expected value E(g(n)) < 2.
If T(n) is shorthand for E(t(n)),forn > 1 T(n) <T(3n/4) + 2bn
L]

After unfolding T(n) < 2bn- Z!Log‘/’ "](3/4)i thus expected O (n) time
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Maps
Maps a value to another, just like a Set Theory relation. A map is a set of pairs.

1 public interface Map<K,V> {
3 int size();

3 boolean isEmpty();

4 V get (K key);

5 V put(K key, V value);

6 V remove(K key);

7 /* more operations in the book */
8

Map

An example would be a dictionary. Maps a word to a description. You can lookup for words (key) but not
for descriptions.

Map<String,String>

Hashing
Hash functions

Say we have 26 sheds.

m. How can we get an integer from a name (what hash function can we use)?

» We can take the integers of all letters, sum them and do modulus 26

» This function is more random (although still not completely random), so the
distribution between sheds will be more even

The goal of the hash function is to “disperse” the keys in an apparently random way

Hash functions are typically build from two components:

» hashCode : Key — int » Ruby — 62 (sum of integers of letters)
» compress : int — [0, N —1] » 62 — 10 (modulus 26)

OOO000000OOOO0OO000000000

Jane Raymond Sara Shirley Brian  Joshua Irene Lori
Ruby Susan

We discuss two ways of dealing with collisions:
» Separate chaining: have a secondary container/map in each bucket

» Open addressing: reuse other free buckets when collisions occur
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Application: Counting Word Frequencies
As a case study for using a map, consider
the problem of counting the number of
occurrences of words in a document. This

/#* A program that counts words in a document, printing the most frequent. *,
public class WordCount {
public static void main(String[ ] args) {

W b =

4 Map<String,Integer> freq = new ChainHashMap<>(); // or any concrete map
is a standard task when performing a 5 '/ scan input for words, using all nonletters as delimiters
istical vsi f d f 6 Scanner doc = new Scanner(System.in).useDelimiter(" [~a-zA-Z]+");
statistical analysis of a document, for ;  (iie (doc hasNext()) {
example' when categorizing an email or 8 String word = doc.next( ).toLowerCase( ); /| convert next word to lowercase
. . . 9 Integer count = freq.get(word); // get the previous count for this word
news article. A map is an ideal data | if (count —= null)
structure to use here, for we can use 11 count = 0; // if not in map, previous count is zero
words as keys and word counts as values. 1_: } freq.put(word, 1 + count); // (re)assign new count for this word
. . 14 int maxCount = 0;
1. We begm with an empty map, 15 String maxWord = "no word";
mapping words to their integer 16 for (Entry <String,Integer> ent : freq.entrySet()) // find max-count word
. 17 if (ent.getValue() > maxCount) {
frequencies. 18 maxWord = ent.getKey();
2. We first scan through the input, 19 } maxCount = ent.getValue();
. . . . 20
considering adjacent alphabetic 21 System.out.print("The most frequent word is '" + maxWord);
characters to be words, 22 System.out.printIn(" ' with " + maxCount + " occurrences.");
23
3. Which we then convert to 21 ) }
lowercase.

4. For each word found, we attempt to retrieve its current frequency from the map using the get
method, with a yet unseen word having frequency zero.

5. We then (re)set its frequency to be one more to reflect the current occurrence of the word.

6. After processing the entire input, we loop through the entrySet( ) of the map to determine
which word has the most occurrences

Hash Tables
One of the most efficient data structures for implementing a map, and the one that is used most in
practice. This structure is known as a hash table.

Intuitively, a map M supports the abstraction of using keys as “addresses” that help locate an entry.

The novel concept for a hash table is the use of a hash function to map general keys to corresponding
indices in a table. Ideally, keys will be well distributed in the range from 0 to N -1 by a hash function, but
in practice there may be two or more distinct keys that get mapped to the same index.

As a result, we will conceptualize our table as a bucket array, as shown in Figure 10.4, in which each
bucket may manage a collection of entries that are sent to a specific index by the hash function.

