CSE1300 Reasoning and Logic

WEEK 1 - PROPOSITIONAL LOGIC
PROPOSITIONS

e proposition: statement that is either true or false. True = 1 False = 0 (boolean values).

e propositional variable: proposition represented by a small caps letter symbol. Usually start with p, q, 1, s.
=atom

o mathematical generality: the substition of a long proposition with a propositional variable being equivalent.

e argument: conjuction of premises implying that when these are true, so must be the conclusion.

e conjuction: AND, both statements must be true for the conjuction to be true, else the conjuction is false

e premise: set of assumed propositions accepted as true for the sake of argument.

e argument conclusion: deduced proposition from logic inference. If the conjuction of all premises, implies the
conclusion, and such gives a tautology, the conclusion is logically valid.

LOGICAL OPERATORS

o logical operator
= logical connective: Like the arithmetic operators +,*% etc. logical operators are the symbols placed
generally between two propositional variables although they can take multiple paramaters into account. If
so these terciary, quartenary and so forth operators are most likely not standard and their meaning (aka
description of the output) is unkwonw. The hidden meaning of these unkwonw +2 operand operators can
be found by observing the outputs of its truth table and translate it to DNF.

e operand: the propositional variable taken as input for the logical operator.

o DNF/sum of products: Disjunctive Normal Form. Further explained in page 3.

o truth table: table that shows the output for each of the of propositional variables values and a operator

e unary operator: takes one variable, the most common is “no change” it's represented by “nothing” in front of
the variable. The second most common is negation (=), which toggles (inverts) the current value of the
propositional variable. The remaining unary operators are one that would make all outputs 1 and other one
all outputs 0 regardless of the input.

e Dbinary operator: returns one output from two operands. Most common are defined in the table below.

Truth table

Latex: \Inot \lor \oplus \land \to \leftrightarrow
P |q -p pVvq pDq pAq p—>q =-pVgq ped =
P->a9Ar@Q~p)
0 0 1 0 0 1 1
0 1 1 1 1 0 1 0
1 0 0 1 1 0 0 0
1 1 0 1 0 1 1 1
implies
Not p p or.q or botlll st pis zufﬁiient@or @ qif and. only if p
‘ negation Englllsh ‘or’ is e_xc usive or H _ ‘ . qiffp
English losical ambigous, as it | eitherporq | and 15 rllfeces}fary orp if p then q and
compglement can mean both | but not both 1p t_ enq conversely
or and xor conditional biconditional
operator

* this english equals only applies to the operator output. p and q are different variables and can have a different
state from each at the same time (i.e. 01 or 10) so you can’t apply mathematical generality with these 2 variables.

e ternary operator: CSE1300 doesn’t have any standard, so better to convert to DNF and use boolean logic, or
a karnaugh map to generate a simplified compound proposition that generates the same output.

operator question: What'’s the maximum number of operators you can create for 1, 2 and 3 variables? formula: 22",
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Take n = 1, such as “p”; p has two possible states 0 and 1 (rows in a truth table), which is equivalent to 2" = 21 = 2
(p,q,r would have 23 rows). Each of these possible states of p can be arbitrarily modified by the operator and take
two new forms. The maximum number of new states combinations is 251t therefore 2% = 4.

FUNCTIONALLY COMPLETE, UNIVERSAL, EXPRESSIVELY ADEQUATE SET OF OPERATORS

o functionally complete operators: set of operators that can express all possible situations, suchas =, A and Vv
functionally complete question: What's the minimum number of operators needed for a functionally complete set?

Answer: 1. The binary connectives NAND T and NOR | are functionally complete. This is due to the fact that when
applied to the same atom it provides its inverse (not), it also has similar OR/AND properties. Thus, 2 operators in 1.

PRECEDENCE RULES

e compound proposition: proposition variable made from sub proposition(s) represented with a capital letter.
o precedencerules: (-, A V, @, =, &, ...if equal precende precedence goes from left to right.
e associative operator: the order of the of the operands doesn’t chage the output. pAgAT = rAqAD
some of them are: A, V, &, = (equivalence operator yields either a tautology or a contradiction)
e main connective: is the operator that es evaluated last, according to the precedence rules and parentheses.

IMPLICATIONS IN ENGLISH

Take (p = q as areference point)

e implication: p implies q e necessary: qis necessary forp inp - g
= conditional e converse:q - p (flipp - q)

¢ hypotheses: p in p implies q e inverse: =p — —q (negate atomsinp — q)
= antecedent e contrapositive: -q — —p

e conclusion: q in p implies q = combination of inverse and converse
= consequent e Dbiconditional: p & q

o sufficient: p is sufficient forq inp — g

LOGICAL EQUIVALENCE

e situation: each possible combination of values of the propositional variables that a truth table contains (row)
o logically equivalent (=): propositions are logically equivalent if they have the same values in every situation.
Which can be confirmed if P & Q is a tautology. The symbol = has essentially the same meaning as =.

