
CSE1300 Reasoning and Logic 

1 

WEEK 1 – PROPOSITIONAL LOGIC 

PROPOSITIONS 

• proposition: statement that is either true or false. True = 1 False = 0 (boolean values). 

• propositional variable: proposition represented by a small caps letter symbol. Usually start with p, q, r, s. 

= atom 

• mathematical generality: the substition of a long proposition with a propositional variable being equivalent. 

• argument: conjuction of premises implying that when these are true, so must be the conclusion. 

• conjuction: AND, both statements must be true for the conjuction to be true, else the conjuction is false 

• premise: set of assumed propositions accepted as true for the sake of argument. 

• argument conclusion: deduced proposition from logic inference. If the conjuction of all premises, implies the 

conclusion, and such gives a tautology, the conclusion is logically valid. 

LOGICAL OPERATORS 

• logical operator 
= logical connective: Like the arithmetic operators +,*,% etc. logical operators are the symbols placed 

generally between two propositional variables although they can take multiple paramaters into account. If 

so these terciary, quartenary and so forth operators are most likely not standard and their meaning (aka 

description of the output) is unkwonw. The hidden meaning of these unkwonw +2 operand operators can 

be found by observing the outputs of its truth table and translate it to DNF. 

• operand: the propositional variable taken as input for the logical operator. 

• DNF/sum of products: Disjunctive Normal Form. Further explained in page 3. 

• truth table: table that shows the output for each of the of propositional variables values and a operator 

• unary operator: takes one variable, the most common is “no change” it’s represented by “nothing” in front of 
the variable. The second most common is negation (¬), which toggles (inverts) the current value of the 

propositional variable. The remaining unary operators are one that would make all outputs 1 and other one 

all outputs 0 regardless of the input. 

• binary operator: returns one output from two operands. Most common are defined in the table below. 

Truth table 

Latex: \lnot \lor \oplus \land \to \leftrightarrow 

p q ¬𝑝 𝑝 ∨ 𝑞 𝑝⊕ 𝑞 𝑝 ∧ 𝑞 𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞 
𝑝 ↔ 𝑞 ≡ 

(𝑝 → 𝑞) ∧ (q → p) 

0 0 1 0 0 0 1 1 

0 1 1 1 1 0 1 0 

1 0 0 1 1 0 0 0 

1 1 0 1 0 1 1 1 

English 

Not p 

negation 

logical 
complement 

p or q or both 

English ‘or’ is 
ambigous, as it 
can mean both 
or and xor 

exclusive or 

either p or q 

but not both 

and 

p implies q 

p is sufficient for q 

q is necessary for p 
if p then q 

conditional 
operator 

q if and only if p 
q iff p 

if p then q and 
conversely 

biconditional 

 *  this english equals only applies to the operator output. p and q are different variables and can have a different 

state from each at the same time (i.e. 01 or 10) so you can’t apply mathematical generality with these 2 variables.  
 

• ternary operator: CSE1300 doesn’t have any standard, so better to convert to DNF and use boolean logic, or 
a karnaugh map to generate a simplified compound proposition that generates the same output. 

operator question: What’s the maximum number of operators you can create for 1, 2 and 3 variables? formula: 2(2
𝑛). 
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Take n = 1, such as “p”; p has two possible states 0 and 1 (rows in a truth table), which is equivalent to 2n = 21  =  2 

(p,q,r would have 23 rows). Each of these possible states of p can be arbitrarily modified by the operator and take 

two new forms. The maximum number of new states combinations is 2states , therefore 22 = 4. 

FUNCTIONALLY COMPLETE, UNIVERSAL, EXPRESSIVELY ADEQUATE SET OF OPERATORS 

• functionally complete operators: set of operators that can express all possible situations, such as ¬, ∧  𝑎𝑛𝑑 ∨ 

functionally complete question: What’s the minimum number of operators needed for a functionally complete set? 

Answer: 1. The binary connectives NAND ↑ and NOR ↓ are functionally complete. This is due to the fact that when 

applied to the same atom it provides its inverse (not), it also has similar OR/AND properties. Thus, 2 operators in 1. 

PRECEDENCE RULES 

• compound proposition: proposition variable made from sub proposition(s) represented with a capital letter. 

• precedence rules: (, ¬, ∧, ∨, ⊕, →, ↔,  . . . 𝑖𝑓 𝑒𝑞𝑢𝑎𝑙 𝑝𝑟𝑒𝑐𝑒𝑛𝑑𝑒 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 𝑙𝑒𝑓𝑡 𝑡𝑜 𝑟𝑖𝑔ℎ𝑡. 

• associative operator: the order of the of the operands doesn’t chage the output. 𝑝 ∧ 𝑞 ∧ 𝑟 ≡  𝑟 ∧ 𝑞 ∧ 𝑝 

some of them are: ∧, ∨, ↔, ≡ (equivalence operator yields either a tautology or a contradiction) 

• main connective: is the operator that es evaluated last, according to the precedence rules and parentheses.  