0 1 2 3 4 5 6 7 8 v 10
) o I ? b o I O R A B
Y Y Y vy ¥ Y Y Y ¥
N LN LN LN LY N LN LN LD
| lao| [T l@mol | 7.a) F__ T [__'
(3.F)
(14.2) L _

Figure 10.4: A bucket array of capacity 11 with entries (1,D), (25,C), (3.F), (14,7),
(6,A), (39,C), and (7,Q), using a simple hash function.
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Hash functions and has codes

The goal of a hash function, h, is to map each key k to an integer in the range [0O,N —1], where N is the
capacity of the bucket array for a hash table. Equipped with such a hash function, h, the main idea of

this approach is to use the hash function value, h(k), as an index into our bucket array, A, instead of the

key k (which may not be appropriate for direct use as an index).

We say that a hash function is “good” if it maps the keys in our map so as to sufficiently minimize

collisions (duplicates).

Types of has chodes: (be mindful that overflows may occur in most of them)

e Treating the Bit Representation as an Integer: for base types byte, short, int, and char, we can

achieve a good hash code simply by casting a value to int. A better approach is to combine in
some way the high-order and low-order portions of a 64-bit key to form a 32-bit hash code,

which takes all the original bits into consideration

e Polynomial Hash Codes: For strings such as "stop", "tops",

xo@" ' 41" X 2@+ Xy Xyt +alxy 2 +alx, 34---+alxn+alx +ax))---)).
or

33, 37, 39, and 41 are particularly good choices for a when working with character strings that

are English words, these produced fewer than 7 collisions in each case.

e Cyclic-Shift Hash Codes: A variant of the polynomial hash code replaces multiplication
by a with a cyclic shift of a partial sum by a certain number of bits. In Java, a cyclic shift
of bits can be accomplished through careful use of the bitwise shift operators.

static int hashCode(String s) {

int h=0;
for (int i=0; i<s.length(); i++) {
h=(h <<5)|(h>>>27) // 5-bit cyclic shift of the running sum
h += (int) s.charAt(i); // add in next character
}
return h;
}

Our choice of a 5-bit shift is justified by experiments run on a list of just over

230,000 English words, comparing the number of collisions for various shift amounts
e Hash Codes in Java: The Object class, which serves as an ancestor of all object types,

includes a default hashCode( ) method that returns a 32-bit integer of type int, which

serves as an object’s hash code. Here any two objects that are viewed as “equal” to
each other have the same hash code.

1 public int hashCode() {

2 int h =0;

3 for (Node walk=head; walk != null; walk = walk.getNext()) {

4 h "= walk.getElement( ).hashCode(); // bitwise exclusive-or with element's code

5 h=(h<<5)]|(h>>>27); /[ 5-bit cyclic shift of composite code

6 }

7 return h;

8}
Code Fragment 10.6: A robust implementation of the hashCode method for the
SinglyLinkedList class from Chapter 3.
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Compression functions
The hash code for a key k will typically not be suitable for immediate use with a bucket array, because
the integer hash code may be negative or may exceed the capacity of the bucket array. Approaches:

The Division Method: maps an integer i to i mod N, where N is the size of the bucket array.
if we insert keys with hash codes {200,205,210,215,220, . . . ,600} into a bucket array of size 100,
then each hash code will collide with three others. But if we use a bucket array of size 101, then
there will be no collisions. If a hash function is chosen well, it should ensure that the probability
of two different keys getting hashed to the same bucket is 1/N. Choosing N to be a prime number
is not always enough, however, for if there is a repeated pattern of hash codes of the form pN +q
for several different p’s, then there will still be collisions.
The MAD Method:

A more sophisticated compression function, which helps eliminate repeated pat-

terns in a set of integer keys, is the Multiply-Add-and-Divide (or “MAD”) method.

This method maps an integer i to

[(ai + b) mod p] mod N,

where N is the size of the bucket array, p is a prime number larger than N, and a
and b are integers chosen at random from the interval [0, p — 1], with @ > 0. This
compression function is chosen in order to eliminate repeated patterns in the set of
hash codes and get us closer to having a “good’ hash function, that is, one such that
the probability any two different keys collide is 1/N. This good behavior would be
the same as we would have if these keys were “thrown” into A uniformly at random.

Hash functions

& If we have the worst hash code possible, can we fix this with a good
compression function?

(a) Yes, we can still have a good hash function

(b) Partially, we can have a decent hash function, but it will not be perfect
(c) No, but we can make it a little better

(d) No, not at all

Hash codes

& What is true about hash codes?