CLASSIFYING PROPOSITIONS

e tautology (T): (compound) proposition that is true for every situation in its truth table.
e contradiction (F): (compound) propoistion that is false for every situation in its truth table.
e contingency: (compound) proposition where at least one situation is false and at least one situation is true.

BOOLEAN ALGEBRA

e George Boole: accounted for introducing Boolean algebra in 1854.

e Double negation -(-p)=p

e Excluded middle pv-p =T (variable + complement = 1)
e Contradiction pA-p=F

e Identity laws TAp =p Fvp =p

e Impotentlaws PAP= p PVDP=p

e Cummulative law pAqQ =qAp pvq=qVp

e Associative law PAQAT = TAQAD pvqVr =rvqVp

e Distribute law pA(@vr)=(PAqQVpAr) pv@Ar)=(PEvgA(pVvr)
e Demorgan’s law -(pAQ)=-pV-q -(pVvqg) =-pA—q

e Laws of Boolean algebra
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Trick: use CSE1400 Computer Organisation technique of replacing T for 1, F for 0, V for +, A for * and — for — 1 *
(or just minus) and then all laws, except impotent laws, are equal to highschool math. For the impotent law just
assume that any number larger than 1 becomes immediately 1 again. Thus p? = p* = pand 2p = p.

For the second distributive law open the brackets and simplify using the first distributive law and the T identity law:

p+q)@+r)=p*+pr+pq+qr=p("1"+r+q)+qr=p+qr
But it is easier to remember I want Pasta or (Quesadillas and Rice). I'd be equally happy if I get (Pasta or Quesadillas)
and (Pasta or Rice)

e duality: from a tautology that uses only the operators A, V, and —, another tautology can be obtained by
interchanging A with v and T with F.

SUBSTITUTION LAWS

o statement of the same form: proposition that can be obtained by substituting all instances of the same
variable with a different variable. Substitute p for Q. (p for g means we have a redundant atom).
e 1stSubstition Law: quoted when applying logical equivalence between a compound proposition and an atom.

Q=p
e 2nd Sybstition Law: quoted when applying logical equivalence between 2 compound propositions.
Q=r

e chain of equivalences: resulting conclusion that two proposotions are equivalent by finding a chain of
equivalences using the substition laws.

o simplification: the use of chain of equivalences to provide a logically equivalent proposition that contains
less logical connectives and less atoms.

e tri-state boolean: Model that includes a third state representing “unknown” or “not proven” which lead to
fuzzy logic. It follows non-stardad logics because it allows for a middle ground.

LOGIC CIRCUITS*

* Next to a title means not CSE1300 exam material.

o logic gates: electronic components (often transistors) that compute the values of simple propositions. They
are equivalent to logic connectives. Most logic gates are made out of NAND and NOR gates.
e logic circuit: combination of logic gates, equivalent to a compound proposition.

DISJUNCTIVE NORMAL FORM (DNF)

Any compound proposition (or logic circuit) of any arbitrary size has a logically equivalent simplified form.

e DNF/sum of products.. Is a compound proposition made out of a “disjunction of conjuctions” of “simple
terms”, and neither the terms nor the atoms in the terms are duplicated (no redundancy).
In other words a sum (or) of products (and) where each of the products in the conjuction (and) represent
the state of the variables (1 = p, 0 = —p) in situations that have an output of true/1.
e simple term: refers to atoms and their complements (the products).
e conjuction of simple terms: a product of simple terms.
The DNF or sum of products does not necessarily need to be in its most simplified way (minimal). Boolean logic or
Karnaugh Maps can be used to obtain the minimal form. The products of the DNF must be atoms, not compound
propositions. DNF shall not rely on parentheses nor on any other operator besides =, Vv, A.

P | 9 | output
00 0
01 1 -p Aq
1]o0 1 P A-q
1|1 0
DNF: P AqQVp A-q = (—p)q +p(—q)

Thanks to the Substition Laws, it is sufficient to just consider the DNF proposition of a theorem when proving it.



CSE1300 Reasoning and Logic
WEEK 2 - PREDICATE LOGIC/PREDICATE CALCULUS

PREDICATES

Disclaimer: not every predicate has to correspond to an English sentence.

e Charles Sanders Peirce (1839-1914): Father of predicate logic and logic circuits early thinker.

o predicates: the elements of predicate logic that are applied to an object (a subject in grammar). Itself is an
incomplete propoosition P(x) = x is red. You can complete a predicate by inputting an entity P(a) = a is red.
A completed predicate is a proposition.

e applying P to a: P(a), “applying” is exclusively reserved for using the predicate with one entity at a time.

e object: the subject in a predicate logic statement to which the predicate is applied. Such as @’.
= entity = subject

o domain of discourse for the predicate: the domain of object inputs accepted as a paramater (subject) to which
the predicate can be applied. Such as “humans” in the statement T(x) = x pays taxes. Only humans pay them.

e one-place predicate: predicate with only 1 place holder value (object).

e two-place predicate: predicate that takes two paramaters (object/subject/entity). L(x,y) = x loves y.
Each place holder variable (‘slot”) can have its own domain of discourse.

