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Course Guideline 
Previous knowledge Requirements: 

• Java programming 

Course goals: 

• Explain and compare the structure and properties of standard algorithms and data structures. 

• Execute and visualize standard algorithms and data structures on given inputs. 

• Use mathematical methods to analyze the time and space complexity of algorithms and data 

structures. 

• Implement algorithms and data structures using the Java programming language. 

• Solve programming tasks using standard algorithms and data structures.  

Course content: 

1. Data Structures 

a. data containers 

i. vector 

ii. list 

iii. tree 

iv. set 

b. ordered data structures 

i. stack 

ii. queue 

iii. priority queue 

iv. heap 

v. map 

c. operations on data structures 

i. iterative 

implementations 

ii. recursive 

implementations 

2. Sorting 

d. selection sort 

e. insertion sort 

f. heap sort 

g. merge sort 

h. quick sort 

i. bucket sort 

j. radix sort 

 

 

 

 

 

3. Searching 

k. search structures 

i. search trees 

ii. AVL trees 

iii. (2,4) trees 

l. backtracking 

4. Graphs and Graph Algorithms 

m. graph data structures 

i. directed graphs 

ii. undirected graphs 

iii. weights 

iv. representations 

n. graph algorithms 

i. graph traversals 

ii. path finding 

iii. cycle finding 

iv. connectivity 

v. topological ordering 

vi. shortest path 

vii. minimum spanning tree 

 

 

 

:
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Lecture Topics Order: 

• Big-Oh notation 

• Complexity in recursive methods 

• Arrays & LinkedLists 

• Stacks & Queues 

• Dynamic arrays 

• Positional lists 

• Iterators 

• Trees 

• Priority Queues 

• Sorting 

• Key-based sorting 

• Maps & hashing 

• Search Trees 

• Graph properties 

• Graph algorithms 
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Week 1. Introduction to Algorithms and Data Structures 
• data structure: is a systematic way of organizing and acessing data. 

• algorithm: step by step procedure for performing some task in a finite amount of time. 

To classify data structures as good or bad we must have precise ways of analyzing them: 

• Running time: the faster the computer time to complete the task the better 

• Space usage: Another measure for data/algorithm performance, the less space the better. 

• Relationship between the running time of an algorithm and the size of its input (running time as 

a function of input) t(x) 

Complexity analysis and big-Oh notation [Sections 4.1, 4.2, 4.3] 

4.1 Experimental Studies 
Running time analysis: 

A simple mechanism for collecting such running times in Java is based on use of the currentTimeMillis 

method of the System class. It will return the offset time from the “epoch” time (Jaunary 1, 1970 UTC) 

so we can compare the difference of an offset at the start and at the end, such difference being the 

elapsed time of an algorithm’s execution. 

long startTime = System.currentTimeMillis(); // record the starting time 

/*code*/ 

long endTime = System.currentTimeMillis(); // record the ending time 

long elapsed = endTime - startTime; // compute the elapsed time 

 

System.nanoTime() can be used to measure time in nanoseconds. 

Relation between input size and running time: 

Collect two values, x = input size (n) and y = running time (t). Have a large enough sample to allow a 

statistical anylisis to fit the the best function t(n) that matches the data. 

Disclaimer: Times between machines will be different, also within the same machine because the CPU is 

shared by many processes. But as long as 2 algorithms are compared under similar circumstances, it 

should be fine. 

 

Running times for string += and stringBuilder.append(). Concetation is not only slower but it gets even 

slower over time. 
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Experiment limitations: 

• (Environment replication) Experimental running times of two algorithms are difficult to directly 

compare unless the experiments are performed in the same hardware and software 

environments 

• (Input bias) Experiments can be done only on a limited set of test inputs; hence, they leave out 

the running times of inputs not included in the experiment (and these inputs may be important) 

• An algorithm must be fully implemented in order to execute it to study its running time 

experimentally. 

Developing the ideal anlytical tool: 

• Allows us to evaluate the relative efficiency of any two algorithms in a way that is independent 

of the hardware and software environment. 

• Is performed by studying a high-level description of the algorithm without need for 

implementation. 

• Takes into account all possible inputs 

Counting primitive Operations: 

Instead of using “dirty” elapsing times on inconsistent machines, we “platonify it” and create a universal 

mathematical model that assigns certain “efficiency penalties” to specific event’s that happen within an 

algorithm, such “penalty” being the number of times a primitive operation is used: 

• Assigning a value to a variable 

• Following an object reference 

• Performing an arithmetic operation (for example, adding two numbers) 

• Comparing two numbers 

• Accessing a single element of an array by index 

• Calling a method 

• Returning from a method 

primitive operation: corresponds to a low-level instruction with an execution time that is constant 

The sum of the number of times that all primitives are used consitute “t”, the platonified running time of 

the algorithm. Assumption of the model: the running time of different primitve operations is the same. 

Measuring Operations as a Function of Input Size: 

A function f(n) that characterizes the number of primitive operations that are performed as a function of 

the input size n 

Focusing on the Worst Case Input: 

Certain algorithms respond with different times to inputs of the same size. Ideally the average case 

times would be considered as the reference point, but it is hard to know the average as it requires 

sofisticated statistical anlysis. Instead the worst case time is used as a function of the input size n. To 

find the worst case is easy and it amkes the standard of success for an algorithm to perform well even in 

the worst case. 
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4.2 The seven functions 

The constant function 
𝑓(𝑛) = 𝑐 

It does not matter what the value of n is; f(n) will always be equal to the constant value c 

It characterizes the number of steps needed to do a basic operation on a computer, like adding two 

numbers, assigning a value to a variable, or comparing two numbers 

The logarithm function 
𝑓(𝑛) = 𝑙𝑜𝑔𝑏 𝑛  and 𝑏 > 1 

The most common base for the logarithm function in computer science is 2 as computers store integers 

in binary. So log = log2 in this course unless otherwise specified. 

• ceiling: of a real number, x, is the smallest integer greater than or equal to x, denoted with ⌈x⌉. 

aka round to the nearest integer (and if it is already an integer, then it remains the same). 

• floor ⌊x⌋: Round to the lowest integer (and if it is already an integer, then it remains the same). 

• ⌈logb n⌉ is an easy to find approximation of logb n. Just divide n for b times until the first 

outcome smaller or equal to 1. the number of divisions is equal to ⌈logb n⌉ 

The linear function 
𝑓(𝑛) = 𝑛 

This function arises in algorithm analysis any time we have to do a single basic operation for each of n 

elements. 

The linear function also represents the best running time we can hope to achieve for any algorithm that 

processes each of n objects that are not already in the computer’s memory, because reading in the n 

objects already requires n operations. 

The N-Log-N function 
𝑓(𝑛) = 𝑛 𝑙𝑜𝑔 𝑛 

It’s run time is between the linear function and the quadratic function 

The quadratic function 

𝑓(𝑛) = 𝑛2 

There are many algorithms that have nested loops, where the inner loop performs a linear number of 

operations and the outer loop is performed a linear number of times. Thus, in such cases, the algorithm 

performs n · n = n2 operations 

Polynomials and Summations 
Since the constant, linear, and quadratic functions are very important these have not been lumped into 

the polynomial category although the actually are one. A polynomial can be summarised to summation 

𝑓(𝑛) = 𝑎𝑑 = 𝑓(𝑛) = ∑ 𝑎𝑖𝑛𝑖

𝑑

𝑖=0

 



CSE1305 Algorithms & Data Structures 

9 
 

The exponential function amd geometric summations 
𝑓(𝑛) = 𝑏𝑛 

b is the base and n is the exponent. The most common base in computerscience is 2. 

∑ 𝑎𝑖

𝑛

𝑖=0

= 1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝑛 

and a > 0, a ≠ 1 

=
𝑎𝑛+1 − 1

𝑎 − 1
 

 Called geometric summations, because each term is geometrically larger than the previous one if a > 1 

1 + 2 + 4 + 8 +··· +2n−1 = 2n − 1 

0b1111111 = 0b10000000 – 0b1 

Comparing the functions 
Ideally, we would like data structure operations to run in times proportional to the constant or 

logarithm function, and we would like our algorithms to run in linear or n-log-n time. 

 

4.3 Asymptotic Analysis 
Since we focus on the growth rate of running time over input size that is a “big picture” approach, where 

just giving the proportional grow of t to n is a sufficient enough metric. 

Big-Oh notation: 

The big-Oh notation allows us to say that a function f(n) is “less than or equal to” another function g(n) 

up to a constant factor “c” from n0 to infinity 
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f(n) “is” (approximates) O(g(n)) since f(n) ≤ c · g(n) when n ≥ n0 

The big-Oh notation allows us to ignore constant factors and lower-order terms and focus on the main 

components of a function that affect its growth. 