(a) If x.equals(y), then x.hashCode() == y.hashCode()
(b) If x.hashCode() == y.hashCode(), then x.equals(y)
(c) Both A & B are true

(d) Neither A nor B is true problem
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Collision-Handling Schemes
Separate Chaining

A simple and efficient way for dealing with collisions is to have each bucket A[j]
store its own secondary container, holding all entries (k,v) such that i(k) = j. A
natural choice for the secondary container is a small map instance implemented
using an unordered list, as described in Section 10.1.4. This collision resolution
rule is known as separate chaining, and is illustrated in Figure 10.6.

O 1 2 3 4 5 6 7 8 9 10 11 12

1

1
ot
(10)] (25
oo
=

A

1000 =

Separate Chaining

& Given an array-based map using hashing, with Separate Chaining as
collision-handling scheme, how large should the array be to ensure a time complexity of
O(1) for the core operations (choose the last option from the correct answers)?

(a) N>n
(b) N=n
(c) Nis Q(n)
(d) N is prime
(e) NisQ(1)

Open Addressing

This approach saves space because no auxiliary structures are employed, but it requires a bit more
complexity to properly handle collisions.

Linear Probing and Its Variants: if we try to insert an entry (k,v) into a bucket A[ j] that is already
occupied, where j = h(k), then we next try A[( j+1) mod N]. If A[( j+1) mod N] is also occupied, then we
try A[( j+2) mod N], and so on, until we find an empty bucket that can accept the new entry.
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Must probe 4 times

New element with before finding empty slot
key = 15 to be inserted A
iy r =
_ A VEVAVE
0 1 2 3 4 5 8! 7 8 9 10
13 26 5 |37]16 21

Figure 10.7: Insertion into a hash table with integer keys using linear probing. The
hash function is A(k) = k mod 11. Values associated with keys are not shown.

Quadratic probing: iteratively tries the buckets A[(h(k)+ f (i)) mod N], fori=0,1,2, . . ., where f (i) =i’It
has secondary clustering, where the set of filled array cells still has a nonuniform pattern

Double hashing: we choose a secondary hash function, h’, and if h maps some key k to a bucket A[h(k)]
that is already occupied, then we iteratively try the buckets A[(h(k)+ f (i)) mod N] next, fori=1,2,3,...,
where f (i) =i h'(k)

Open Addressing

& Which core function(s) of a map do(es) not work anymore if we do not replace
a deleted entry with a "defunct” object?

(2) get

(b) put

(c) remove

(d) get and put

(e) get and remove
(f) put and remove

(g) get, put and remove

Time complexity

Method L'nscTrted Hash Table
List expected | worst case
get O(n) 0o(1) O(n)
put O(n) 0o(1) O(n)
remove O(n) 0o(1) O(n)
size, isEmpty 0o(1) 0o(1) 0(1)
entrySet, keySet, values O(n) O(n) O(n)

Table 10.2: Comparison of the running times of the methods of a map realized by
means of an unsorted list (as in Section 10.1.4) or a hash table. We let n denote
the number of entries in the map, and we assume that the bucket array supporting
the hash table is maintained such that its capacity is proportional to the number of
entries in the map.
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Sorted Maps

allows a user to look up the value associated with a given key, but the search for that key is a form
known as an exact search. In this section, we will introduce an extension known as the sorted map ADT
that includes all behaviors of the standard map, plus the following:

firstEntry(): Returns the entry with smallest key value (or null, if the
map is empty).

lastEntry( ): Returns the entry with largest key value (or null, if the
map is empty).

ceilingEntry(k): Returns the entry with the least key value greater than or
equal to k (or null, if no such entry exists).

floorEntry(k): Returns the entry with the greatest key value less than or
equal to & (or null, if no such entry exists).

lowerEntry(k): Returns the entry with the greatest key value strictly less
than k (or null, if no such entry exists).

higherEntry(k): Returns the entry with the least key value strictly greater
than & (or null if no such entry exists).

subMap(ky, k2): Returns an iteration of all entries with key greater than or
equal to ky, but strictly less than k.

Sorted Search Tables
We store the map’s entries in an array list A so that they are in increasing order of their keys.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2104517189 12(14[17|19]22125]27(28]33]|37

Figure 10.8: Realization of a map by means of a sorted search table. We show only
the keys for this map, so as to highlight their ordering.