QUANTIFIERS

Predicates can only be applied to entities. Quantifiers can be applied to predicates, to turn them into propositions.

o quantifiers: These specify the extent to which an incomplete predicate can be applied to the whole domain.
All/no, some/not all “domain” is “red”. If the predicate is D(x) = is a doctor. And the domain is “humans”. A
quantifier that would make the statement true in our current specific universe would be “some”. Making the
incomplete statement look in “logic English” like: “some human is a doctor”.

Predicate logic is bound to a universe. Sometimes it’s the real world, sometimes it’s made up (such as a Tarksi world).
Sometimes you can build a made up world to prove that the a predicate statement is a contradiction.
Quantifiers:

Latex: \forall \ exists \Inot \forall \Inot \ exists
Symbol v 3 =\ -3
there exists, there doesn’t exist
. for all, all ) .
English . - at list one not all there is no,
universal quantifier ) ] e
existential quantifier no

JP(x) = there exists an x in the domain of discourse for P for which P(x) is true = at least one x is P(x).

e open statement: incomplete predicate that contains one or more unfilled place holder values (entity
variables), which becomes a proposition when these are substituied for an entity. Incomplete predicates can
also become a proposition when a quantifier is applied to them.

o free variables: the placeholders/variables unfilled by an entity in an open statement.

e bound variable: variable to which the quantifier is applied to, i.e. ‘for all x* = Vx and is not “free” anymore.

Quantifiers are not associative: The order of the quantifier does change the output.

3 (vy(LCx D)) 2 vy (3x(L(x, 7))

Trick: (this is a trick relying on English Language heuristics, not a proof) ifL(x)y) = x loves y
The arrows below do not mean the implication arrow, just the direction of the verb (direct to indirect object)

vy(L(x,¥)) 3x(L(x,y))
o Ally's: (X@)” =X vy e Atleastanx: [(xmy) = (ymx)] =ye— dx
=xlovesall y's =y is loved by at least an x (flipped verb)
Jx (Vy(L(x, y))) vy (EIX(L(x, y)))

* Atleastanx: (x— Vy) o Allys: § e —3%)

= All y’s is loved by at least an x
= Everyone is loved by at least someone

Everybody is loved, but not necessarily by the same guy

= Atleastan x loves all y’s
= At least someone loves everyone

At least one guy loves everyone

4
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1. You organize the verb (flip if necessary) to keep the inner quantified (bonded) variable to the right.
a. Iff swap is made, then goes from present to participle and viceversa.
2. Replace the variable with the bonded version (apply quantity to the variable).
3. Copy the updated predicate and apply the 2nd step to the remaining free variable.
4. Replace “atleast an x”/”at least an y” for “someone” and “all y’s”/”all x’s” for everyone.
5. Take the Natural English result as the literal result.
Someone — everyone # Everyone « someone(s)
a. Someone — everyone: Someone is the direct object, everyone is the indirect object
i. Someone loves everyone: A single instance applies its action to all instances (Unique to All)
ii. Atleasta single person loves all the persons (including himself).
b. Everyone « someone(s): someone(s) are the direct objects,everyone is the indirect object
i. Everyone is loved by at least someone. (All to 1/Different instances)
ii. Those someone(s) can be different persons.
6. Fill in quantifiers in the order in which they appear.
Quantifier question: how many different
propositions can be obtained from L(x, y) by o AttemptwithL(xy,z) 1+ 6*4 +1=26
applying quantifiers? Answer: six distinct
meanings, among them: Vx | Vy | Vz | outcome + guessed extra flips
0]01]O0 dx 3y 3Iz+0
Vx | Vy | outcome | flipped (-1 = redundant) 0l o0l 1 3x 3y vz +
0 0 dx Iy Jy 3Ix -1 IxVz3y +
0 |1 dx Vy Vy 3x Ay vz3IAx +
1 10 vx Ay Jy Vx Vz 3x 3y
1 |1 Vx Vy VyVx -1 0110 4
0] 1|1 4
—|(VxP(x)) = Elx(—|P(x)) 1]101|0 4
-(3xP(x)) = vx(=P(x)) 1101 4
vxvyQ(x,y) = VyvxQ(x,y) 1110 4
3x3yQ(x,y) = 3y3xQ(x,y) 1)1 1