IMPLICATIONS IN ENGLISH 

Take (𝑝 → 𝑞 𝑎𝑠 𝑎 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡) 

• implication: p implies q 

= conditional 
• hypotheses: p in p implies q 

= antecedent 
• conclusion: q in p implies q 

= consequent 
• sufficient:  p is sufficient for q  in 𝑝 → 𝑞  

• necessary:  q is necessary for p  in 𝑝 → 𝑞 

• converse: 𝑞 → 𝑝 (𝑓𝑙𝑖𝑝 p → q) 

• inverse: ¬𝒑 → ¬𝒒 (𝑛𝑒𝑔𝑎𝑡𝑒 𝑎𝑡𝑜𝑚𝑠 𝑖𝑛 p → q) 

• contrapositive: ¬𝒒 → ¬𝒑 

= combination of inverse and converse 
• biconditional:  𝑝 ↔ 𝑞

LOGICAL EQUIVALENCE 

• situation:  each possible combination of values of the propositional variables that a truth table contains (row) 

• logically equivalent (≡): propositions are logically equivalent if they have the same values in every situation. 

Which can be confirmed if 𝑃 ↔ 𝑄 is a tautology.  The symbol ≡ has essentially the same meaning as =. 

CLASSIFYING PROPOSITIONS 

• tautology (T): (compound) proposition that is true for every situation in its truth table. 

• contradiction (F): (compound) propoistion that is false for every situation in its truth table. 

• contingency: (compound) proposition where at least one situation is false and at least one situation is true. 

BOOLEAN ALGEBRA 

• George Boole: accounted for introducing Boolean algebra in 1854. 

• Double negation ¬(¬𝑝) ≡ 𝑝  

• Excluded middle 𝑝 ∨ ¬𝑝 ≡ 𝐓 (variable + complement = 1) 

• Contradiction  p ∧ ¬p ≡  𝐅  

• Identity laws 𝐓 ∧ 𝑝 ≡ 𝑝 𝐅 ∨ p ≡ p 

• Impotent laws p ∧ p ≡  𝐩 p ∨ p ≡  𝐩 

• Cummulative law p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p 

• Associative law 𝑝 ∧ 𝑞 ∧ 𝑟 ≡  𝑟 ∧ 𝑞 ∧ 𝑝 𝑝 ∨ 𝑞 ∨ 𝑟 ≡  𝑟 ∨ 𝑞 ∨ 𝑝 

• Distribute law p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 

• Demorgan’s law ¬(𝑝 ∧ 𝑞) ≡ ¬𝑝 ∨ ¬𝑞 ¬(𝑝 ∨ 𝑞) ≡ ¬𝑝 ∧ ¬𝑞 

• Laws of Boolean algebra 
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Trick: use CSE1400 Computer Organisation technique of replacing T for 1, F for 0, ∨ for +, ∧ for * and ¬ for − 1 ∗

 (or just minus) and then all laws, except impotent laws, are equal to highschool math. For the impotent law just 

assume that any number larger than 1 becomes immediately 1 again. Thus 𝑝2 = 𝑝1  =  𝑝 𝑎𝑛𝑑 2𝑝 =  𝑝. 

For the second distributive law open the brackets and simplify using the first distributive law and the T identity law: 

(𝑝 + 𝑞)(𝑞 + 𝑟) = 𝑝2 + 𝑝𝑟 + 𝑝𝑞 + 𝑞𝑟 = 𝑝("1" + 𝑟 + 𝑞) + 𝑞𝑟 = 𝑝 + 𝑞𝑟 

But it is easier to remember I want Pasta or (Quesadillas and Rice). I’d be equally happy if I get (Pasta or Quesadillas) 

and (Pasta or Rice) 

• duality: from a tautology that uses only the operators ∧, ∨, and ¬, another tautology can be obtained by 

interchanging ∧ with ∨ and T with F. 

SUBSTITUTION LAWS 

• statement of the same form: proposition that can be obtained by substituting all instances of the same 
variable with a different variable. Substitute p for Q. (p for q means we have a redundant atom). 

• 1st Substition Law:  quoted when applying logical equivalence between a compound proposition and an atom. 

Q = p 

• 2nd Substition Law: quoted when applying logical equivalence between 2 compound propositions. 
Q = P 

• chain of equivalences: resulting conclusion that two proposotions are equivalent by finding a chain of 

equivalences using the substition laws.  

• simplification: the use of chain of equivalences to provide a logically equivalent proposition that contains 
less logical connectives and less atoms. 

• tri-state boolean: Model that includes a third state representing “unknown” or “not proven” which lead to 

fuzzy logic. It follows non-stardad logics because it allows for a middle ground. 

LOGIC CIRCUITS* 

* Next to a title means not CSE1300 exam material.  

• logic gates: electronic components (often transistors) that compute the values of simple propositions. They 

are equivalent to logic connectives. Most logic gates are made out of NAND and NOR gates.  

• logic circuit: combination of logic gates, equivalent to a compound proposition. 

DISJUNCTIVE NORMAL FORM (DNF) 

Any compound proposition (or logic circuit) of any arbitrary size has a logically equivalent simplified form. 

• DNF/sum of products:. Is a compound proposition made out of a “disjunction of conjuctions” of “simple 
terms”, and neither the terms nor the atoms in the terms are duplicated (no redundancy). 

In other words a sum (or) of products (and) where each of the products in the conjuction (and) represent 

the state of the variables (1 = 𝑝, 0 = ¬𝑝) in situations that have an output of true/1. 

• simple term: refers to atoms and their complements (the products). 

• conjuction of simple terms: a product of simple terms. 