We can use limit properties of a polynomial so that from f(n) = a0 + a1n + ... + adnd  and ad > 0 we have 

that f(n) is O(nd). The highest-degree term in a polynomial is the term that determines the asymptotic 

growth rate of that polynomial and we should use such degree (the closest) to characterize a big-Oh 

notation function (even if a larger degree technically holds for becoming a big-Oh), in addition lower-

order terms should be omitted so we can provide the big-Oh on its simplest terms. 

So, for example, we would say that an algorithm that runs in worst-case time 4n2 +nlogn is a quadratic-

time algorithm, since it runs in O(n2) time. 

Big-Omega 
If big-oh = a function is less than or equal to another function, then big-Omega = a function is greater 

than or equal to that of another. 

We say that f(n) is Ω(g(n)), pronounced “ f(n) is big-Omega of g(n),” if g(n) is O(f(n)). 

f(n) ≥ cg(n), for n ≥ n0 

Big-Theta 
Two functions grow at the same rate, f(n) is Θ(g(n)) “ f(n) is big-Theta of g(n),” if f(n) is O(g(n)) and f(n) is 

Ω(g(n)). It is expressed as c′ g(n) ≤ f(n) ≤ c′′g(n), for n ≥ n0 where c’ and c’’ are real constants and n0 ≥ 1. 

Comparissions 
We can use the big-Oh notation to order classes of functions by asymptotic growth rate. 
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Inversely, instead of looking at the running time growth, we can also look at the input capacity, that is 

capablity of solving an amount of input n, over time (where here bigger is better). 

 

Asymptotic limitations: 

Although 10100n is O(n) we would prefer an algorithm that is 10n*log n that is O(n*log n) because the 

constant factor of one googol is so large that an input will rarely be larger than that where 10100 n would 

outperform 10n log n. Besides, O(n*log n) is regarded as en efficient algorithm. 

Analysis 

Constant-Time Operations: fetching an array element. 
Operations that run in constant-time are expressed as O(1). Assume variable A is an array of n elements. 

A.length is evaluated in constant time as an explicit variable is stored that records the length of the array 

(so we don’t have to compute it but to fetch it). Similarly, A[j] can be accessed in constant time as an 

array uses a consecutive block of memory. The jth element is found by validating the index with the 

.length variable and fetching its memory address. Therefore A[j] is O(1). 

Finding the max of an array 
Is an algorithm that grows proportional to n as all entries of the array will need to be evaluated against 

the current max value found. Thast is, such algorithm runs in O(n) time. The justification is provided: 

//Returns the maximum value of a nonempty array of numbers. ∗/ 
public static double arrayMax(double[] data) { 

    int n = data.length; 

    double currentMax = data[0]; // assume first entry is biggest (for now) 

    for (int j = 1; j < n; j++) // consider all other entries 

        if (data[j] > currentMax) // if data[j] is biggest thus far... 

            currentMax = data[j]; // record it as the current max 

    return currentMax; 

} 

1. The initialization at lines 3 and 4 and the return statement at line 8 require only a constant 

number of primitive operations. 

2. Each iteration of the loop also requires only a constant number of primitive operations, and the 

loop executes n − 1 times 

From 1 and 2 we have that the time is t(n) = c’’+c’(n-1), which aproximates to t(n) = c’n in the long term, 

which is O(n). 

Updating the max in a random array with unique values 
the expected number of times we update the biggest (including initialization) is nth Harmonic number. It 

can be shown that Hn is O(logn). The Harmonic number is originally expressed as a summation: 
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𝐻𝑛 = ∑ 1/𝑖

𝑛

𝑖=1

 

Composing strings 
Using concatenation: 

//Uses repeated concatenation to compose a String with n copies of char c. ∗/ 
public static String concatenate(char c, int n) { 

    String answer = ""; 

    for (int j = 0; j < n; j++) 

        answer += c; 

    return answer; 

} 

Strings in Java are immutable objects. Once created, an instance cannot be modified (So they are 
essentially an especial reference type). The concatenation operator += does not append a character to 
the existing String, instead it produces a new String with the desired sequence of characters. Then it 
reasigns the variable to point to the new memory location with the new String. 
 

The creation of a new string as a result of a concatenation, requires time that is proportional to the 

length of the resulting string. 

Therefore, the overall time taken by this algorithm is proportional to 1 + 2 + ··· +n. Which is O(n2). It 

resembles a loop inside a loop. 

Three-Way Set Disjointness 
The worst case scenario when checking the disjointness of 3 sets is that eventually it is disjoint. None of 

them share a common value present at all of them. An algorithm that evaluates for each element in setA 

whether it is in setB and setC may require 3 loops, which are nested. 

//Returns true if there is no element common to all three arrays.  

public static boolean disjoint1(int[] groupA, int[] groupB, int[] groupC) { 

    for (int a : groupA) 

        for (int b : groupB) 

            for (int c : groupC) 

                if ((a == b) && (b == c)) 

                    return false; // we found a common value 

    return true; // if we reach this, sets are disjoint 

} 

 

This is O(n3) as in the worst case scenario each of the sets have size n. However, if an element a does not 

match with any element in B it is a waste of time to check if there’s a match in C.  

//Returns true if there is no element common to all three arrays. 

public static boolean disjoint2(int[] groupA, int[] groupB, int[] groupC) { 

    for (int a : groupA) 

        for (int b : groupB) 

            if (a == b) // only check C when we find match from A and B 

                for (int c : groupC) 

                    if (a == c) // and thus b == c as well 

                        return false; // we found a common value 

    return true; // if we reach this, sets are disjoint 

} 
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In the second algorithm: 

1. The management of the for loop over A requires O(n) time. 

2. The time of the for loop over B accounts for a total of O(n2) (loop inside a loop) 

3. There are at most n such pairs (a,b) where a≠b 

4. Therefore, the management of the loop over C and the commands within the body of that loop 

use at most O(n2). This is because the commands within the body of that loop are a constant, 

and big-Oh ignores constants if the degree of the polynomial is bigger than 1.  And for each 

element in C (that is, for n times) we check only against 1 remaning set, that is all the a’s that 

don’t exist in B. Comparing 2 sets is O(n2). Other way of seeing it would be that after O(n2) after 

A*B, there’s an constant body check in loop B equal to n, so O(n2+n) = O(n2) 

Element uniqueness 
//Returns true if there are no duplicate elements in the array. 

public static boolean unique1(int[] data) { 

    int n = data.length; 

    for (int j = 0; j < n - 1; j++) 

        for (int k = j + 1; k < n; k++) 

            if (data[j] == data[k]) 

                return false; // found duplicate pair 

    return true; // if we reach this, elements are unique 

} 

The worst-case running time of this method is proportional to (n−1) + (n−2) +···+2+1,Observe that there 

are 2 nested loops. This is O(n2). 

Using Sorting as a Problem-Solving Tool 
By sorting the array of elements, we are guaranteed that any duplicate elements will be placed next to 

each other. Thus, to determine if there are any duplicates, all we need to do is perform a single pass 

over the sorted array, looking for consecutive duplicates.  

//Returns true if there are no duplicate elements in the array. 

public static boolean unique2(int[] data) { 

    int n = data.length; 

    int[] temp = Arrays.copyOf(data, n); // make copy of data 

    Arrays.sort(temp); // and sort the copy 

    for (int j = 0; j < n - 1; j++) 

        if (temp[j] == temp[j + 1]) // check neighboring entries 

            return false; // found duplicate pair 

    return true; // if we reach this, elements are unique 

} 

The best sorting algorithms (including those used by Array.sort in Java) guarantee a worst-case running 

time of O(nlog n). Once the data is sorted, the subsequent loop runs in O(n) time. 

The entire algorithm runs in O(nlog n + n) = O(nlog n) time. 

Prefix Averages 
Given a sequence x consisting of n numbers, we want to compute a sequence a such that aj is the 

average of elements x0,...,xj, for j = 0,...,n−1, that is: 

𝑎𝑗 =
∑ 𝑥𝑖

𝑗
𝑖=0

𝑗 + 1
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Prefix average: quadatric-time algorithm 
It computes each element aj independently, using an inner loop to compute that partial sum. 

//Returns an array a such that, for all j, a[j] equals the average of x[0], 

..., x[j]. 

public static double[] prefixAverage1(double[] x) { 

    int n = x.length; 

    double[] a = new double[n]; // filled with zeros by default 

    for (int j = 0; j < n; j++) { 

        double total = 0; // begin computing x[0] + ... + x[j] 

        for (int i = 0; i <= j; i++) 

            total += x[i]; 

        a[j] = total / (j + 1); // record the average 

    } 

    return a; 

} 

 

Calling this method with a sample array {7.0,5.0,7.0,5.0}returns: 

7.0 = 7/1 

6.0 = (7+5)/2 

6.333333333333333 = (7+5+7)/3 

6.0 = (7+5+7+5)/4 

1. The initialization of n = x.length at line 3 and the eventual return of a reference to array a at line 

11 both execute in O(1) time. 

2. Creating and initializing the new array, a, at line 4 can be done with in O(n) time, using a 

constant number of primitive operations per element. 