Predicate DeMorgan’s (1,2) and Associative (3,4) Laws

o English to predicate conversions (in CSE1300 often you have to guess the domain, it's not always explicit):

Adjectives

SINGLE ENTITY Domain x = things
Red rose (it is a red and it is rose) Red(x) A Rose(x)
Mortal human Human(x) A Mortal(x)
Long black train Long(x) A Black(x) A Train(x)

Copulative verbs
SINGLE ENTITY Domain x = things
The sky is blue (x = the sky) Blue(x)
The rose is red (x = the rose) Red(x)
QUANTIFIED ALL Domain x = 1 Humans/ 2 Animals
Everyone is mortal (1 simple version) vxMortal(x)

All humans are mortal (2 advanced version)

Vx(Human(x) - Mortal(x))
Living things can be mortal without being human

QUANTIFIED EXISTS

At least one swan is black = There exists a black swan
There is a human that is mortal = There is a mortal human

Domain x = things
Elx(Swan(x) A Black(x))

Elx(Human(x) A Mortal(x))
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Non-Copulative verbs

SINGLE ENTITY

Domain x = persons
Writes(x)

X writes

x reads and writes Reads(x) A Writes(x)
MULTIPLE ENTITIES Domain x = persons
xlovesy Loves(x,y)

The predicate “formula” is given in present
form. With the first paramater being the direct
object and the second parameter the indirect
object.

QUANTIFIED ALL (ONE OBJECT)
All mammals sleep (all animals which are mamals sleep)

(for all animals, if it's a mammal, it sleeps)

Domain x = animals
vx(Mammal(x) - Sleep(x))
Same as a copulative verb

QUANTIFIED EXISTS (ONE OBJECT)
At least one parrot talks

Domain x = birds
Ax (Parrot(x) A Talk(x))
Same as a copulative verb

QUANTIFIED (MULTIPLE OBJECTS ALL/EXISTS)

Domain x = persons/things

Someone loves y Ax(L(x,y))

x loves everyone vy(L(x,y))
Someone loves everyone (not equal to statement below) Ax (Vy( L(x, y)))
Everyone is loved by someone (not necessarily the same guy) vy (3 x( L(x, y)))
Jack owns y (y is owned by jack) 0(jack, x)

“Owned by jack” computer (it is owned by jack and a comp)

O(jack,x) A C(x)

Jack owns a computer (there exists a thing that is (owned by
jack) and is a computer)

EIx(O(jack, x) A C(x))

Everything jack owns is a computer (For all things, if jack owns
it, it is a computer)

Vx(O(jack, x) — C(x))

If jack owns a computer then he is happy

(EIx(O(jack, x) A C(x))) - H(jack)

Everyone who owns a computer is hapy

vx (3y(0(x,) A C(»)) > Happy(x))

Everyone owns a computer

Vx (ay(O(x, Y) A C(y)))

A single computer is owned by everyone

y (Vx(O(x, y) A C(y)))

Quantifier comparision with stereotype:

Blondes are Stupid. Doma

in X = girls

1. All (blondes are stupid)

= All girls that are blonde are stupid
= For all girls: If blonde, then stupid

Vx(Blonde(x) - Stupid(x))

2. Some blondes are stupid = There exist a (stupid_blonde)
= There exists at least a girl that: is blonde and is stupid

EIx(Blonde(x) A Stupid(x))

3. Not (all (blondes are stupid))
= Negation of (1. All blondes are stupid)

= There exists at least a girl that is: blonde and not stupid

= (Vx(Blonde(x) - Stupid(x)))
= (Vx(—| Blonde(x) Vv Stupid(x)))
= Elx( Blonde(x) A = Stupid(x))

4.No blondes are stupid = There doesn’t (exist a (stupid blonde))

= Negation of (2. Some blondes are stupid)
= For all girls: if blonde, then not stupid

= (All) Blondes are not supid

o (Elx(Blonde(x) A Stupid(x)))
= Vx(ﬂBlonde(x) \ —.Stupid(x))
= Vx(Blonde(x) - —.Stupid(x))




CSE1300 Reasoning and Logic

Everyone, At least, At most, Exactly (Simple domain x = humans)

Everyone is happy

vx(Happy(x))

At least one person is happy

Elx(Happy(x))

At least two people are happy

EIxEIy(Happy(x) A Happy(y) A (x # J/))

At least three people are happy

Ax3y3z(Happy(x) AHappy(y) AHappy(z) A (x # y) A(x #2) A (¥ # 2))
There exists a set with at least 3 objects that have the properties of being happy and
these objects are not the same entity.