The DNF or sum of products does not necessarily need to be in its most simplified way (minimal). Boolean logic or 

Karnaugh Maps can be used to obtain the minimal form. The products of the DNF must be atoms, not compound 

propositions. DNF shall not rely on parentheses nor on any other operator besides ¬, ∨, ∧. 

p q output  

0 0 0  

0 1 1 ¬𝒑 ∧ 𝒒 

1 0 1 𝒑 ∧ ¬𝒒 

1 1 0  

DNF:        ¬𝒑 ∧ 𝒒 ∨ 𝒑 ∧ ¬𝒒 =  (−𝐩)𝐪 + 𝐩(−𝐪) 

Thanks to the Substition Laws, it is sufficient to just consider the DNF proposition of a theorem when proving it. 
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WEEK 2 – PREDICATE LOGIC/PREDICATE CALCULUS 

PREDICATES 

Disclaimer: not every predicate has to correspond to an English sentence. 

• Charles Sanders Peirce (1839–1914): Father of predicate logic and logic circuits early thinker. 

• predicates: the elements of predicate logic that are applied to an object (a subject in grammar). Itself is an 
incomplete propoosition P(x) = x is red. You can complete a predicate by inputting an entity P(a) = a is red. 

A completed predicate is a proposition. 

• applying P to a: P(a), “applying” is exclusively reserved for using the predicate with one entity at a time. 

• object: the subject in a predicate logic statement to which the predicate is applied. Such as ‘a’. 

= entity = subject 
• domain of discourse for the predicate: the domain of object inputs accepted as a paramater (subject) to which 

the predicate can be applied. Such as “humans” in the statement T(x) = x pays taxes. Only humans pay them. 

• one-place predicate: predicate with only 1 place holder value (object). 

• two-place predicate: predicate that takes two paramaters (object/subject/entity). L(x,y) = x loves y. 
Each place holder variable (‘slot’) can have its own domain of discourse. 

QUANTIFIERS 

Predicates can only be applied  to entities. Quantifiers can be applied to predicates, to turn them  into propositions. 

• quantifiers: These specify the extent to which an incomplete predicate can be applied to the whole domain. 
All/no, some/not all  “domain” is “red”. If the predicate is D(x) = is a doctor. And the domain is “humans”. A 

quantifier that would make the statement true in our current specific universe  would be “some”. Making the 

incomplete statement look in “logic English” like: “some human is a doctor”. 

Predicate logic is bound to a universe. Sometimes it’s the real world, sometimes it’s made up (such as a Tarksi world). 
Sometimes you can build a made up world to prove that the a predicate statement is a contradiction. 
Quantifiers: 

Latex: \forall \exists \lnot \forall \lnot \exists 

Symbol ∀ ∃ ¬∀ ¬∃ 

English 
for all, all 

universal quantifier 

there exists, 

at list one 

existential quantifier 

not all 

there doesn’t exist 
there is no, 

no  

∃𝑃(𝑥) = there exists an x in the domain of discourse for P for which P(x) is true = at least one x is P(x). 
• open statement: incomplete predicate that contains one or more unfilled place holder values (entity 

variables), which becomes a proposition when these are substituied for an entity. Incomplete predicates can 

also become a proposition when a quantifier is applied to them. 

• free variables: the placeholders/variables unfilled by an entity in an open statement. 

• bound variable: variable to which the quantifier is applied to, i.e. ‘for all x‘  = ∀𝑥 and is not “free” anymore. 

Quantifiers are not associative: The order of the quantifier does change the output.  

∃𝑥 (∀y(𝐿(𝑥, 𝑦))) ≢ ∀y(∃x(𝐿(𝑥, 𝑦))) 

Trick: (this is a trick relying on English Language heuristics, not a proof) if L(x,y) = x loves y 
The arrows below do not mean the implication arrow, just the direction of the verb (direct to indirect object) 
∀y(𝐿(𝑥, 𝑦)) 

• All y’s: (x 
𝑙𝑜𝑣𝑒𝑠
→    y) =  x 

𝑙𝑜𝑣𝑒𝑠
→    ∀𝑦 

= x loves all y’s 

∃𝑥 (∀y(𝐿(𝑥, 𝑦))) 

• At  least an x: (x 
𝑙𝑜𝑣𝑒𝑠
→    ∀y) 

= At least an x loves all y’s 
= At least someone loves everyone 

At least one guy loves everyone 

∃x(𝐿(𝑥, 𝑦)) 

• At least an x: [(x 
𝑙𝑜𝑣𝑒𝑠
→    y) = (y 

𝑙𝑜𝑣𝑒𝑠
←    x)] = y 

𝑙𝑜𝑣𝑒𝑠
←    ∃𝒙 

= y is loved by at least an x (flipped verb) 

∀y (∃x(𝐿(𝑥, 𝑦))) 

• All y’s: (y 
𝑙𝑜𝑣𝑒𝑠
←    ∃𝒙) 

= All y’s is loved by at least an x 
= Everyone is loved by at least someone 

Everybody is loved, but not necessarily by the same guy 
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1. You organize the verb (flip if necessary) to keep the inner quantified (bonded) variable to the right. 

a. Iff swap is made, then goes from present to participle and viceversa. 