The sorted search table has a space requirement that is O(n). The primary advantage of this
representation, and our reason for insisting that A be array-based, is that it allows us to use the binary
search algorithm for a variety of efficient operations.

while performing a binary search, we can instead return the index at or near where a target might be
found. During a successful search, the standard implementation determines the precise index at which
the target is found. During an unsuccessful search, although the target is not found, the algorithm will
effectively determine a pair of indices designating elements of the collection that are just less than or
just greater than the missing target.

& What are the time complexities of the following methods for each of the map
implementations?

Map(K, V) Unsorted arraylist | Sorted arralyist | Arrays based using hashing
get(K key) O(n) O(log(n)) O(1) (expected)
put(K key, V value) | O(n) O(n) O(1) (expected)
remove(K key) O(n) O(n) O(1) (expected)
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Method | Running Time
size | O(1)

get | O(logn)

put [ O(n); O(logn) if map has entry with given key
remove | O(n)

firstEntry, lastEntry | O(1)
(
(

ceilingEntry, floorEntry,
lowerEntry, higherEntry

subMap | O(s+ logn] where 5 items are reported
entrySet, keySet, values | O(n)

]

Table 10.3: Performance of a sorted map, as implemented with Sorted TableMap.
We use n to denote the number of items in the map at the time the operation is
performed. The space requirement is O(n).

Sets, Multisets, and Multimaps

» A set is an unordered collection of elements, without duplicates, that typically
supports efficient membership tests

> A multiset (also known as a bag) is a set-like container that allows duplicates.

» A multimap is similar to a traditional map, in that it associates values with keys;
however, in a multimap the same key can be mapped to multiple values

10.5.1 The Set ADT

The Java Collections Framework defines the java.util.Set interface, which includes
the following fundamental methods:

add(e): Adds the element e to S (if not already present).
remove(e): Removes the element e from S (if it is present).
contains(e): Returns whether ¢ is an element of S.

iterator( ): Returns an iterator of the elements of S.

There is also support for the traditional mathematical set operations of union,
intersection, and subtraction of two sets S and 7"

SUT = {e: eisinSoreisinT},
SNT = {e: eisinSandeisinT},
§S—T = {e: eisinSandeisnotinT}.

In the java.util.Set interface, these operations are provided through the following
methods, if executed on a set S:

addAll(T): Updates S to also include all elements of set T, effec-
tively replacing S by SUT.

retainAll(7T"): Updates S so that it only keeps those elements that are
also elements of set T', effectively replacing Sby SN T.

removeAll(T): Updates S by removing any of its elements that also occur
in set T, effectively replacing S by S—T.
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Sorted Sets

For the standard set abstraction, there is no explicit notion of keys being ordered;
all that is assumed is that the equals method can detect equivalent elements.

If, however, elements come from a Comparable class (or a suitable Comparator
object is provided), we can extend the notion of a set to define the sorfed set ADT,
including the following additional methods:

first(): Returns the smallest element in S.
)

last( ): Returns the largest element in S.

ceiling(e): Returns the smallest element greater than or equal to e.

€).

)
} Returns the largest element less than or equal to e.
)
)

(
floor(
(
(

lower(e): Returns the largest element strictly less than e.
higher(e): Returns the smallest element strictly greater than e.
subSet(ey, e2): Returns an iteration of all elements greater than or equal

to e1, but strictly less than e;.
pollFirst(): Returns and removes the smallest element in S.

pollLast(): Returns and removes the largest element in S.

In the Java Collection Framework, the above methods are included in a combi-
nation of the java.util.SortedSet and java.util.NavigableSet interfaces.

Implementing Sets

Although a set is a completely different abstraction than a map, the techniques used
to implement the two can be quite similar. In effect, a set is simply a map in which
(unique) keys do not have associated values.

Therefore, any data structure used to implement a map can be modified to im-
plement the set ADT with similar performance guarantees. As a trivial adaption
of a map, each set element can be stored as a key, and the null reference can be
stored as an (irrelevant) value. Of course, such an implementation is unnecessarily
wasteful; a more efficient set implementation should abandon the Entry composite
and store set elements directly in a data structure.

The Java Collections Framework includes the following set implementations,
mirroring similar data structures used for maps:

¢ java.util.HashSet provides an implementation of the (unordered) set ADT
with a hash table.