3. The body of the outer loop, controlled by counter j, is executed n time. So we have O(n) time. 

4. The body of the inner loop, which is controlled by counter i, is executed j+1 times. The inner 

loop, is executed 1+ 2+ 3+ ··· + n times, which is n(n+1)/2 in other words, O(n2) time. 

The running time of implementation prefixAverage1 is given by the sum of these terms. The first term is 

O(1), the second and third terms are O(n), and the fourth term is O(n2) which is O(n2) 

Prefix average: linear-time algorithm 
You can achieve the same result without doing two nested loops. Which is not only more readable but 

also is O(n)  

public static double[] prefixAverage2(double[] x) { 

    int n = x.length; 

    double[] a = new double[n]; // filled with zeros by default 

    double total = 0; // compute prefix sum as x[0] + x[1] + ... 

    for (int j = 0; j < n; j++) { 

        total += x[j]; // update prefix sum to include x[j] 

        a[j] = total / (j + 1); // compute average based on current sum 

    } 

    return a; 

} 
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Complexity analysis: proof methods [Section 4.4] 

4.4.1 By Example 
To justify claims of the generic form “There is an element x in a set S that has property P” we only need 

to produce a particular x in S with such property P. 

Similarly, to justify that a claim is false of the generic form “For all...” we just need to provide a 

particular x that does not contain such property. That is a counter example. 

4.4.2 The Contra Attack 
Proof by contrapositive. Sometimes the contrapositive, which is equivalent to the initial statement, 

might be easier to prove. See CSE1300 Reasoning and Logic. 

Proof by contradiction. We reach a contradiction in the statement that is the exact opposite of the 

original statement. A contradiction in the opposite statement makes the original statement true. 

4.4.3 Induction and Loop Invariantes 
Statements that use “for all n>=1...” it might be possible to use induction as a proof method. It shows 

that there is a sequence of implications that starts with something known to be true (base case) and 

leads to showing that k+1 for all k is true, so contiunity proof. Proving the induction step and using the 

property of Natural number continuity (so, by the principle of induction), the initial argument can be 

proven. The inductive argument is a template for building a sequence of direct justifications. 

 

 

Loop invariant: 

Too prove that some statement L about a Loop is correct, define L in terms of a series of smaller 

statements, where: 

1. The inital claim L0 is true before the loop begins. 

2. If Lj-1 is true before the iteration j, then Lj will be true after iteration j 

3. The final statement, Lk, implies the desired statement to be true. 

https://www.youtube.com/watch?v=3YP6NP1_tF0 

https://www.youtube.com/watch?v=3YP6NP1_tF0
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Lecture 1 & 2 & Exercises 

 

Indeed for f(n) is O(n): 

𝑓(𝑛) 𝑖𝑠 𝑂(𝑛) ↔ ∃𝑐, 𝑛0 (0 < 𝑐 ∧ 0 < 𝑛0 ∧ (∀𝑛(𝑛 ≥ 𝑛0 ⟹  𝑓(𝑛) ≤ c ⋅ 𝒏))) 

for f(n) is O(1): 

𝑓(𝑛) 𝑖𝑠 𝑂(1) ↔ ∃𝑐, 𝑛0 (0 < 𝑐 ∧ 0 < 𝑛0 ∧ (∀𝑛(𝑛 ≥ 𝑛0 ⟹  𝑓(𝑛) ≤ 𝑐 ⋅ 𝟏))) 

for f(n) is O(x): 

𝑓(𝑛) 𝑖𝑠 𝑂(𝑥) ↔ ∃𝑐, 𝑛0 (0 < 𝑐 ∧ 0 < 𝑛0 ∧ (∀𝑛(𝑛 ≥ 𝑛0 ⟹  𝑓(𝑛) ≤ 𝑐 ⋅ 𝒙))) 

change x for whichever O(type) you want. 

for f(n) is O(g(n)): 

𝑓(𝑛) 𝑖𝑠 𝑂(𝑔(𝑛)) ↔ ∃𝑐, 𝑛0 (0 < 𝑐 ∧ 0 < 𝑛0 ∧ (∀𝑛(𝑛 ≥ 𝑛0 ⟹  𝑓(𝑛) ≤ 𝑐 ⋅ 𝒈(𝒏)))) 

This is the one used in formal proofs of functions. 

$$f(n)\ is\ O(g(n))\leftrightarrow\exists c,n_0(0<c\land 0<n_0\land (\forall n(n\geq n_0\Longrightarrow 

f(n)\le c\cdot g(n))))$$ 

How to prove such functions? 

Choose a c>0 and an n0 > 0, take an arbitrary n ≥ n0, and show that f(n) ≤ c * g(n) 

 

Because: 

f(11) ≤ 3 * O(11) 

2*11+10 ≤ 3*11 

32 ≤ 33 
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Theorem: 2n2 + 5n + 49 is O(n2) 

Proof. 

From the definition of f(n) is O(g(n)) we have that 

𝑓(𝑛) 𝑖𝑠 𝑂(𝑔(𝑛)) ↔ ∃𝑐, 𝑛0 (0 < 𝑐 ∧ 0 < 𝑛0 ∧ (∀𝑛(𝑛 ≥ 𝑛0 ⟹  𝑓(𝑛) ≤ 𝑐 ⋅ 𝒈(𝒏)))) 

“f(n) is O(g(n)) iff there exists a c and n0 that are bigger than 0 and that have the property that for all n, 

iff n is greater or equal to n0 then f(n) is less or equal to c * g(n)”. 

Since we part from taking the definition f(n) is O(g(n)) as true, we just need to find a c>0 and an n0 > 0, 

whereby if we have an arbitrary n ≥ n0, we can show that f(n) ≤ c * g(n). 

Take c =3, n0 = 10, and an arbitrary n n ≥ n0. This means that for all n ≥ 10, f(n) ≤ 3 * n2. 

Therefore, we have that for all all n ≥ 10: 

f(n)/n2 ≤ 3  

(2n2 + 5n + 49)/n2 ≤ 3 

2+ 5/n + 49/n2 ≤ 3 

5/n + 49/n2 ≤ 1, which is true for n = 10 since 5/10 + 49/100 ≤ 1 

and it is also true for any value of n > 10 as the left side of the equation will only get smaller. 

Therefore, for all n ≥ 10, 2n2 + 5n + 49 is O(n2) 

Q.E.D. 

O(g(n)) = g(n) OR FASTER 

Omega(g(n)) = g(n) OR SLOWER 

Theta(g(n)) = O(g(n)) and Omega(g(n)), which means tightes bound of O(g(n)) which means precisely g(n) 
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This means that f(n) is O(g(n)) but g(n) is not necessarily O(f(n)) 

 

𝑓(𝑛) 𝑖𝑠 𝑂(g(𝑛)) ↔ ∃𝑐, 𝑛0 (0 < 𝑐 ∧ 0 < 𝑛0 ∧ (∀𝑛(𝑛 ≥ 𝑛0 ⟹  𝑓(𝑛) ≥ 𝑐 ⋅ 𝒈(𝒏)))) 

 

$$f(n)\ is\ O(g(n))\leftrightarrow\exists c,n_0(0<c\land 0<n_0\land (\forall n(n\geq n_0\Longrightarrow 

f(n)\ge c\cdot g(n))))$$ 

 

For theta: 

$$f(n)\ is\ O(g(n))\leftrightarrow\exists,n_0(0<c\land 0<n_0\land (\forall n(n\geq n_0\Longrightarrow 

f(n)\le c\cdot g(n))\land (n\geq n_0\Longrightarrow f(n)\ge c\cdot g(n))))$$ 

$$f(n)\ is\ O(g(n))\leftrightarrow\exists,n_0(0<c\land 0<n_0\land (\forall n(n\geq n_0\Longrightarrow 

f(n)= c\cdot g(n))))$$ 
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Counting primitives (raw vs constants) operations: 

 

 

 
 

We can observe from here that there is not a consensus where it comes to identifying which operations 

count as a primitive operation. Furthermore, we already know that these might also have different real 

times. 

In the next exercise we can see that it does not matter what constitutes as a primtive, the number of 

primitives per line can be reduced to just a constant. What we will see that since we use big-Oh 

notation, the focus is on observing the relation with n. Do we see a constant time? a linear (n) time? 

quadratic (n2)? logaritmic? etc. 
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Which is O(n) 

Recursion [Chapter5] 

5.1 Illustrative examples 
Recursion is a technique by which a method makes one or more calls to itself. When one invocation of 

the method makes a recursive call, that invocation is interrupted (the return address is saved and the 

new instruction is executed) until the recursive call completes. 

The factorial function 
The facotiral of a positive integer n, denoted n!, is defined as: 

n!={ 1
n ⋅ (n − 1) ⋅ (n − 2) … 3 ⋅ 2 ⋅ 1

 
if n = 0
if n ≥ 1

 

Application of the factorial: It is used to find the number of ways in which n distinct items can be 

arranged into a sequence, that is the number of permutations of n items 

permutation: each of several possible ways in which a set or number of things can be ordered or 

arranged. 