2. Replace the variable with the bonded version (apply quantity to the variable). 

3. Copy the updated predicate and apply the 2nd step to the remaining free variable. 

4. Replace “at least an x”/”at least an y” for “someone” and “all y’s”/”all x’s” for everyone. 

5. Take the Natural English result as the literal result. 

𝑆𝑜𝑚𝑒𝑜𝑛𝑒 → 𝑒𝑣𝑒𝑟𝑦𝑜𝑛𝑒 ≠ 𝐸𝑣𝑒𝑟𝑦𝑜𝑛𝑒 ← 𝑠𝑜𝑚𝑒𝑜𝑛𝑒(𝒔) 

a. 𝑆𝑜𝑚𝑒𝑜𝑛𝑒 → 𝑒𝑣𝑒𝑟𝑦𝑜𝑛𝑒: 𝑆𝑜𝑚𝑒𝑜𝑛𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑒𝑣𝑒𝑟𝑦𝑜𝑛𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑜𝑏𝑗𝑒𝑐𝑡 

i. Someone loves everyone: A single instance applies its action to all instances (Unique to All) 

ii. At least a single person loves all the persons (including himself). 

b. 𝐸𝑣𝑒𝑟𝑦𝑜𝑛𝑒 ← 𝑠𝑜𝑚𝑒𝑜𝑛𝑒(𝒔): 𝑠𝑜𝑚𝑒𝑜𝑛𝑒(𝒔) 𝒂𝒓𝒆 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡 𝒐𝒃𝒋𝒆𝒄𝒕𝒔, 𝑒𝑣𝑒𝑟𝑦𝑜𝑛𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑜𝑏𝑗𝑒𝑐𝑡 

i. Everyone is loved by at least someone. (All to 1/Different instances) 

ii. Those someone(s) can be different persons. 

6. Fill in quantifiers in the order in which they appear. 

 
Quantifier question: how many different 
propositions can be obtained from L(x, y) by 
applying quantifiers? Answer: six distinct 
meanings, among them: 

 

∀𝑥 ∀𝑦 outcome flipped (-1 = redundant) 

0 0 ∃𝑥 ∃𝑦 ∃𝑦 ∃𝑥 -1 

0 1 ∃𝑥 ∀𝑦 ∀𝑦 ∃𝑥 

1 0 ∀𝑥 ∃𝑦 ∃𝑦 ∀𝑥 

1 1 ∀𝑥 ∀𝑦 ∀𝑦 ∀𝑥 -1 

 
¬(∀𝑥𝑃(𝑥)) ≡ ∃𝑥(¬𝑃(𝑥)) 

¬(∃𝑥𝑃(𝑥)) ≡ ∀𝑥(¬𝑃(𝑥)) 

∀𝑥∀𝑦𝑄(𝑥, 𝑦) ≡ ∀𝑦∀𝑥𝑄(𝑥, 𝑦) 

∃𝑥∃𝑦𝑄(𝑥, 𝑦) ≡ ∃𝑦∃𝑥𝑄(𝑥, 𝑦) 
• Predicate DeMorgan’s (1,2) and Associative (3,4) Laws 

 

• Attempt with L(x,y,z) 1 + 6*4 + 1 = 26 

 

∀𝑥 ∀𝑦 ∀𝑧 outcome + guessed extra flips 

0 0 0 ∃𝑥 ∃𝑦 ∃𝑧 + 0 

0 0 1 ∃𝑥 ∃𝑦 ∀𝑧 + 
∃𝑥 ∀𝑧 ∃𝑦 + 
∃𝑦 ∀𝑧 ∃𝑥 + 
∀𝑧 ∃𝑥 ∃𝑦 

0 1 0 4 

0 1 1 4 

1 0 0 4 

1 0 1 4 

1 1 0 4 

1 1 1 1 

 
• English to predicate conversions (in CSE1300 often you have to guess the domain, it’s not always explicit): 

Adjectives 

SINGLE ENTITY 
Red rose (it is a red and it is rose) 

Mortal human  
Long black train 

Domain x = things 

𝑅𝑒𝑑(𝑥) ∧ 𝑅𝑜𝑠𝑒(𝑥) 

𝐻𝑢𝑚𝑎𝑛(𝑥) ∧ 𝑀𝑜𝑟𝑡𝑎𝑙(𝑥) 
𝐿𝑜𝑛𝑔(𝑥) ∧ 𝐵𝑙𝑎𝑐𝑘(𝑥) ∧ 𝑇𝑟𝑎𝑖𝑛(𝑥) 

Copulative verbs 

SINGLE ENTITY 
The sky is blue (x = the sky) 

The rose is red (x = the rose) 

Domain x = things 
𝐵𝑙𝑢𝑒(𝑥) 

𝑅𝑒𝑑(𝑥) 

QUANTIFIED ALL 
Everyone is mortal (1 simple version) 

All humans are mortal (2 advanced version) 

Domain x = 1 Humans/ 2 Animals 
∀x𝑀𝑜𝑟𝑡𝑎𝑙(𝑥) 

∀𝑥(𝐻𝑢𝑚𝑎𝑛(𝑥) → 𝑀𝑜𝑟𝑡𝑎𝑙(𝑥)) 

Living things can be mortal without being human 

QUANTIFIED EXISTS 
At least one swan is black = There exists a black swan 

There is a human that is mortal = There is a mortal human 

Domain x = things 
∃𝑥(𝑆𝑤𝑎𝑛(𝑥) ∧ 𝐵𝑙𝑎𝑐𝑘(𝑥)) 