¢ java.util.concurrent.ConcurrentSkipListSet provides an implementation of
the sorted set ADT using a skip list.

e java.util. TreeSet provides an implementation of the sorted set ADT using a
balanced search tree. (Search trees are the focus of Chapter 11.)
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Multiset
The Multiset interface should include the following behaviors:

add(e): Adds a single occurrences of e to the multiset.
contains(e): Returns true if the multiset contains an element equal to e.
count(e): Returns the number of occurrences of ¢ in the multiset.
remove(e): Removes a single occurrence of e from the multiset.
remove(e, n): Removes n occurrences of ¢ from the multiset.
size( ): Returns the number of elements of the multiset (including

duplicates).

Returns an iteration of all elements of the multiset
(repeating those with multiplicity greater than one).

iterator( ):

The multiset ADT also includes the notion of an immutable Entry that repre-
sents an element and its count, and the SortedMultiset interface includes additional
methods such as firstEntry and lastEntry.

Multimap

Like a map, a multimap stores entries that are key-value pairs (k,v), where k is the key and v is the value.
Whereas a map insists that entries have unique keys, a multimap allows multiple entries to have the
same key, much like an English dictionary, which allows multiple definitions for the same word. That is,
we will allow a multimap to contain entries (k,v) and (k,v') having the same key.

There are two standard approaches for representing a multimap as a variation of a traditional map. One
is to redesign the underlying data structure to allow separate entries to be stored for pairs such as (k,v)
and (k,v'). The other is to map key k to a secondary container of all values associated with that key (e.g.,
{v,v'}). An implementation should include the following:

get(k): Returns a collection of all values associated with key k in the
multimap.

put(k, v):
remove(k, v):

removeAll(k):

size( ):

entries( ):
keys():

keySet( ):

values():

Adds a new entry to the multimap associating key k with
value v, without overwriting any existing mappings for key k.

Removes an entry mapping key k to value v from the multimap
(if one exists).

Removes all entries having key equal to k from the multimap.

Returns the number of entries of the multiset
(including multiple associations).

Returns a collection of all entries in the multimap.

Returns a collection of keys for all entries in the multimap
(including duplicates for keys with multiple bindings).

Returns a nonduplicative collection of keys in the multimap.

Returns a collection of values for all entries in the multimap.

Answer: Just like a map, but instead of V, use some list of V's. get works like normal,

put adds a value to the list instead of just putting a value, remove removes a specific
value from the list instead of removing v and removeAll works just like the old remove

does.
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Week 7. Search trees

Binary Search Trees

Binary search trees

A binary search tree is a binary tree in which each node with key k satisfies the
following properties:

» Keys stored in the left subtree are less than k
» Keys stored in the right subtree are greater than k

(Associated values omitted to ease drawing trees)

Binary search
Binary search: starting from the root, compare search key with key at node
» smaller: search left
» equal: success
» greater: search right

Example: search for 40:
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Putting an element into a binary search tree

Find position for insertion:
» not null: key is already in the tree
» null: expand to actual node

Example: insert 16:

Removing an element from a binary search tree (case 1)

The easy case: one of the children of the node is null
» remove node and replace it by the child

Example: remove 12:
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Removing an element from a binary search tree (case 2)
The difficult case: both children of the node are not null
» Find maximum node in left child
» Replace the to be removed node by the maximum node

» Recursively proceed to remove the maximum node

Example: remove 80:

Complexity of binary search

public V get(Position<Entry<K,V>> p, K key) {
if (p == null) return null;

int comp = compare(key, p.getElemant( ));
if {comp == Q) return p.getElement();
else if (comp < 0} return get(left(p), key);
else return get(right(p), key);

L= - Rt I

Recurrence equations (where h is the height of the tree):
T(0) =c T(hy=T(h—-1)+¢q

Closed form:
T{:h) =h-c+c

The time-complexity of binary search is O(h)
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Complexity of binary search

N How can we end up in the worst case?