At most 1 person is happy
= opposite of at least 2 happy

- (Hxﬂy(Happy(x) A Happy(y) A (x # y)))
= - (Hxﬂy ((Happy(x) A Happy(») A (x # y)))
= vay(—'(Happy(x) A Happy(y)) V =(x # y))
= vay(—'(H appy(x) A Happy(y)) v (x = y))
= vxvy ((Happy(x) A Happy()) - (x = y))

At most 2 peoeple are happy
= opposite of at least 3 happy

—(3x3y3z(Happy(x) A Happy(y) AHappy(z) A (x # y) A(x #2) A (Y # 2)))
—(3x3y3z((Happy(x) A Happy(y) AHappy(2)) A (x #Y) A (x #2) Ay *# 2))))
VxVyVz(—(Happy(x) A Happy(y) AHappy(z)) V =((x # y) A (x # 2) A(y # 2)))
VxVyVz(=(Happy(x) A Happy(y) AHappy(z) V ((x =y) V (x =2) V (y = 2)))
VxVyvz((Happy(x) A Happy(y) AHappy(z)) = ((x =y) V. (x =2) V (y = 2)))

At most n people are happy

Opposite of at least n+1 happy

There is exactly 1 happy person
= atleast 1 happy and at most 1
= at least 1 happy object (x),
that also has the quality that no
other y is happy and not him (x).

Conjuction:

3x(Happy(x)) A VxVy ((H appy(x) A Happy(y)) - (x = y))

Short version:
ax (Happy(x) A =3y(Happy(y) A (x # y)))
=3x (Happy(x) A Vy(—~Happy(y) v (x = Y)))

= Jx (Happy(x) A Vy(Happy(y) - (x = y)))
There exists an object (x) that has the propety of being happy and the property that
no other objects (y) are happy and difterent from it (y not equal to x)

There is exactly 2 happy persons
= at least 2 happy and at most 2
= at least 2 happy objects (%, y),
that also have the quality that no
other z is happy and not x nory.

Conjuction (short steps, long formula):

3x3y(Happy(x) A Happy(y) A (x # y)) A
VxVyvz((Happy(x) A Happy(y) A Happy(2)) = (x =y) V (x =2) V (y =2)))
Short formula, more steps:

Ix3Jy (Happy(x) A Happy(y) A (x # y) A =3z(Happy(2) A (z # x) A (z # y)))
3x3y (Happy(x) A Happy(y) A (x # y) ~3z (Happy(2) A ((z # 2) A (z # y))))
3x3y (Happy(x) A Happy(y) A (x # ) vz (=Happy(@) v ((z =) v (z = y))))

3x3y (Happy(x) A Happy(y) A (x # ) vz (Happy(2) > (2 =x) V (z = y))))
There exists an object (x) and an other object (y) that have the propeties of being
happy and the property that no other objects (z) are happy and different from them
(z not equal to x, or z not equal to y).

Can also be read as:
There exists at least an object x and an object y that each have the property of being
happy and that for all other objects z, if these are happy, then they must refer to x ory

There is exactly 3 happy persons

E!xE!yE!z(H(x)/\H(y)/\H(z)A(x FYAx#Ez)A(Y :#z)AVW(H(W) - ((W =x)viw=y)v(w :z))))

There is exactly 4 [equals = n]
[not equals = (n? — n)/2]

Equalspart: s =x)V(s=y)V(s=2z) V(s =w)
Notequalspart: (x # V) Ax #2D)AEEFWAGE2DAGTEW)A(Z = W)

7
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LOGICAL EQUIVALENCE

In predicate logic, two formulas are logically equivalent if they have the same truth value for all possible predicates.
It is generally considered simpler to have the negation operator applied to basic propositions such as R(y), rather
than to quantified expressions such as Vy(R(y) V Q(y)). Replacing placeholders with predicates keeps it equivalent.

DEDUCTION

e conclusion: proposotion that is logically deduced from a set of premises.
e premise: proposotion accepted as true for the sake of argument
e argument: claim that a certain conclusion follows from a given set of premises. Traditional format:
p—q
p

oo q
It can be proved with a truth table that it is always true: If p > ¢ AND p is true then qistrue= (p > qAp) > q=T

plalp=q | (|~ ]q9Arp) | =2 | @D
oj{o| 1 0 | 1 0 1|0
0(1] 1 0 | 1 0 1|1
1(0] o 1 [0 0 1|0
101] 1 1 |1 1 1|1

o if the premises are true, then the conclusion must be true: That’s all the truth table proves, but not that the
conclusion is necesarily true (the premises might be wrong in real life). This just makes the argument.
Let P represent the Disjunction of Premises and Q represent the conclusion. These statements are all equal:

e P - QisaTautology e inall cases where P is true, Q is also true
e P = @ which canalso beread as premises P do e (Q can be logically deduced from P
lead to conclusion Q, and e Plogically implies Q

o Qfollows logically from P

o valid argument: Argument where P = Q holds (the conclusion follows logically from the premises).
o logical deduction: the formulation of propositions that satisfy P = Q