∃x(𝐻𝑢𝑚𝑎𝑛(𝑥) ∧ 𝑀𝑜𝑟𝑡𝑎𝑙(𝑥)) 
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Non-Copulative verbs 

SINGLE ENTITY 
x writes 

x reads and writes 

Domain x = persons 
𝑊𝑟𝑖𝑡𝑒𝑠(𝑥) 

𝑅𝑒𝑎𝑑𝑠(𝑥) ∧𝑊𝑟𝑖𝑡𝑒𝑠(𝑥) 

MULTIPLE ENTITIES 
x loves y 

Domain x = persons 
𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦) 

The predicate “formula” is given in present 
form. With the first paramater being the direct 
object and the second parameter the indirect 
object. 

QUANTIFIED ALL (ONE OBJECT) 
All mammals sleep (all animals which are mamals sleep) 

(for all animals, if it’s a mammal, it sleeps) 

Domain x = animals 
∀𝑥(𝑀𝑎𝑚𝑚𝑎𝑙(𝑥) → 𝑆𝑙𝑒𝑒𝑝(𝑥)) 

Same as a copulative verb 

QUANTIFIED EXISTS (ONE OBJECT) 
At least one parrot talks 

Domain x = birds 
∃𝑥 (𝑃𝑎𝑟𝑟𝑜𝑡(𝑥) ∧ 𝑇𝑎𝑙𝑘(𝑥)) 
Same as a copulative verb 

QUANTIFIED (MULTIPLE OBJECTS ALL/EXISTS) Domain x = persons/things 

Someone loves y ∃𝑥(𝐿(𝑥, 𝑦)) 

x loves everyone ∀𝑦(𝐿(𝑥, 𝑦)) 

Someone loves everyone (not equal to statement below) ∃𝑥 (∀𝑦(𝐿(𝑥, 𝑦))) 

Everyone is loved by someone (not necessarily the same guy) ∀𝑦 (∃𝑥(𝐿(𝑥, 𝑦))) 

Jack owns y (y is owned by jack) 𝑂(𝑗𝑎𝑐𝑘, 𝑥) 

“Owned by jack” computer (it is owned by jack and a comp) 𝑂(𝑗𝑎𝑐𝑘, 𝑥) ∧ 𝐶(𝑥) 

Jack owns a computer (there exists a thing that is (owned by 
jack) and is a computer) 

∃𝑥(𝑂(𝑗𝑎𝑐𝑘, 𝑥) ∧ 𝐶(𝑥)) 

Everything jack owns is a computer (For all things, if jack owns 
it, it is a computer) 

∀𝑥(𝑂(𝑗𝑎𝑐𝑘, 𝑥) → 𝐶(𝑥)) 

If jack owns a computer then he is happy (∃𝑥(𝑂(𝑗𝑎𝑐𝑘, 𝑥) ∧ 𝐶(𝑥))) → 𝐻(𝑗𝑎𝑐𝑘) 

Everyone who owns a computer is hapy ∀𝑥 (∃𝑦(𝑂(𝑥, 𝑦) ∧ 𝐶(𝑦)) → 𝐻𝑎𝑝𝑝𝑦(𝑥)) 

Everyone owns a computer ∀𝑥 (∃𝑦(𝑂(𝑥, 𝑦) ∧ 𝐶(𝑦))) 

A single computer is owned by everyone ∃𝑦 (∀𝑥(𝑂(𝑥, 𝑦) ∧ 𝐶(𝑦))) 

Quantifier comparision with stereotype: 
Blondes are Stupid. Domain x = girls 

1. All (blondes are stupid) 

= All girls that are blonde are stupid 
= For all girls: If blonde, then stupid 

∀𝑥(𝐵𝑙𝑜𝑛𝑑𝑒(𝑥) → 𝑆𝑡𝑢𝑝𝑖𝑑(𝑥)) 

2. Some blondes are stupid = There exist a (stupid blonde) 

= There exists at least a girl that: is blonde and is stupid 
∃𝑥(𝐵𝑙𝑜𝑛𝑑𝑒(𝑥) ∧ 𝑆𝑡𝑢𝑝𝑖𝑑(𝑥)) 

3. Not (all (blondes are stupid)) 

= Negation of (1. All blondes are stupid) 
 

= There exists at least a girl that is: blonde and not stupid 

¬(∀𝑥(𝐵𝑙𝑜𝑛𝑑𝑒(𝑥) → 𝑆𝑡𝑢𝑝𝑖𝑑(𝑥))) 

≡ ¬(∀𝑥(¬ 𝐵𝑙𝑜𝑛𝑑𝑒(𝑥)  ∨  𝑆𝑡𝑢𝑝𝑖𝑑(𝑥))) 

≡ ∃𝑥( 𝐵𝑙𝑜𝑛𝑑𝑒(𝑥)  ∧  ¬ 𝑆𝑡𝑢𝑝𝑖𝑑(𝑥)) 

4. No blondes are stupid = There doesn’t (exist a (stupid blonde)) 

= Negation of (2. Some blondes are stupid) 
= For all girls: if blonde, then not stupid 