Best case: height is O(log n) Worst case: height is ()(n)

o
()
@
@
G2)

(10

Insert a sequence whose keys is sorted (or inversely sorted), for example: 40, 30, 25,
20, 15, 10

Balanced Search Trees
Solution: require a balance condition that:
» ensures the depth is O(log n)
» can be maintained in O(log n) time for each put and remove

AVL trees

Invented by: Adelson-Velskii and Landis

AVL Balance condition: the heights of the children of each node differ by at most 1

Example 1: a valid AVL tree Example 2: an invalid AVL tree

Note: we consider null references as leaves when counting heights
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Insertion into an AVL tree
Idea:
» use ‘ordinary’ binary tree insertion
» this may create unbalanced nodes, but only along the path to the inserted node
» ‘“search and repair” while traversing to the root
» by “fixing" unbalanced nodes using “tri-node restructuring” along the way

Example: insert 50 Rebalance to “fix" AVL property

Rotations

° single rotation °
(x) — > ”

Tri-node restructurings

single rotation

double rotation i

o,
t ta t3 ty

(And symmetrically)
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Removal from an AVL tree
Idea:
» use ‘ordinary’ binary tree removal
» this may create unbalanced nodes, but only along the path to the removed node
» “search and repair” while traversing to the root
» by ‘fixing” unbalanced nodes using “tri-node restructuring” along the way

Example: remove 13

Removal from an AVL tree
Idea:
» use ‘ordinary’ binary tree removal
» this may create unbalanced nodes, but only along the path to the removed node
» “search and repair” while traversing to the root
» by ‘fixing” unbalanced nodes using “tri-node restructuring” along the way

Example: remove 13 Rebalance to “fix" AVL property
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Removal from an AVL tree
Idea:
» remove from the binary search tree
» might create unbalanced nodes, but only along the path to the removed node
» “search and repair” while traversing to the root
» by “fixing” unbalanced nodes using “tri-node restructuring” along the way

Example: remove 12

Removal from an AVL tree
Idea:
» remove from the binary search tree
» might create unbalanced nodes, but only along the path to the removed node
» ‘“search and repair” while traversing to the root
» by “fixing” unbalanced nodes using “tri-node restructuring” along the way

Example: remove 12 No tri-node restructuring needed
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Time complexity of AVL trees operations

The time-complexity of get, put and remove is O(log n)
» A tri-node restructuring takes O(1) time

» A get, put or remove visits O(h) nodes and performs O(h) tri-node
restructurings

» The height of an AVL tree of size n is O(log n)

Method | Running Time

size, isEmpty | O(1)
get. put, remove | O
firstEntry, lastEntry | O
ceilingEntry, floorEntry, lowerEntry, higherEntry | O
0
O

subMap
entrySet, keySet, values

Tahle 11.2: Worst-case running times of operations for an n-entry sorted map real-
ized as an AVL tree T, with 5 denoting the number of entries reported by subMap.

Q} Explain in your own words the advantage of an AVL tree compared to an
ordinary binary search tree.

Answer: The height of an AVL tree is O(log n), which guarantees that the primary
methods are O(log n).

&E Explain in your own words why the height of an AVL tree with size n is O(log n)
(no formal proof required).

Answer: A tree with height h has as amount of nodes the sum of the nodes of the 2
subtrees plus the root itself. One of the subtrees must have height h — 1 (otherwise
the height wouldn’t be h), the other has at least h — 2 (otherwise it wouldn't be
balanced). This means the amount of nodes of a tree with height h

n(h) =1+ n(h—1) + n(h — 2). If we unfold this, we can clearly see an exponential
growth.
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(2,4) Trees

Multiway search trees
A multiway search tree is a tree in which:
» each internal node has at least two children

» each internal node with d children contains an ordered list of k., ....kq—1 keys
» all keys k in the ith child of an internal node satisfy k;_1 < k < k; where
ko = —o0 and kg = o0

Multiway search

Multiway search is like searching in a binary search tree

Example: search for 80
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Complexity of multiway search

Best case: height is O(log, n), i.e. O(logn) Worst case: height is ((n)
Multiway search is O(log n) Multiway search is O(n)

(2,4) trees

A (2,4) tree is a multiway search tree that satisfies the following properties:
» Size property: every internal node has at most four children
» Depth property: all external nodes have the same depth

Depending on the number of children, an internal node of a (2,4) tree is called a
2-node, 3-node or 4-node

Examples:
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Putting an entry into a (2,4) tree

Perform multiway search, and put the new entry at the parent of the leaf (i.e. parent
of the null) where the search ended

» This preserves the depth property

» This may break the size property by causing an overflow:
a node may become a 5-node

Example: insert 16

Fixing overflow using split

Repairing an overflow:
» We perform a split of the node that became a 5-node:

t1 tr t3 ty ts

» If the node was the root, the resulting top root is the new root
» Otherwise, we merge the resulting top node with its parent
» |f the parent overflows, we proceed recursively
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Split in action