For example 3 characters a,b,c can be arranged in 3!=3*2*1=6 ways: abc, acb, bac, bca, cab, and cba. 

The picewise function above can be simplifed int o a recursive definition: 

n!={ 1
𝑛 ⋅ (𝑛 − 1)!

 
if 𝑛 = 0
if 𝑛 ≥ 1

 

We have (one or more) base case at n! = 1 for n = 0. We have one or more recursive cases, which define 

the function in terms of itself. 
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public static int factorial(int n) throws IllegalArgumentException { 

    if (n < 0) 

        throw new IllegalArgumentException(); // argument must be nonnegative 

    else if (n == 0) 

        return 1;                            // base case 

    else 

        return n * factorial(n - 1);         // recursive case 

} 

 

This method does not use explicit loops. Repetition is achieved through repeated recursive invocations 

of the method. 

 

Fractal ruler 
If you zoom in in a big ruler from meters 

to mm, going through all the in between 

measures, you see that a meter can be 

divded by 2, half a meter is 5dm, if you 

zoom to 1dm a dm can be split in 2 and 

you get 5cm, if you zoom in you get 1cm, 

etc. and all these zooms have the same 

image pattern. 
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Binary search 
Binary search is a recursive algorithm that efficently locates a target value within a sorted sequence of n 

elements stored in an array. We will see that it will help us reduce the O time from O(n) to ***instert*** 

making it one of the most important computer algorithms and the reasons why we often store data in 

sorted order. 

Take the following array as an example: 

 

Linear search O(n): When the sequence is unsorted, the standard approach to search for a target value 

is to use a loop to examine every element, until either finding the target or exhausting the data set 

sorted and indexable sequence: The bible has 1200 pages and you have to try to guess which page I 

have randomly chosen. You could progressively name a one page after the other, but that could take 

you 1200 tries in the worst case and on average 600 tries. Or we could play “higher” and “lower” and 

split the options in half. Let’s say I’ve chosen page 610. 

You: 1200/2 = 600 

Me: higher! 

You: (1200+600)/2 = 900 

Me: lower! 

You: (900+600)/2 = 750 

Me: lower! 

You: (750+600)/2 = 675 

Me: lower! 

You: (675+600)/2 = 638 (rounded) 

Me: lower! 

You: (638+600)/2 = 619 

Me: lower! 

You: (638+600)/2 = 610 (rounded) 

Me: Yes! 

It took us just 7 tries! In the longterm, this search algorithm will work best on average. The algorithm in 

the next pages has a slightly different base case logic but follows the same “halving” approach. 
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We call an element of the sequence a candidate if, at the current stage of the search, we cannot rule 

out that this item matches the target. 

The algorithm maintains two parameters, low and high, such that all the candidate elements have index 

at least low and at most high with the sarting values of low = 0 and high = n-1 

median candiadate: mid = ⌊(low +high)/2⌋ (floor) 

So, in our exampleL candidate = all the non-rulled out bible pages. Target = page 610. In the binary 

search algorithm we consider: 

• If the target (610) equals the median (of current highest and lowest possible bible pages) 

candidate, then we have found the item we are looking for, and the search terminates. 

• If the target is less than the median candidate, then we recur on the first half of the sequence, 

that is, on the interval of indices from low to median−1. 

• If the target is greater than the median candidate, then we recur on the second half of the 

sequence, that is, on the interval of indices from median+1 to high 

If the element does not exist in the array we get an unsuccessful search where low > is an emtpy. 

Therefore binary search manages to run in O(log n) time. Computer Science logs are base 2. So, an n of 1 

billion takes only 30 operations. Example of binary search below: 

 /** 

 * Binary Search 

 * @param data = ASC SORTED int array 

 * @return Returns true if the target value is found 

 * @low - smallest possible candidate 

 * @high - largest possible candidate 

 */ 

public static boolean binarySearch(int[] data, int target, int low, int high) 

{ 

    if (low > high) 

        return false; // interval empty; no match 

    else { 

        int mid = (low + high) / 2; 

        if (target == data[mid]) 

            return true; // found a match 

        else if (target < data[mid]) 

            return binarySearch(data, target, low, mid - 1); // recur left of 

the middle 

        else 

            return binarySearch(data, target, mid + 1, high); // recur right 

of the middle 

    } 

} 

 

/** 

 * Lazy method call that implicitly takes [0,data.length-1] as interval 

 */ 

public static boolean binarySearch(int[] data, int target){ 

    return binarySearch(data, target,0,data.length-1); 

} 
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File systems 
File-system directories (also called folders) are defined by the OS in a recursive way. 

You have a top-level directory, and the contents of this directory consists of files and other directories. 

The OS allows directories to be nested arbitrarily deep (as long as there is memory available) but 

eventually there will be a base directory without folders in it. 

Managing directories is done with recursive algoirhtms, such as computing the total disk usage for all 

files and folders witihin a particular directory. 

 

immediate disk space: disk space used by each entry 

cummulative disk space: disk space used by that entry and its nested folders. 

cs016 has 2k of immediate space but 249 of cummulative space. 

The cumulative disk space for an entry can be computed with the immediate disk space used by the 

entry plus the sum of the cumulative disk space of its nested folders. In pseudocde: 
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Java implmentation: 

/** 

 * Calculates the total disk usage (in bytes) of the portion of the file 

system rooted 

 * at the given path, while printing a summary akin to the standard 'du' Unix 

tool. 

 */ 

public static long diskUsage(File root) { 

    long total = root.length(); // start with direct disk usage 

    if (root.isDirectory()) { // and if this is a directory, 

        for (String childName : root.list()) { // then for each child 

            File child = new File(root, childName); // compose full path to 

child 

            total += diskUsage(child); // add child’s usage to total 

        } 

    } 

    System.out.println(total + "\t" + root); // descriptive output 

    return total; // return the grand total 

} 

 

 

It will first go as deep as possible until hitting the directory without folders and then it will display its 

size, then it will return, repeat the same process and once all directories at a directory have been called, 

then the cummulative size of such location is displayed, and so on. 
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5.2 Analyzing Recursive Algorithms 
With a recursive algorithm, we account for the number of operations within the body of a call. Then we 

can account for the summation of all calls. Each recursive method has its own dynamics, so they need to 

be carefully analysed. For each of the previous examples we have the following results. 

Computing Factorials big-Oh time 

n!={ 1
𝑛 ⋅ (𝑛 − 1)!

 
if 𝑛 = 0
if 𝑛 ≥ 1

 

public static int factorial(int n) throws IllegalArgumentException { 

    if (n < 0) 

        throw new IllegalArgumentException(); // c0 

    else if (n == 0) 

        return 1;                            // c1 

    else 

        return n * factorial(n - 1);    // c2 + c3 * #cummulative f(n-1)calls 

} 

 

1. Let’s try to find the number of cummulative calls: 

Since we only accept n>=0. We have that if n = 0, that’s the base case which is 1 call. 

then we have each of the integers from 1 to n, that is, a total of n integers making a call. if we 

sum n calls + the base call we get a total of n+1 calls. 

2. Since f(n) has c0 + c1 + c2 + c3*cummulative f(n-1) calls, we have f(n) has c4 + c3*n. Therefore 

f(n) is O(n). 

Computing Fractal (like some tree branches)  big-Oh time 
Let’s say that the example of the ruler has the property that calling the method once and not at c = 0 = 

basecase, will spawn two calls, and then each of those two calls will span other two. We get into a tree 

situation where for c ≥ 0, a call to drawInterval(c) results in precisely 2c − 1 lines of output. 

Proof. 

We can see that drawInterval(0) generates no output and thereferoe 20 – 1 = 0 is true, which serves as a 

base case for our claim. 

Recursive case:  

drawInterval(n) = c1+2*(drawInterval(n-1)) 

= c1+2*( c1+2*(drawInterval(n-2))) 

= c1+2*( c1+2*( c1+2*(drawInterval(n-3)))) 

= c1+2*c1+4*( c1+2*(drawInterval(n-3)) = 3*c1+4*c1+8*(drawInterval(n-3)) 

= 7*c1+8*(drawInterval(n-3)) 

repeat n times (until reaching base case) 

(2n-1)*c1+2n*(drawInterval(n-n)) = (2n-1)*c1+2n*(drawInterval(0)) = (2n-1)*c1+2n*0 = (2n-1)*c1 

Therefore f(n) is O(2n) 
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Computing Binary Search Time 
As in all recursive functions. The running time is proportional to the number of recursive calls performed 

and such number is multiplied to the “immediate time” of the recursive function body. 

In the binary search example, the “immidate time” (that is the folder space without regarding sub 

folders), was equal to O(1). so O(1) will be multiplied by the number of recursive calls. Which in this case 

is expected to be log n + 1 in the worst case secnario. 