= (All) Blondes are not supid 

¬(∃𝑥(𝐵𝑙𝑜𝑛𝑑𝑒(𝑥) ∧ 𝑆𝑡𝑢𝑝𝑖𝑑(𝑥))) 

≡ ∀𝑥(¬𝐵𝑙𝑜𝑛𝑑𝑒(𝑥) ∨ ¬𝑆𝑡𝑢𝑝𝑖𝑑(𝑥)) 

≡ ∀𝑥(𝐵𝑙𝑜𝑛𝑑𝑒(𝑥) → ¬𝑆𝑡𝑢𝑝𝑖𝑑(𝑥)) 
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Everyone, At least, At most, Exactly (Simple domain x = humans) 
Everyone is happy ∀𝑥(𝐻𝑎𝑝𝑝𝑦(𝑥)) 

At least one person is happy ∃𝑥(𝐻𝑎𝑝𝑝𝑦(𝑥)) 

At least two people are happy ∃𝑥∃𝑦(𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ (𝑥 ≠ 𝑦)) 

At least three people are happy ∃𝑥∃𝑦∃𝑧(𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ Happy(z) ∧ (𝑥 ≠ 𝑦) ∧ (𝑥 ≠ 𝑧) ∧ (𝑦 ≠ 𝑧)) 

There exists a set with at least 3 objects that have the properties of being happy and 
these objects are not the same entity. 

At most 1 person is happy 

= opposite of at least 2 happy 
¬(∃𝑥∃𝑦(𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ (𝑥 ≠ 𝑦))) 

≡ ¬(∃𝑥∃𝑦 ((𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦)) ∧ (𝑥 ≠ 𝑦))) 

≡ ∀x∀y(¬(𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦)) ∨ ¬(𝑥 ≠ 𝑦)) 

≡ ∀x∀y(¬(𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦)) ∨ (𝑥 = 𝑦)) 

≡ ∀x∀y((𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦)) → (𝑥 = 𝑦)) 

At most 2 peoeple are happy 

= opposite of at least 3 happy 

¬(∃𝑥∃𝑦∃𝑧(𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ Happy(z) ∧ (𝑥 ≠ 𝑦) ∧ (𝑥 ≠ 𝑧) ∧ (𝑦 ≠ 𝑧))) 
¬(∃𝑥∃𝑦∃𝑧((𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ Happy(z)) ∧ ((𝑥 ≠ 𝑦) ∧ (𝑥 ≠ 𝑧) ∧ (𝑦 ≠ 𝑧)))) 

∀x∀y∀z(¬(𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ Happy(z)) ∨¬((𝑥 ≠ 𝑦) ∧ (𝑥 ≠ 𝑧) ∧ (𝑦 ≠ 𝑧))) 

∀x∀y∀z(¬(𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ Happy(z)) ∨ ((𝑥 = 𝑦) ∨ (𝑥 = 𝑧) ∨ (𝑦 = 𝑧))) 

∀x∀y∀z((𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ Happy(z))→ ((𝑥 = 𝑦) ∨ (𝑥 = 𝑧) ∨ (𝑦 = 𝑧))) 

At most n people are happy Opposite of at least n+1 happy 

There is exactly 1 happy person 

= at least 1 happy and at most 1 
= at least 1 happy object (x), 
that also has the quality that no 
other y is happy and not him (x). 

Conjuction: 

∃𝑥(𝐻𝑎𝑝𝑝𝑦(𝑥)) ∧ ∀x∀y((𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦)) → (𝑥 = 𝑦)) 

Short version: 

∃𝑥 (𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ ¬∃𝑦(𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ (𝑥 ≠ 𝑦))) 

≡ ∃𝑥 (𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ ∀y(¬𝐻𝑎𝑝𝑝𝑦(𝑦) ∨ (𝑥 = 𝑦))) 

≡ ∃𝑥 (𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ ∀𝑦(𝐻𝑎𝑝𝑝𝑦(𝑦)  →  (𝑥 = 𝑦))) 

There exists an object (x) that has the propety of being happy and the property that 
no other objects (y) are happy and different from it (y not equal to x)  

There is exactly 2 happy persons 

= at least 2 happy and at most 2 
= at least 2 happy objects (x, y), 
that also have the quality that no 
other z is happy and not x nor y. 

Conjuction (short steps, long formula): 

∃𝑥∃𝑦(𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ (𝑥 ≠ 𝑦)) ∧ 
∀𝑥∀𝑦∀z((𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑧))→ ((𝑥 = 𝑦) ∨ (𝑥 = 𝑧) ∨ (𝑦 = 𝑧))) 

Short formula, more steps: 

∃𝑥∃𝑦 (𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ (𝑥 ≠ 𝑦) ∧ ¬∃𝑧(𝐻𝑎𝑝𝑝𝑦(𝑧) ∧ (𝑧 ≠ 𝑥) ∧ (𝑧 ≠ 𝑦))) 

∃𝑥∃𝑦 (𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ (𝑥 ≠ 𝑦) ¬∃𝑧 (𝐻𝑎𝑝𝑝𝑦(𝑧) ∧ ((𝑧 ≠ 𝑥) ∧ (𝑧 ≠ 𝑦)))) 

∃𝑥∃𝑦 (𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ (𝑥 ≠ 𝑦) ∀𝑧 (¬𝐻𝑎𝑝𝑝𝑦(𝑧) ∨ ((𝑧 = 𝑥) ∨ (𝑧 = 𝑦)))) 

∃𝑥∃𝑦 (𝐻𝑎𝑝𝑝𝑦(𝑥) ∧ 𝐻𝑎𝑝𝑝𝑦(𝑦) ∧ (𝑥 ≠ 𝑦) ∀𝑧 (𝐻𝑎𝑝𝑝𝑦(𝑧) → ((𝑧 = 𝑥) ∨ (𝑧 = 𝑦)))) 

There exists an object (x) and an other object (y) that have the propeties of being 
happy and the property that no other objects (z) are happy and different from them 
(z not equal to x, or z not equal to y). 