Example: insert 48 That causes an overflow:

10 40 60

That we fix by a split, causing another That we fix by another split:
overflow:

Removing an entry from a (2,4) tree

Recipe for removing an entry:
» Use multiway search to find the entry that needs to be removed
» If the entry is not a node of level 1 (i.e. its children are not null) then:

» Find the rightmost (=maximal) entry in the left subtree
» Swap that entry with the key that has to be removed
» Proceed with the rightmost entry a

» Remove the entry, and ‘repair’ the tree while traversing upwards

Examples of removing an entry from a (2,4) tree

Remember: if the entry is not a node of level 1 (i.e. its children are not null) then:
» Find the rightmost (=maximal) entry in the left subtree
» Swap that entry with the key that has to be removed
» Proceed with the rightmost entry

Example: deleting 4 can be reduced to deleting 3
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Examples of removing an entry from a (2,4) tree

Remember: if the entry is not a node of level 1 (i.e. its children are not null) then:
» Find the rightmost (=maximal) entry in the left subtree
» Swap that entry with the key that has to be removed
» Proceed with the rightmost entry

Example: deleting 11 can be reduced to deleting 10

Removal may break the size property by causing an underflow:
a node may become a 1-node

Fixing underflow using transfer and fusion

Removal may break the size property by causing an underflow: a node may become a
1-node. To handle an underflow, we consider two cases (in given order):

(a) An adjacent sibling is a 3-node or a 4-node, we then perform a transfer:

transfer i

(b) An adjacent sibling is a 2-node, we then perform a fusion:

fusion i °
.......... ! .

2\ /t3)\ /13

Tricky case: parent becomes a 1-node; proceed recursively to the root
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Transfer in action

Example: remove 11 Result after a transfer:

Fusion in action

Example: remove 11 Result after fusion:

Time complexity of (2,4) tree operations

The time-complexity of get, put and remove is ((log n)
» The height of a (2,4) tree of size n is O(log n) (see proof in the book)
» A split, transfer, or fusion take O(1) time
» A get, put or remove visits O(h) nodes
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When to use balanced search trees or hash tables?

& Hash tables seem great with O(1) (expected) operations? Why not use them
always instead of balanced search trees?

Possible reasons not to use hash tables:

» They are unordered, they do not support fast operations for taking the minimal
or maximal element, for in-order traversal, ...

» Lookup/insert/remove become ((n) with poor hash-functions
» Periodic rehashing can be problematic in real-time systems

Possible reasons to use AVL/red-black trees:
» Lookup/insert/remove with O(log n) worst case

» They are ordered, they do support fast operations for taking the minimal or
maximal element, for in-order traversal, ...

Recap: The sorted map ADT

1 interface SortedMap<K,V> {

2 /* Returns the entry with smallest key value */

3 Entry<K,V> firstEntry();

4 /* Returns the entry with la&g&st key value */

5 Entry<K,V> lastEntry();

6 /* Returns the entry with the least key value greater than or egqual to k */
7 Entry<K,V> ceilingEntry(K k);

8 /* Returns the entry with the greatest key value less than or equal to k */
9 Entry<K,V> floorEntry(K k);

10 /* Returns the entry with the greatest key value strictly less thamn k */
11 Entry<K,V> lowerEntry(K k);

12 /# Returns the entry with the least key value strictly greater thamn k #/
13 Entry<K,V> higherEntry(K k);

14}

First and last entry of binary search trees

Given a tree of height h:

» Entry<K,V> firstEntry(): pick the left-most node O(log h)
» Entry<K,V> lastEntry(): pick the right-mode node O(log h)
Example:

firstEntry lastEntry
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Summary

Time complexity (given a map with n elements):

Operation AVL /red-black trees | Hash tables

V get(K key) Oflog n) C)(l) expected
V put(K key, V value) O(log n) O(1) expected
V remove (K key) O(log n) O(l) expected
Entry<K,V> firstEntry() O(log n) O(n)
Entry<K,V> lastEntry() O(log n) O(n)
Entry<K,V> ceilingEntry (K k) | O(logn) O(n)
Entry<K,V> floorEntry(K k) O(log n) O(n)
Entry<K,V> lowerEntry(XK k) @(log n) O(n)
Entry<K,V> higherEntry(K k) | O(logn) A(n)