RULES OF INFERENCE, INFERENCE RULES OR TRANSFORMATION RULES - PROPOSITIONAL LOGIC

¢ modus ponens: second premise confirms the left e modus tollens: 2nd premise contradicts the right side
side of the implication, deducing the right side of the implication, deducing the left side is false
p—q p —q
p -q
YR e

e Basicrules:

pvq p PAq p
-p q Lp “p Vg
s q “p Aq
e law of syllogism: (chain of implications allows e “Free”/”cheap” conclusion: if P = (Q
you to “jump” to a next one(s)) )2
p—q % Q
p—r
e p - T

With all these rules, instead of making a truth table of the Disjunction of Premises — Conclusion, we can demonstrate
the validity of an argument by deducing the conclusion from the premises in a sequence of steps.
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o formal proof (of an argument): sequence of proposotions such that the last proposition in the sentence is the
conclusion of the argument and every proposition in the sequence is either a premise of the argument or
follows by logical deduction from propositions that precede in the list. The existence of such a proof shows
that the conclusion follows logically from the premises, and therefore that the argument is valid

Example Argument:

(pAr)—>s
q—-p
t-or
q
t
s
Proof.
l.g-p premise
2.q premise
3.p from 1 and 2 (modus ponens)
4tor premise
5.t premise
6.1 from 4 and 5 (mods ponens)
7.p AT from 3 and 5

8.(gAT) » s premise
9.s from 7 and 8 (mods ponens)
Q.ED
Remember! no proof is complete if it does not start with Proof and ends with Q.E.D. or O
The argument is valid if in all cases where all the premises are true, the conclusion is also true. The argument is
invalid if there is at least one case where all the premises are true and the conclusion is false.
e counterexample: Situation where the premises are true and the conclusion is false, needed always to be
provided to disprove the validity of an argument. Example: p - q

False, Proof. Counter example: =p Agq q
O e S
oo p
INFERENCE RULES - PEDICATE LOGIC
e basic predicate rule: e predicate modus ponens: e predicate modus tollens:
(vxP(x)) = P(a). vx(P(x) - Q(x)) vx(P(x) -» Q(x))
If a predicate is true for P(a) -0(a)
all entities, then it is true = Q(a) ~ =P(a)

for a specific entity.
To disprove validity of arguments in predicate logic, you again need to provide a counterexample. You can literally
make up any formal structure as counterexample to disprove it. Consider the following argument:
AxP(x)
Vx(P(x) - Q(x))
= VxQ(x)

Not valid. Proof.

Counter example given in the following structure A: D = {a, b}; PA={a}; QA = {a}

It says two things, the 2nd premise is that all objects of domain x that have property P, also have property Q. And the
1st premise is that there exists at least an object x with property P. The conclusion says that all object x have property
Q, however it is enteriely possible to have a situation (structure) where there is an additional object that does not
have property P and therefore not having Q wouldnt violate the second premise, and make the conclusion false.
Therefore Q(x) does not hold for all.



CSE1300 Reasoning and Logic
WEEK 3+ PROOFS, SETS, RELATIONS, FUNCTIONS (AND TARKSI WORLD FROM PREVIOUS WEEK)

This is something [ was not able to summarize well. The best way to learn this is by doing a lot of exercises!

I recommend Book of Proof By Richard Hammack, Chapter: 1, 4-12, 14. (for both, explanations and exercises)

It has a free pdf version on the original page, a quick google search should display within the first results.

Chapter 2 is the logic (I covered it already here and you’ll have to use CSE1300 logic style (i.e. small caps for atoms,
big caps for composed propositions, 1 and 0s (instead of T and F) and 0 is an element of N) 13 is calculus proofs.

This Summary does not cover the Tarksi World. I recommend to check the assigned book and lectures. It regards a
very specific “construction” of sets. [ recommend to get familiar with Set notation before trying to learn Tarksi World.

BOOLEAN ALGEBRA OF SETS
Notation ‘ Definition Double complement | A = A
. Miscellaneous laws | AUA = U

neA a is a member (or element) of A ANA=0
adéA =(a € A), a is not a member of A DUA= A

@ the empty set, which contains no elements DNA=0@
ACB Aisasubsetof B, Vx(x € A — x € B) Idempotent laws AnA=A
ACB Aisa proper subsetof B, ACBANA#B AUA=A
ADB | Aisasupersetof B,sameasB C A Commutativelaws | ANB=BNA
A DB | Aisapropersuperset of B, sameas B 2 A AUVB=EBUA Logic Set Theory
A=B A and B have the same members, ACBEABC A Associative laws im {E ? - {i f E] E T u

@] U = @] U
AUB union of A and B, {x|x € AV x € B} —— { )= ) F @
) ) Distributive laws AN(BUC)=(ANB)U(ANC)

ANB | intersection of Aand B, {x|x € A A x € B} AU(BNC) = (AUB)Nn(AuC) | P/ ANB
A~ B | setdifference of Aand B, {x|x € AAx & B} DeMorgan’s laws TrB—AUB pvg A:B
P(A) power setof A, {X|X C A} AUB=ANE -p A

APPENDIX - SOME PROOFS (MIGHT NOT BE PERFECT), MISCELANIOUS EXERCISES AND NOTES

Regarding the proofs I did: Focus mostly on how I structure my proofs grammatically rather than on the actual
algebraic development within the body of the proof.