Can also be read as: 

There exists at least an object x and an object y that each have the property of being 
happy and that for all other objects z, if these are happy, then they must refer to x or y 

There is exactly 3 happy persons ∃𝑥∃𝑦∃𝑧 (𝐻(𝑥) ∧ 𝐻(𝑦) ∧ 𝐻(𝑧) ∧ (𝑥 ≠ 𝑦) ∧ (𝑥 ≠ 𝑧) ∧ (𝑦 ≠ 𝑧) ∧ ∀𝑤 (𝐻(𝑤) → ((𝑤 = 𝑥) ∨ (𝑤 = 𝑦) ∨ (𝑤 = 𝑧)))) 

There is exactly 4 [equals = n] 
[not equals = (𝑛2 − 𝑛)/2] 

Equals part: (𝑠 = 𝑥) ∨ (𝑠 = 𝑦) ∨ (𝑠 = 𝑧) ∨ (𝑠 = 𝑤) 

Not equals part: (𝑥 ≠ 𝑦) ∧ (𝑥 ≠ 𝑧) ∧ (x ≠ w) ∧ (𝑦 ≠ 𝑧) ∧ (𝑦 ≠ 𝑤) ∧ (𝑧 ≠ 𝑤) 
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LOGICAL EQUIVALENCE 

In predicate logic, two formulas are logically equivalent if they have the same truth value for all possible predicates. 
It is generally considered simpler to have the negation operator applied to basic propositions such as R(y), rather 

than to quantified expressions such as ∀y(R(y) ∨ Q(y)). Replacing placeholders with predicates keeps it equivalent. 

DEDUCTION 

• conclusion: proposotion that is logically deduced from a set of premises. 

• premise: proposotion accepted as true for the sake of argument 

• argument:  claim that a certain conclusion follows from a given set of premises. Traditional format: 

𝑝 → q 

𝑝 

∴ 𝑞 
It can be proved with a truth table that it is always true: If 𝑝 → 𝑞 AND p is true then q is true ≡ (𝑝 → 𝑞 ∧ 𝑝) → 𝑞 ≡  T 

p q 𝑝 → 𝑞 ((𝑝 → 𝑞 ∧ 𝑝) → q) 

0 0 1 0 1 0 1 0 

0 1 1 0 1 0 1 1 

1 0 0 1 0 0 1 0 

1 1 1 1 1 1 1 1 

• if the premises are true, then the conclusion must be true: That’s all the truth table proves, but not that the 

conclusion is necesarily true (the premises might be wrong in real life). This just makes the argument. 

Let P represent the Disjunction of Premises and Q represent the conclusion. These statements are all equal: 

• 𝑷 → 𝑸 𝐢𝐬 𝐚 𝐓𝐚𝐮𝐭𝐨𝐥𝐨𝐠𝐲 

• 𝑷 ⇒ 𝑸 which can also be read as premises P do 

lead to conclusion Q, and 

• Q follows logically from P 

• in all cases where P is true, Q is also true 

• Q can be logically deduced from P 

• P logically implies Q 

 

• valid argument: Argument where 𝑃 ⇒ 𝑄 holds (the conclusion follows logically from the premises). 

• logical deduction: the formulation of propositions that satisfy 𝑃 ⇒ 𝑄 

RULES OF INFERENCE, INFERENCE RULES OR TRANSFORMATION RULES – PROPOSITIONAL LOGIC

• modus ponens: second premise confirms the left 
side of the implication, deducing the right side 

𝑝 → q 

𝑝 

∴ 𝑞 

• modus tollens: 2nd premise contradicts the right side 

of the implication, deducing the left side is false 

𝑝 → q 

¬𝑞 

∴ ¬𝑝 

• Basic rules: 

𝑝 ∨ 𝑞 

¬𝑝 

∴ 𝑞 

𝑝 

𝑞 

∴ 𝑝 ∧ 𝑞 

𝑝 ∧ 𝑞 

∴ 𝑝 
 

𝑝 

∴ 𝑝 ∨ 𝑞 

 

• law of syllogism: (chain of implications allows 
you to “jump” to a next one(s)) 

𝑝 → q 

𝑝 → r 

∴ 𝑝 → r 
 

• “Free”/”cheap” conclusion:  if 𝑃 ≡ 𝑄 

𝑃 

∴ 𝑄 
 

 

With all these rules, instead of making a truth table of the Disjunction of Premises → Conclusion, we can demonstrate 

the validity of an argument by deducing the conclusion from the premises in a sequence of steps. 
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• formal proof (of an argument): sequence of proposotions such that the last proposition in the sentence is the 
conclusion of the argument and every proposition in the sequence is either a premise of the argument or 
follows by logical deduction from propositions that precede in the list. The existence of such a proof shows 
that the conclusion follows logically from the premises, and therefore that the argument is valid 

Example Argument: 

(𝑝 ∧ r) → s 

𝑞 → 𝑝 
𝑡 → 𝑟 

𝑞 
𝑡 

∴ 𝑠 
 

Proof. 