Proposition: The binary search algorithm runs in O(log n) time for a sorted array with n elements. Where 

n is bigger than 0 

 

Since we know that n > 0,  we also have that r > 0 so multiplying both sides of the equations with 2r 

wont change the sign of the inequality. Then we have that n < 2r  

log(n) < log(2r) 

log(n) < r 

Being r the smallest integer such that r > log n, we have r = ⌊logn⌋+1. That means that binary search runs 

in O(log n) time. 

Disk Usage 
amortization: Counting the number of nested loops does not provide the tight upper bound, as it can be 

sometimes proved that sometimes O(n) is not achieved at a sepcific level, therefore making the 

assumption that f(n) runs at O(nloops) wrong. 
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5.3 Properties of recursive algorithms 
• linear recursion: If a recursive call starts at most one other 

Factorial is an example, and also binary search (despite the binary prefix) since from within the 

recursion body you call at most one other recursion. 

Other examples include: summing array elements, reversing elements of an array, power 

function (with int powers example) 

• binary recursion: If a recursive call may start two others 

Examples: fractal ruler, summing elements of a sequence (which has O(log n) space but O(n) 

time. 

• multiple recursion: If a recursive call may start three or more others, such as diskSpace method. 

Multiple recursion can be used in algorithms that solve a combinatorial puzzle by enumerating 

and testing all possible configurations. 

5.4 Designing recursive algorithsm 
1. Test for base cases: These base cases should be defined so that every possible chain of recursive 

calls will eventually end at a base case. 

2. Recur: If not a base case, we perform one or more recursive calls that progress towards a base 

case. 

Recursion Limitations 

 

We can compute Fn much more efficiently using a recursion in which each invocation makes only one 

recursive call. Rather than having the method return a single value, which is the nth Fibonacci number, 

we define a recursive method that returns an array with two consecutive Fibonacci numbers Fn, Fn-1 

using the convention F-1=0. 
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Now we return twice the data but execute half the recursion calls. Since there is only one call per body 

and the operations within the body are constant the algorithm below runs at O(n) time. 

//Returns array containing the pair of Fibonacci numbers, F(n) and F(n−1). ∗/ 
public static long[] fibonacciGood(int n) { 

    if (n <= 1) { 

        long[] answer = {n, 0}; 

        return answer; 

    } else { 

        long[] temp = fibonacciGood(n - 1); // returns {Fn−1, Fn−2} 

        long[] answer = {temp[0] + temp[1], temp[0]}; // we want {Fn, Fn−1} 

        return answer; 

    } 

} 

Infinite recursion 
To combat against infinite recursions, the designers of Java made an intentional decision to limit the 

overall space used to store activation frames for simultaneously active method calls. If this limit is 

reached, the Java Virtual Machine throws a StackOverflowError. A typical value might allow upward of 

1000 simultaneous calls. While not a problem to binarySearch, could be a problem to other recursive 

methods. You can reconfigure the Virtual Machine to allow for greater space for nested method calls, or 

you could use traditional loops instead of recursion. 

Eliminating Tail recursion 
We can use the stack data structure, which we will introduce in Section 6.1, to convert a recursive 

algorithm into a nonrecursive algorithm by managing the nesting of the recursive structure ourselves. 

tail recursion: A recursion is a tail recursion if any recursive call that is made from one context is the 

very last operation in that context. They can be automatically reimplemented nonrecursively by 

enclosing the body in a loop for repetition, and replacing a recursive call with new parameters by a 

reassignment of the existing parameters to those value. many programming language implementations 

may convert tail recursions in this way as an optimization. 

 

 

Instead of calling yourself again. You just update the fields within your method and run the while loop 

again (with half the interval) instead of creating a new stack frame with a recursion call. 
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Recursion exercises 

 

Where T(n) is a function of n. But to make a Big-Oh notation of the original algorithm we need to 

rephrase T(n) to a different form, non dependent on T: 

 

So we have that f(n) is O(2n). But there’s an alternative way to do this: 
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But this does not count as a formal proof. 

 

 

since k is an arbitrary integer, the statement holds for all n n ≥ 0 

Q.E.D 
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Answer: 

/** 

 * Gets the index of a sorted list in O(log n) (Short signature) 

 */ 

public static int getIndex(List<Integer> list, int target) { 

    return getIndex(list, target, 0, list.size()); 

} 

 

 

 

/** 

 * Gets the index of a sorted list element in O(log n) (full signature) 

 * 

 */ 

public static int getIndex(List<Integer> list, int target, int low, int high) 

{ 

    if (low > high) 

        throw new ArrayIndexOutOfBoundsException("Ranking not in the list"); 

    else { 

        int mid = (low + high) / 2; //we start at the middle 

        if (target == list.get(mid)) 

            return mid; // found a match, returns INDEX 

        else if (target < list.get(mid)) // recur left of the middle 

            return getIndex(list, target, low, mid - 1); 

        else 

            return getIndex(list, target, mid + 1, high); //recur right of 

the middle 

    } 

} 

 

/** 

 * Takes an SR List and adds the split contents into a lower an upper list, 

in less than O(n) 

 * 

 * @param SR    - List with players rankings (assume it's already sorted) 

 * @param lower - lower bound list reference (assume it's already empty) 

 * @param upper - upper bound list reference (assume it's already empty) 

 */ 

public static void SplitLog(List<Integer> SR, List<Integer> lower, 

List<Integer> upper, int splitValue) { 

    int index = getIndex(SR, splitValue);       //O(log n) search       -> c1 

* log n 

    lower.addAll(SR.subList(0, index));         //interval is [0,index) -> c2 

    upper.addAll(SR.subList(index, SR.size()));  //interval is [0,index) -> 

c3 

}                                              //O(log n) 
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Space complexity [Video] 
We can also use O notation to compute the space complexity of an algorithm. 
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Exercise 

 

If we have input n, we have that there will be n, n-1, n-2... 3, 2, 1 calls. [1 to n] = n calls 

f(1) (basecase): 
x =1 
return to 5 

f(2): 
x = 2 
return to 5 

... 

f(n-1): 
x = n-1 
return to 5 

f(n): 
x = n 
return to somewhere 

 

Within the body of a call we see that the amount of variables is constant. Therefore the space 

complexity of f(n) = c*n which is O(n). 
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Week 2. Arrays, stacks and queues 

Arrays. Insertion and deletion 

 

 

 

∅ =  𝑛𝑢𝑙𝑙 
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Linked Lists 

Singly Linked lists 
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Circulary Linked Lists 

 

Only explicit reference to the tail. No head reference 
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Doubly linked lists 
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Arrays and lists [Chapter 3 extras] 

java.util Methods for Arrays 

 

java.util Methods for Random 
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/** 

 * Program showing some array uses. 

 */ 

public class RandomArray { 

    public static void main(String[] args) { 

        int data[] = new int[10]; 

        Random rand = new Random(); // a pseudo-random number generator 

        rand.setSeed(System.currentTimeMillis()); // use current time as a 

seed 

        // fill the data array with pseudo-random numbers from 0 to 99, 

inclusive 

        for (int i = 0; i < data.length; i++) 

            data[i] = rand.nextInt(100); // the next pseudo-random number 

        int[] orig = Arrays.copyOf(data, data.length); // make a copy of the 

data array 

        System.out.println("arrays equal before sort: " + Arrays.equals(data, 

orig)); 

        Arrays.sort(data); // sorting the data array (orig is unchanged) 

        System.out.println("arrays equal after sort: " + Arrays.equals(data, 

orig)); 

        System.out.println("orig = " + Arrays.toString(orig)); 

        System.out.println("data = " + Arrays.toString(data)); 

    } 

} 

Cryptography 
This field involves the process of encryption, in which a message, called the plaintext, is converted into a 

scrambled message, called the ciphertext. Decryption: turning a ciphertext back into its original 

plaintext. 

Caesar cipher: simplest encryption = offseting all the characters of a string by a fixed constant, wrapping 

around Z->A 

Strings in java are immutable, so we can’t change the string characters but we would need to create an 

equivalent array of characters, edit the array, and then reassemble a (new) string based on the array. 

Cryptogrpahy Implementation CaesarCipher available in IntelliJ worskpace 

Two-Dimensional Arrays 
In a two-dimensional array, where we use two indices, say i and j, the first index usually refers to a row 

number and the second to a column number. 

Eventhough Java arrays can only be one-dimensional what we are actually doing is an array of arrays. 

Nevertheless, Java provides a built-in pseudo 2 dimensional array declaration method that makes it feel 

like a real 2-dimensional array: 

int[ ][ ] data = new int[8][10]; 

This statement creates a two-dimensional “array of arrays,” data, which is 8×10, having 8 rows and 10 

columns. Data is an array of length 8 such that each, element of data is an array of length 10 of integers. 
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TicTacToe Implementation available in IntelliJ workspace 

Singly Linked List Implementation available in IntelliJ workspace 

Circulary Linked Lists 

Round-Rogin scheduling 
In order to support the responsiveness of an arbitrary number of concurrent processes, most operating 

systems allow processes to effectively share use of the CPUs, using some form of an algorithm known as 

round-robin scheduling. A process is given a short turn to execute, known as a time slice, but it is 

interrupted when the slice ends, even if its job is not yet complete. Each active process is given its own 

time slice, taking turns in a cyclic order. New processes can be added to the system, and processes that 

complete their work can be removed. 