LOOP INVARIANT

a 1= X;
b := 0;

while (a > @) do {
b :=b + vy;
a:=a-1;

}

return b;

}

How do we prove that this algorithm is correct?

We use an invariant: a statement that is true after an iteration if it
is true before the iteration.

An invariant is a property P of a loop such that P is true before and after the loop is executed, but not necessarily
during the execution of the loop.

The post-condition of an algorithm i.e. property Q is proved by finding an invariant P such that P — Q and showing
that the condition of the loop (“guard”) has become false.

10



CSE1300 Reasoning and Logic

A PROOF OF CORRECTNESS USING INDUCTION

Initialisation or precondition or basis property: the invariant is true before the loop starts.

Inductive case or maintenance: the invariant is true after an iteration of the loop.

Termination or eventual falsity of the guard: the loop stops at some point.

Postcondition: the invariant shows that after the loop is done the algorithm has produced the output we
want.
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SET OF ALL PROPOSITIONS

The set PROP represents all valid formula in propositional logic, therefore it is defined by:
The set Prop is the set defined by:

@ p; € Prop (for all i € N)

e If A, B € Prop, then
-A,(AVB),(AAB).(A— B),(A+ B) € Prop.

@ Nothing else is in Prop.

Using Structural Induction, a variant of Mathematical Induction, it
is possible to prove properties for all elements of recursively defined
sets, like Prop.

Example: Every formula F € Prop has the property of having the
same number of left parentheses ‘(" and right parentheses ‘)'.

A partition of a set A is a set of subsets of A
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WEAK INDUCTION
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CSE1300 Reasoning and Logic
INDUCTION AND RECURSION
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STRONG INDUCTION
et (€0
(8 points) Consider the sequence: ay = 1, as = 8, an = an_1 + 2a,_2 for all n > 2. Prove that
a, =3-2""1 4 2.(=1)" for all n > 1. Hint: use strong induction for your proof.
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SETS PROOFS
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STRUCTURAL INDUCTION
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Caonsider the following recursively defined set
S of words:

I.stefan,a € S

e €5 — azzxaa € S
M.z, yc 8 — zrbyaa € S
IV, Nothing else is in .S

For 1 point give an example of a word of
length 5 that is in S. (Note that the length of a
words is the number of

letters in it. For example the length of the word
‘spoon”is 5.)

For 7 points, prove that Yw € S{twice the
number of 2's in w is at most as high as the
number of @’s)
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WEAK INDUCTION
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CSE1300 Reasoning and Logic
SOME EXAM QUESTIONS

19. (4 points) Give a recursive definition of the set 5 that contains only the numbers 8 and 13, all numbers
that are equal to 4 times an element of 5, as well as numbers that are exactly 3 away from a number in

S,

Answer:

. 8,138
l.zeS—=4re s
. zcS5—=x+3c8§
V. re5—=xr-3c8

V. Nothing else other than created by the rules above is in 5.

6. Which of the following statements is true about an arbitrary statement A7
A. A is satisfiable iff A is valid.
B. A isvalid iff =4 is not valid.
C. A is valid iff -4 is not satisfiable.
D. A is satisfiable iff =4 is not satisfiable.

Answer: From slides of lecture 5:

» satisfiable:  a structure makes the formula true
# unsatisfiable: no structure makes the formula is true

» valid: every structure makes the formula true
We can reduce unsatisfiability and validity to SAT solving:

e F is unsatisfiable iff F' is not satisfiable (¥ has no model)

e Fisvalid iff =F is unsatisfiable (—F" has no model)
Because: a structure must either make F' or —F true,
and thus every structure makes F' true.

(a) (5 min.) In your own words, describe the principle of explosion. Also provide an example of an
argument that uses it. Hint: you are welcome to google this principle, learn about it, and then
report back in your own words!

Solution: The principle of explosion states that any argument where the conjunction of the
premises forms a contradiction is valid. In other words you can validly derive anything from a

contradiction.
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10. Given an argument A with premises pi,....p, and conclusion c. Which of the following statements is
true?

A, If ¢ is not satisfiable, then A is invalid.