Red-Black Trees
Red-black trees

A red-black tree is a binary search tree with nodes colored red and black that enjoys:
» Root property: the root is black
> External property: every leaf (i.e. null) is black
» Red property: the children of a red node are black
>

Depth property: all external nodes have the same black depth, defined as the
number of proper ancestors that are black

Putting an entry into a red-black tree
Perform binary search, and put the new red entry at the leaf (i.e. the null) where the
search ended, and add two black leaves to the just created entry
» This preserves the depth property

» This may break the red property:
two red nodes may be above each other

Example: insert 16 Restructure (like the AVL Tree)
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Putting an entry into a red-black tree

Example: insert 48 That causes a double red:

Removing an entry from a Red-Black tree

Recipe for removing an entry:
» Use binary search to find the entry that needs to be removed
» If the entry is not a node of level 1 (i.e. its children are not null) then:
» Find the rightmost (=maximal) entry in the left subtree

» Swap that entry with the key that has to be removed
» Proceed with the rightmost entry

» Remove the entry, and ‘repair’ the tree while traversing upwards =

Examples of removing an entry from a Red-Black tree

Remember: if the entry is not a node of level 1 (i.e. its children are not null) then:
» Find the rightmost (=maximal) entry in the left subtree
» Swap that entry with the key that has to be removed
» Proceed with the rightmost entry

Example: deleting 4 can be reduced to deleting 3

o

10 13
- - () )
- L L
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Example: deleting 11 can be reduced to deleting 10

N

RRE

Removal may break the depth property

= -
22 e

Restructure in action if black sibling has only black childs

Example: remove 11 Result after a restructure:

o0 To 0% %

Time complexity of red-black tree operations

The time-complexity of get, put and remove is O(log n)
» The height of a red-black tree of size n is O(log n) (see proof in the book)
» Recoloring operations take O(1) time

» A get, put or remove visits O(h) nodes
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Red-black trees versus AVL trees

Both have O(log n) time complexity for get, put and remove, so what is the
difference?

AVL trees are better balanced, hence:
» get is faster for AVL trees

» put and remove of a red-black tree is faster, because red-black trees require less
re-balancing  *

When to use balanced search trees or hash tables?

& Hash tables seem great with (O(1) (expected) operations? Why not use them
always instead of balanced search trees?

Possible reasons not to use hash tables:

» They are unordered, they do not support fast operations for taking the minimal
or maximal element, for in-order traversal, ...

» Lookup/insert/remove become (O(n) with poor hash-functions
» Periodic rehashing can be problematic in real-time systems

Possible reasons to use AVL /red-black trees:
» Lookup/insert/remove with O(log n) worst case

» They are ordered, they do support fast operations for taking the minimal or
maximal element, for in-order traversal, ...

Recap: The sorted map ADT

1 interface SortedMap<K,V> {
2 /* Returns the entry with smallest key value */

3 Entry<K,V> firstEntry();

4 /* Returns the entry with largest key value #*/

5 Entry<K,V> lastEntry();

6 /* Returns the entry with the least key value greater than or equal to k */
7 Entry<K,V> ceilingEntry(K k);

8 /* Returns the entry with the greatest key value less than or equal to k #*/
] Entry<K,V> floorEntry(K k);

10 /* Returns the entry with the greatest key value strictly less than k #*/
11 Entry<K,V> lowerEntry(K k); 2

12 /* Returns the entry with the least key value strictly greater than k #*/
13 Entry<K,V> higherEntry(K k);

14 }
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First and last entry of binary search trees

Given a tree of height h:
» Entry<K,V> firstEntry(): pick the left-most node
» Entry<K,V> lastEntry(): pick the right-mode node

Example:

firstEntry

Summary

Time complexity (given a map with n elements):

Operation

AVL/red-black trees

O(log h)
O(log h)

lastEntry

Hash tables

V get(K key)
V put(K key, V value)

V remove (K
Entry<K,V>
Entry<K,V>
Entry<K,V>
Entry<K,V>
Entry<K,V>
Entry<K,V>

key)

firstEntry()
lastEntry()
ceilingEntry (K k)
floorEntry(K k)
lowerEntry (K k)
higherEntry(K k)

O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
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Week 8. Lost due to crash. Hardcopy available...
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