(So, it’s a circular linked list waiting pool and we just append processes to the tail and remove them as 

they are completed). 

Circulary Linked List Implementation available in IntelliJ workspace 

Doubly Linked Lists 

Sentinels 

 

Full implemention in IntelliJ worskpace 
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Equivalence testing 
The author of each class has a responsibility to provide an implementation of the equals method, which 

overrides the one inherited from Object (that onlye checks a == b). The equals method must follow the 

mathematical definition of “equivalence relation”: 

 

Available Equals for arrays 

 

 

Cloning 
Each class in Java is responsible for defining whether its instances can be copied, and if so, precisely how 

the copy is constructed. The universal Object superclass defines a method named clone, which can be 

used to produce what is known as a shallow copy of an object. This uses the standard assignment 

semantics to assign the value of each field of the new object equal to the corresponding field of the 

existing object that is being copied. 

A shallow copy is not always appropriate for all classes, and therefore, Java intentionally disables use of 

the clone( ) method by declaring it as protected, and by having it throw a CloneNotSupportedException 

when called. 
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The author of a class must explicitly declare support for cloning by formally declaring that the class 

implements the Cloneable interface, and by declaring a public version of the clone( ) method. That 

public method can simply call the protected one to do the field-by-field assignment that results in a 

shallow copy, if appropriate. However, for many classes, the class may choose to implement a deeper 

version of cloning, in which some of the referenced objects are themselves cloned. 

/*A method for creating a deep copy of a two-dimensional array of integers*/ 

public static int[][] deepClone(int[][] original) { 

    int[][] backup = new int[original.length][]; // create top-level array of 

arrays 

    for (int k = 0; k < original.length; k++) 

        backup[k] = original[k].clone(); // copy row k 

    return backup; 

} 

 

/* Implementation of the SinglyLinkedList.clone method */ 

public SinglyLinkedList<E> clone() throws CloneNotSupportedException {   

// always use inherited Object.clone() to create the initial copy 

    SinglyLinkedList<E> other = (SinglyLinkedList<E>) super.clone(); // safe 

cast 

    if (size > 0) { // we need independent chain of nodes 

        other.head = new Node<>(head.getElement(), null); 

        Node<E> walk = head.getNext(); // walk through remainder of original 

list 

        Node<E> otherTail = other.head; // remember most recently created 

node 

        while (walk != null) { // make a new node storing same element 

            Node<E> newest = new Node<>(walk.getElement(), null); 

            otherTail.setNext(newest); // link previous node to this one 

            otherTail = newest; 

            walk = walk.getNext(); 

        } 

    } 

    return other; 

} 

 

Stacks 
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This is called an adapter design pattern 
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Queues 
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It’s done like that so adding and enqueing only takes O(1) time! 
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Deques 
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The Stack and (De)Queues [Chapter 6 Extras] 
A stack is Last In First Out abstract data type (ADT) that supports the following two update methods: 

 

Java’s Stack class remains only for historic reasons, and its interface is not consistent with most other 

data structures in the Java library. In fact, the current documentation for the Stack class recommends 

that it not be used, as LIFO functionality (and more) is provided by a more general data structure known 

as a double-ended queue. Therefore we have our own stack interface, which we will implement for our 

own stack-based classes. 

public interface Stack<E> { 

    int size(); 

 

    boolean isEmpty(); 

 

    void push(E e); 

 

    E top(); 

 

    E pop(); 

} 

 

Array based Stack 
Pros: 

1. Very efficient implmentation when the user knows how much memory he needs. 

2. Returning the (popped) cell to a null reference is not mandatory but we do it to assist Java’s 

garbage collection mechanism, which searches memory for objects that are no longer actively 

and wipes’em out. 

 Cons: 

1. Otherwise, there could be a big waste of data 

2. or lead to an IllegalStateException if we run out of memory 
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public class ArrayStack<E> implements Stack<E> {  

    public static final int CAPACITY = 1000; // default array capacity 

    private E[] data; // generic array used for storage 

    private int t = -1; // index of the top element in stack 

 

    public ArrayStack() { 

        this(CAPACITY); 

    } // constructs stack with default capacity 

 

    public ArrayStack(int capacity) { // constructs stack with given capacity 

        data = (E[]) new Object[capacity]; // safe cast; compiler may give 

warning 

    } 

 

    public int size() { 

        return (t + 1); 

    } 

 

    public boolean isEmpty() { 

        return (t == -1); 

    } 

 

    public void push(E e) throws IllegalStateException { 

         if (size() == data.length) throw new IllegalStateException("Stack is 

full"); 

        data[++t] = e; // increment t before storing new item 

    } 

 

    public E top() { 

        if (isEmpty()) return null; 

        return data[t]; 

    } 

 

    public E pop() { 

        if (isEmpty()) return null; 

        E answer = data[t]; 

        data[t] = null; // dereference to help garbage collection 

        t--; 

        return answer; 

    } 

} 

 

Singly Link based Stack 
Unlike our array-based implementation, the linked-list approach has memory usage that is always 

proportional to the number of actual elements currently in the stack, and without an arbitrary capacity 

limit. With the top of the stack stored at the front of the list, all methods execute in constant time. 

Adapter Patern 
The adapter design pattern applies to any context where we effectively want to modify an existing class 

so that its methods match those of a related, but different, class or interface. 
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Implementation of a Stack using a SinglyLinkedList as storage 
 

public class LinkedStack<E> implements Stack<E> { 

    private SinglyLinkedList<E> list = new SinglyLinkedList<>(); // an empty 

list 

 

 

    public LinkedStack() { 

    } // new stack relies on the initially empty list 

 

 

    public int size() { 

        return list.size(); 

    } 

 

    public boolean isEmpty() { 

        return list.isEmpty(); 

    } 

 

    public void push(E element) { 

        list.addFirst(element); 

    } 

 

    public E top() { 

        return list.first(); 

    } 

 

    public E pop() { 

        return list.removeFirst(); 

    } 

} 

 

Matching Parentheses 
/** 

 * Tests if delimiters in the given expression are properly matched. 

 */ 

public static boolean isMatched(String expression) { 

    final String opening = "({["; // opening delimiters 

    final String closing = ")}]"; // respective closing delimiters 

    Stack<Character> buffer = new LinkedStack<>(); 

    for (char c : expression.toCharArray()) { 

        if (opening.indexOf(c) != -1) // this is a left delimiter 

            buffer.push(c); 

        else if (closing.indexOf(c) != -1) { // this is a right delimiter 

            if (buffer.isEmpty()) // nothing to match with 

                return false; 

            if (closing.indexOf(c) != opening.indexOf(buffer.pop())) 

                return false; // mismatched delimiter 

        } 

    } 

    return buffer.isEmpty(); // were all opening delimiters matched? 

} 
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Matching HTML tags 
/** 

 * Tests if every opening tag has a matching closing tag in HTML string. 

 */ 

public static boolean isHTMLMatched(String html) { 

    Stack<String> buffer = new LinkedStack<>(); 

    int j = html.indexOf('<'); // find first ’<’ character (if any) 

    while (j != -1) { 

        int k = html.indexOf('>', j + 1); // find next ’>’ character 

        if (k == -1) 

            return false; // invalid tag 

        String tag = html.substring(j + 1, k); // strip away < > 

        if (!tag.startsWith("/")) // this is an opening tag 

            buffer.push(tag); 

        else { // this is a closing tag 

            if (buffer.isEmpty()) 

                return false; // no tag to match 

            if (!tag.substring(1).equals(buffer.pop())) 

                return false; // mismatched tag 

        } 

        j = html.indexOf('<', k + 1); // find next ’<’ character (if any) 

    } 

    return buffer.isEmpty(); // were all opening tags matched? 

} 

 

Queues 
First in First Out data structure. Elements enter a queue at the back and are removed from the front. 

The queue abstract data type (ADT) supports the following two update methods: 

 

By convention, we assume that elements added to the queue can have arbitrary type and that a newly 

created queue is empty. 

public interface Queue<E> { 

    int size(); 

    boolean isEmpty(); 

    void enqueue(E e); 

    E first(); 

    E dequeue(); 

} 
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Implementing a Queue with a Singly Linked List 
/** 

 * The type Linked queue. 

 * 

 * @param <E> the type parameter 

 */ 

public class LinkedQueue<E> implements Queue<E> { 

    private SinglyLinkedList<E> list = new SinglyLinkedList<>(); // an empty 

list 

 

    /** 

     * Instantiates a new Linked queue. 