1. 𝑞 → 𝑝 premise 

2. 𝑞 premise 

3. 𝑝 from 1 and 2 (modus ponens) 

4. 𝑡 → 𝑟 premise 

5. 𝑡 premise 

6. 𝑟 from 4 and 5 (mods ponens) 

7. 𝑝 ∧ 𝑟 from 3 and 5 

8. (𝑞 ∧ 𝑟) → 𝑠 premise 

9. s from 7 and 8 (mods ponens) 

Q.E.D 
Remember! no proof is complete if it does not start with Proof. and ends with Q.E.D. or □ 
The argument is valid if in all cases where all the premises are true, the conclusion is also true. The argument is 
invalid if there is at least one case where all the premises are true and the conclusion is false. 

• counterexample: Situation where the premises are true and the conclusion is false, needed always to be 
provided to disprove the validity of an argument. Example:  
False, Proof. Counter example: ¬𝑝 ∧ 𝑞  

□ 

INFERENCE RULES - PEDICATE LOGIC 

• basic predicate rule: 

(∀𝒙𝑷(𝒙)) ⇒ 𝑷(𝒂). 

If a predicate is true for 

all entities, then it is true 

for a specific entity. 

• predicate modus ponens: 
∀𝑥(𝑃(𝑥) → 𝑄(𝑥)) 

𝑃(𝑎) 

∴ 𝑄(𝑎) 
 

• predicate modus tollens:  

∀𝑥(𝑃(𝑥) → 𝑄(𝑥)) 

¬𝑄(𝑎) 

∴ ¬𝑃(𝑎) 

To disprove validity of arguments in predicate logic, you again need to provide a counterexample. You can literally 

make up any formal structure as counterexample to disprove it. Consider the following argument: 

∃𝑥𝑃(𝑥) 

∀𝑥(𝑃(𝑥) → 𝑄(𝑥)) 

∴ ∀𝑥𝑄(𝑥) 
Not valid. Proof. 
Counter example given in the following structure A: D = {a, b}; PA = {a}; QA = {a} 

It says two things, the 2nd premise is that all objects of domain x that have property P, also have property Q. And the 

1st premise is that there exists at least an object x with property P. The conclusion says that all object x have property 

Q, however it is enteriely possible to have a situation (structure) where there is an additional object that does not 

have property P and therefore not having Q wouldnt violate the second premise, and make the conclusion false. 

Therefore Q(x) does not hold for all. 

𝑝 → q 

𝑞 

∴ 𝑝 
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WEEK 3+ PROOFS, SETS, RELATIONS, FUNCTIONS (AND TARKSI WORLD FROM PREVIOUS WEEK) 

This is something I was not able to summarize well. The best way to learn this is by doing a lot of exercises! 

I recommend Book of Proof By Richard Hammack, Chapter: 1, 4-12, 14. (for both, explanations and exercises) 

It has a free pdf version on the original page, a quick google search should display within the first results. 
Chapter 2 is the logic (I covered it already here and you’ll have to use CSE1300 logic style (i.e. small caps for atoms, 
big caps for composed propositions, 1 and 0s (instead of T and F) and 0 is an element of N) 13 is calculus proofs.  

This Summary does not cover the Tarksi World. I recommend to check the assigned book and lectures. It regards a 
very specific “construction” of sets. I recommend to get familiar with Set notation before trying to learn Tarksi World. 

BOOLEAN ALGEBRA OF SETS 

 
 

APPENDIX – SOME PROOFS (MIGHT NOT BE PERFECT), MISCELANIOUS EXERCISES AND NOTES 

Regarding the proofs I did: Focus mostly on how I structure my proofs grammatically rather than on the actual 

algebraic development within the body of the proof. 

LOOP INVARIANT 

 
An invariant is a property P of a loop such that P is true before and after the loop is executed, but not necessarily 

during the execution of the loop. 

The post-condition of an algorithm i.e. property Q is proved by finding an invariant P such that P → Q and showing 

that the condition of the loop (“guard”) has become false. 
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A PROOF OF CORRECTNESS USING INDUCTION 

1. Initialisation or precondition or basis property: the invariant is true before the loop starts. 

2. Inductive case or maintenance: the invariant is true after an iteration of the loop. 

3. Termination or eventual falsity of the guard: the loop stops at some point. 

4. Postcondition: the invariant shows that after the loop is done the algorithm has produced the output we 

want. 

 

SET OF ALL PROPOSITIONS 

The set PROP represents all valid formula in propositional logic, therefore it is defined by: 

 

 
A partition of a set A is a set of subsets of A 
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WEAK INDUCTION 
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INDUCTION AND RECURSION 
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STRONG INDUCTION 
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SETS PROOFS 
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STRUCTURAL INDUCTION 
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WEAK INDUCTION 
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SOME EXAM QUESTIONS 
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But if it has no premises at all, then the only way to be valid is if the conclusion is a tautology. 

 
“this argument is not sound as 2≠3, but because of this contradiction the argument is valid” 
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