     */ 

    public LinkedQueue() { 

    } // new queue relies on the initially empty list 

    public int size() { 

        return list.size(); 

    } 

    public boolean isEmpty() { 

        return list.isEmpty(); 

    } 

    public void enqueue(E element) { 

        list.addLast(element); 

    } 

    public E first() { 

        return list.first(); 

    } 

    public E dequeue() { 

        return list.removeFirst(); 

    } 

} 

A Circular Queue 
/** 

 * Rotates the front element 

of the queue to the back of 

the queue. This does nothing 

if the queue is empty. 

 */ 

public interface 

CircularQueue<E> extends 

Queue<E> { 

    void rotate( ); 

 } 

Double-Ended (Deck) Queues 
Such a structure is called a 

doubleended queue, or deque, which 

is usually pronounced “deck” to 

avoid confusion with the dequeue 

method of the regular queue ADT, 

which is pronounced like the 

abbreviation “D.Q.” 
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A Java interface, Deque, describing the double-ended queue ADT. Note the use of the generic 

parameterized type, E, allowing a deque to contain elements of any specified class.  

public interface Deque<E> { 

    int size(); 

 

    boolean isEmpty(); 

 

    E first(); 

 

    E last(); 

 

    void addFirst(E e); 

 

    void addLast(E e); 

 

    E removeFirst(); 

 

    E removeLast(); 

} 

Tail recursion example [O(n) time, O(1) memory vs O(2n) time and O(n) memory] 
You use the “accumlator”, that is an extra 

paramater that you use in the recursive function 

signature, to update the returning value as you go 

deep into the recursion, and once you hit the 

bottom of the recursion, you can directly return 

the accumulator (instead of bouncing back like in 

the classic factorial definition).  

https://www.youtube.com/watch?v=_JtPhF8MshA 

This saves time (yo go only one way) and space (you 

don’t need to create an extremly large expression as 

you will keep the returning value in just the 

accumulator. 

But it's important to note that the language/compiler 

will need to support tail call optimisation, otherwise 

it's not helping as much: For example with the 

accumulator, a "naive" language implementation 

would still keep all the stack frames around until the 

end, and return the just-received value back up the stack. Only if the language supports TCO will it 

recognize the tail call and replace (overwrite) the current stack frame for the next call - which is where 

the optimisation helps to reduce memory usage.  

 

 

 

https://www.youtube.com/watch?v=_JtPhF8MshA
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Chapter 7. List Abstractions 

 

List Abstractions aim to get both efficient access and expansion 
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Dynamic Array 
he ArrayList implementation in Code Fragments 7.2 and 7.3 (as well as those for a stack, queue, and 

deque from Chapter 6) has a serious limitation; it requires that a fixed maximum capacity be declared, 

throwing an exception if attempting to add an element once full. This is a major weakness, because if a 

user is unsure of the maximum size that will be reached for a collection, there is risk that either too 

large of an array will be requested, causing an inefficient waste of memory, or that too small of an array 

will be requested, causing a fatal error when exhausting that capacity. 

Java’s ArrayList class provides a more robust abstraction, allowing a user to add elements to the list, 

with no apparent limit on the overall capacity. To provide this abstraction, Java relies on an algorithmic 

sleight of hand that is known as a dynamic array. 
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StringBuilder vs concatenation 
The StringBuilder class represents a mutable string by storing characters in a dynamic array. it 

guarantees that a series of append operations resulting in a string of length n execute in a combined 

time of O(n). (Insertions at positions other than the end of a string builder do not carry this guarantee, 

just as they do not for an ArrayList). 
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Week 3. Position-based lists, iterators, trees, and priority queues 

Positional List and iterators 

 

No direct access to the nodes in the list, but need to traverse the list (in both directions possible). 
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Trees 
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This tree has at most 2 children, an order paired composed of the left child and right child. 

An arithmetic expression can be expressed with internal node operators and external nodes operands 

where the hierarchy of the tree denotes the order in which these operations must be performed. 

The higher the depth, the earlier it needs to be computed. 



CSE1305 Algorithms & Data Structures 

87 
 

 

 

 

 

 

 

 



CSE1305 Algorithms & Data Structures 

88 
 

 

 



CSE1305 Algorithms & Data Structures 

89 
 

 

 



CSE1305 Algorithms & Data Structures 

90 
 

 

Priority queues 
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Binary heaps 
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Heap representations 
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Heap construction 
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Leaf keys do not need to preserve any particular order since by not having any childs nor parents and 

just siblings they are heap compliant already. 
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1. Dump all the elements into the array 

2. Heapify fixes the order in a bottom-up fashion. It will start from the parent of the right most 

position (the las level doesnt need to be sorted) and then traverse backwards through all indices 

up to 0/root and then perform down-heap bubbeling. 
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7.3 Position-based lists 
Numeric indices are not a good choice for describing positions within a linked list because, knowing only 

an element’s index, the only way to reach it is to traverse the list incrementally from its beginning or 

end, counting elements along the way. 

Unfortunately, the public use of nodes in the ADT would violate the objectoriented design principles of 

abstraction and encapsulation, which were introduced in Chapter 2. There are several reasons to prefer 

that we encapsulate the nodes of a linked list, for both our sake and for the benefit of users of our 

abstraction: 

1. It will be simpler for users of our data structure if they are not bothered with unnecessary 

details of our implementation, such as low-level manipulation of nodes, or our reliance on the 

use of sentinel nodes 

2. We can provide a more robust data structure if we do not permit users to directly access or 

manipulate the nodes. 

3. By better encapsulating the internal details of our implementation, we have greater flexibility to 

redesign the data structure and improve its performance. 

We introduce the concept of positoin, which formalizes the intuitive notion of the “location” of an 

element relative to others in the list. 

A position 

p, which is associated with some element e in a list L, does not change, even if the index of e changes in 

L due to insertions or deletions elsewhere in the list. Nor does position p change if we replace the 

element e stored at p with another element. The only way in which a position becomes invalid is if that 

position (and its element) are explicitly removed from the list. 

It has support for the method getElement(), which returns the element storeda t this position. 

A positional list is a collection of positions, each which stores an element. It should support the following 

 

The first( ) and last( ) methods of the positional list ADT return the associated positions, not the element. 

To get the element you could do something like first().getElement() 
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If the getElement( ) method is called on a Position instance that has previously been removed from its 

list, an IllegalStateException is thrown. If an invalid Position instance is sent as a parameter to a method 

of a PositionalList, an IllegalArgumentException is thrown. 

Doubly Linked List Implementation 
The obvious way to identify locations within a linked list are node references. Therefore, we declare the 

nested Node class of our linked list so as to implement the Position interface, supporting the required 

getElement method. So the nodes are the positions. 

DoublyLinkedList //Implementation code available in IntelliJ worskpace 
The positional list ADT is ideally suited for implementation with a doubly linked list, as all operations run 

in worst-case constant time. Index-based methods require traversing the nodes which would be O(n). 
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Array Implementation 

 

 

7.4 Iterator 
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A single iterator instance supports only one pass through a collection; calls to next can be made until all 

elements have been reported, but there is no way to “reset” the iterator back to the beginning of the 

sequence. 

 



CSE1305 Algorithms & Data Structures 

111 
 

 

 

8.1-8.4 Trees 
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Computing Depth 

 

Computing Height 
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Operations for Updating a Linked Binary Tree 
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9.1 Priority queues 
When an element is added to a priority queue, the user designates its priority by providing an associated 

key. The element with the minimal key will be the next to be removed from the queue. 

 

A priority queue may have multiple entries with equivalent keys, in which case methods min and 

removeMin may report an arbitrary choice among those entry having minimal key. Values may be any 

type of object. 

9.2 List-based priority queues 

 

Such a rule defines a linear ordering among a set of keys; hence, if a (finite) set of elements has a total 

order defined for it, then the notion of a minimal key, kmin, is well defined. 
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9.3 Tree-based priority queues: heaps 
Trees allows us to perform both insertions and removals in logarithmic time, which is a significant 

improvement over the list-based implementations. 

The fundamental way the heap achieves this improvement is to use the structure of a binary tree to find 

a compromise between elements being entirely unsorted and perfectly sorted. 

 

 

 

A heap T storing n entries has height h = ⌊log n⌋. 
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Up-heap Bubbling After an Insertion (at the bottom) 
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Down-heap bubbling after a removal 
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Array-Based Representation of a Complete Binary Tree 

 

Breadth first traversion leads to inner nodes being kept in the left side indexes and leafs on the right. 
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Bottom-up construction 
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9.5 Adaptable priority queues 

 

A third value “token” corresponds to the index of an entry. 
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Week 4.1 Sort 
The algorithm for sorting a sequence S with a priority queue P is quite simple and consists of the 

following two phases: 

 

Insertion vs selection sorts both O(n^2) 
They both follow the steps above and they take the name in relation to the bottleneck of their 

approach. In selection popping the sequence into the priority que is done fast by just adding the at the 

end, then they are selected before they are popped back into the final sequence. In Insertion they are 

inserted in order into the priority queue, then first element is popped back into S until P is empty. 
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Similar concept applies to selection sort. 
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Heap sort O(n log n) – array -> heapify -> popback 

Each time we do removeMin we have to reorganize the heap. 

 

How to remove the heap entries to the final array spot without having to reorganize the heap? In place-

heap sort by using max-heap (remove max) 
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Merge sort(n log n) 
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The merged arrays are supposed to be sorted, therefore only the first index of each array are compared, 

then poped into the (sub) final sequence. Since eventually every element of the array must have been 

evaluated, we get O(n) for those (comparisions are O(1)). The number of evaluations is relative to the 

height of the tree O(log n). Multiplying these yields O(n log n) 

 

 

Realizing a priority queue with a heap has the advantage that all the methods in the priority queue ADT 

run in logarithmic time or better. In general, we say that a sorting algorithm is in-place if it uses only a 

small amount of memory in addition to the sequence storing the objects to be sorted. 

The running time of merge-sort is equal to the sum of the times spent at the nodes. the overall time 

spent at all the nodes of T at depth i is O(2i ·n/2i), which is O(n), the height of T is ⌈logn⌉ thus the overall 

time complexity is O(n log n). 
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Array-based implementation of Merge-Sort 
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Quick sort 
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Unlike merge-sort, however, the height of the quick-sort tree associated with an execution of quick-sort 

is linear in the worst case. This happens, for example, if the sequence consists of n distinct elements and 

is already sorted.  
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Week 6. lower bound & key-based sorting, selection 

Lower bound 
I.e. minimum running time to sort any given sequence. 

 

 



CSE1305 Algorithms & Data Structures 

143 
 

 

 



CSE1305 Algorithms & Data Structures 

144 
 

 

Bucket sort 
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Radix sorts (LSD, MSD) 
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Because it preserves the lexicographic order. 
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Randomized (in-place) quick select 
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Maps 
Maps a value to another, just like a Set Theory relation. A map is a set of pairs. 

 

An example would be a dictionary. Maps a word to a description. You can lookup for words (key) but not 

for descriptions. 

  

Hashing 
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Application: Counting Word Frequencies 
As a case study for using a map, consider 

the problem of counting the number of 

occurrences of words in a document. This 

is a standard task when performing a 

statistical analysis of a document, for 

example, when categorizing an email or 

news article. A map is an ideal data 

structure to use here, for we can use 

words as keys and word counts as values. 

1. We begin with an empty map, 

mapping words to their integer 

frequencies. 

2. We first scan through the input, 

considering adjacent alphabetic 

characters to be words, 

3. Which we then convert to 

lowercase. 

4. For each word found, we attempt to retrieve its current frequency from the map using the get 

method, with a yet unseen word having frequency zero. 

5. We then (re)set its frequency to be one more to reflect the current occurrence of the word. 

6. After processing the entire input, we loop through the entrySet( ) of the map to determine 

which word has the most occurrences 

Hash Tables 
One of the most efficient data structures for implementing a map, and the one that is used most in 

practice. This structure is known as a hash table. 

Intuitively, a map M supports the abstraction of using keys as “addresses” that help locate an entry. 

The novel concept for a hash table is the use of a hash function to map general keys to corresponding 

indices in a table. Ideally, keys will be well distributed in the range from 0 to N −1 by a hash function, but 

in practice there may be two or more distinct keys that get mapped to the same index. 

As a result, we will conceptualize our table as a bucket array, as shown in Figure 10.4, in which each 

bucket may manage a collection of entries that are sent to a specific index by the hash function. 
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Hash functions and has codes 
The goal of a hash function, h, is to map each key k to an integer in the range [0,N −1], where N is the 

capacity of the bucket array for a hash table. Equipped with such a hash function, h, the main idea of 

this approach is to use the hash function value, h(k), as an index into our bucket array, A, instead of the 

key k (which may not be appropriate for direct use as an index). 

We say that a hash function is “good” if it maps the keys in our map so as to sufficiently minimize 

collisions (duplicates). 

Types of has chodes: (be mindful that overflows may occur in most of them) 

• Treating the Bit Representation as an Integer: for base types byte, short, int, and char, we can 

achieve a good hash code simply by casting a value to int. A better approach is to combine in 

some way the high-order and low-order portions of a 64-bit key to form a 32-bit hash code, 

which takes all the original bits into consideration 

• Polynomial Hash Codes: For strings such as "stop", "tops", "pots", and "spot” a better hash code 

should somehow take into consideration the positions of the xi’s, with a polynomial function: 

 or  

33, 37, 39, and 41 are particularly good choices for a when working with character strings that 

are English words, these produced fewer than 7 collisions in each case. 

• Cyclic-Shift Hash Codes: A variant of the polynomial hash code replaces multiplication 

by a with a cyclic shift of a partial sum by a certain number of bits. In Java, a cyclic shift 

of bits can be accomplished through careful use of the bitwise shift operators. 

 
Our choice of a 5-bit shift is justified by experiments run on a list of just over 

230,000 English words, comparing the number of collisions for various shift amounts 

• Hash Codes in Java: The Object class, which serves as an ancestor of all object types,  

includes a default hashCode( ) method that returns a 32-bit integer of type int, which  

serves as an object’s hash code. Here any two objects that are viewed as “equal” to 

each other have the same hash code. 
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Compression functions 
The hash code for a key k will typically not be suitable for immediate use with a bucket array, because 

the integer hash code may be negative or may exceed the capacity of the bucket array. Approaches: 

• The Division Method: maps an integer i to i mod N, where N is the size of the bucket array. 

if we insert keys with hash codes {200,205,210,215,220, . . . ,600} into a bucket array of size 100, 

then each hash code will collide with three others. But if we use a bucket array of size 101, then 

there will be no collisions. If a hash function is chosen well, it should ensure that the probability 

of two different keys getting hashed to the same bucket is 1/N. Choosing N to be a prime number 

is not always enough, however, for if there is a repeated pattern of hash codes of the form pN +q 

for several different p’s, then there will still be collisions. 

• The MAD Method:  
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Collision-Handling Schemes 

 

 

Open Addressing 

This approach saves space because no auxiliary structures are employed, but it requires a bit more 

complexity to properly handle collisions. 

Linear Probing and Its Variants: if we try to insert an entry (k,v) into a bucket A[ j] that is already 

occupied, where j = h(k), then we next try A[( j+1) mod N]. If A[( j+1) mod N] is also occupied, then we 

try A[( j+2) mod N], and so on, until we find an empty bucket that can accept the new entry. 



CSE1305 Algorithms & Data Structures 

160 
 

 

Quadratic probing: iteratively tries the buckets A[(h(k)+ f (i)) mod N], for i =0,1,2, . . ., where f (i) =i2 It 

has secondary clustering, where the set of filled array cells still has a nonuniform pattern 

Double hashing: we choose a secondary hash function, h′, and if h maps some key k to a bucket A[h(k)] 

that is already occupied, then we iteratively try the buckets A[(h(k)+ f (i)) mod N] next, for i = 1,2,3, . . ., 

where f (i) = i · h′(k) 

 

Time complexity 
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Sorted Maps 
allows a user to look up the value associated with a given key, but the search for that key is a form 

known as an exact search. In this section, we will introduce an extension known as the sorted map ADT 

that includes all behaviors of the standard map, plus the following: 

 

Sorted Search Tables 
We store the map’s entries in an array list A so that they are in increasing order of their keys. 

 

The sorted search table has a space requirement that is O(n). The primary advantage of this 

representation, and our reason for insisting that A be array-based, is that it allows us to use the binary 

search algorithm for a  variety of efficient operations. 

while performing a binary search, we can instead return the index at or near where a target might be 

found. During a successful search, the standard implementation determines the precise index at which 

the target is found. During an unsuccessful search, although the target is not found, the algorithm will 

effectively determine a pair of indices designating elements of the collection that are just less than or 

just greater than the missing target. 
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Sets, Multisets, and Multimaps 
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Multiset 
The Multiset interface should include the following behaviors: 

 

Multimap 
Like a map, a multimap stores entries that are key-value pairs (k,v), where k is the key and v is the value. 

Whereas a map insists that entries have unique keys, a multimap allows multiple entries to have the 

same key, much like an English dictionary, which allows multiple definitions for the same word. That is, 

we will allow a multimap to contain entries (k,v) and (k,v′) having the same key. 

There are two standard approaches for representing a multimap as a variation of a traditional map. One 

is to redesign the underlying data structure to allow separate entries to be stored for pairs such as (k,v) 

and (k,v′). The other is to map key k to a secondary container of all values associated with that key (e.g., 

{v,v′}). An implementation should include the following: 
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Week 7. Search trees 

Binary Search Trees 
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Balanced Search Trees 
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(2,4) Trees 
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Red-Black Trees 
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Week 8. Lost due to crash. Hardcopy available… 