B. If p1 A ... p, is not satisfiable, then A is valid.
C. Aisvalid iff py A - A py A e is satishiable.

D. Aiswvalid iff (p1 A -+ A pn) — ¢ is satisfiable.

Answer:

AL Incorrect, take p A —p o.g A g,

B. Correct, if the premises can never all be true, we cannot construct a counterex-
ample.

C. Incorrect, take p .. g. p A q is satisfiable, but the argument is not valid.

D. Incorrect, again take p .. q. p — q is satisfiable, but the argument is still not valid.

But if it has no premises at all, then the only way to be valid is if the conclusion is a tautology.

(c) (3 peoints) Give an example of a valid argument that has as its conclusion: “All dogs love Marmitﬂ
and all dogs do not love Marmite". Explain why your argument is valid.

Answer: Two options exist: Either add as a premise 1 + 1 = 3 (or another contradiction),
or add that there are no dogs. In both cases the argument is valid (principle of explosion, or
vacuously true).

“this argument is not sound as 2#3, but because of this contradiction the argument is valid”

(a) (2 points) Consider the statement “all humans love ducks”. Give an example of an argument that
cannot be expressed in propositional logic that uses this statement.

Answer: E.g. 'All humans love ducks, Socrates is human, therefore Socrates loves ducks.'

The A in set theory is the symmetric difference of two sets.

AAB=(B—A)U(A—- B)
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(a) (8 points) Consider the recursive definition of the set A:
.34, 15 A4
lzeA—s8zx+24c A
M. r,ye A—=2r—Tyec A
IVV. Nothing other than created by the rules above is in A.
Prove that every number in A is divisible by 3.

Answer:

Proof. Proof by structural induction:

# Basecases: 3=23-1and 15=3-5, thus 3|3 and 3 | 15 both hold.

o Inductive step: Take arbitrary k,m £ A, such that 3 | k and 3 | m (IH). To prove:
3| 8k+24, 3|2k - Tm.

8k + 24 0 8(3c) + 24
— 3(8c + 8)
— 3d

2k — Tm "=_| 2(3c) — T(3d)
= 3(2c — 7d)
= e

S03|8k+24 and 3 | 2k — Tm.

Thus by the principle of induction it holds for all elements of A that they are divisible by
3. QED

Note: Many people lost one or two points for the IH here. You should include the following
notions:

& [.m are arbitrary
s bomeA
e 3| kand 3| m

® or alternatively 3, d € & such that & = 3¢ and m = 3d

3. (1 point) Consider the argument: A, B . . Which of the following methods can we use to prove the
validity of the argument?

A. Show that B A ' is a contradiction.

B. Show that =4 A C is a contradiction.
@Show that B A = is a contradiction.

D. Show that =4 A —B is a contradiction.

16. (1 point) Consider the following description of a function f. f takes a function g and an integer and
returns a fraction. g is a function that takes a real number and an integer and returns a fraction and an
integer. Which of the following describes the function [ formally?

f:(QxN}R"NxN— -
B. f:(RxMN)®NyN-

C f:(@FFxN=Q &/

D. f:(Q)¥N x N R jt (o  xw—= R

Y4

Chxy - Q<N
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1
(b) (4 points) The set T' contains the fraction 3 Furthermore every number ¢ in the set can be written

ok
as. t = o where k,[ € T4,

Answer:

. - T

N W¥r:zeT +2xzT
M. ¥r:zelT -z/2T

IV. MNothing else is in T'.

6. (1 point) Which of the following cannot be used to show that two propositions I and () are equivalent?
A. Show that (P — Q) A () — P) is a tautology.
B. Show that —() —+ —F and —F are both contradictions.
C. Show that (P — R)A (R — Q) A () — P) is a tautology.
D. Show that P is a contradiction and that —() is a tautology.

Answer:
A. This shows that P + ) is a tautology, which is a correct method to show that P = ().

B. This is nonsense, it shows that PP and —Q A P are tautologies. This in fact proves
that ) is a contradiction and that P is a tautology, so they are not equivalent.

C. This proves that P + ) (P — () due to transitivity, and ¢} — F is already listed) is a

tautology, which is a correct method to show that P = ().

D. This implies that € is also a contradiction and as all contradictions are equivalent, this
shows that P = ().
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(a) (5 peints) Give a recursive definition of the set A that only contains the number 120, and for any
numbers in the set, the set also contains:

e all of the factors/divisors of those numbers.

# all of the products of those numbers.

Answer:
. 120 € A.
I ifx € A, thenVy(y |z =y € A).
. if z,y € A, then z -y € 4.

IV. Mothing else is in A other than the numbers constructed with the rules abowve.

(b) (8 points) Consider again the recursive definition from Question Prove the following claim: Each
word in 5 contains an odd number of a's.

Answer:

Proof. Define f(z) to return the number of a's in x.
To prove: Yo € S(2t f(x)).

Base case (r=a): fla)=1and 2{1.

Inductive step:

Take arbitrary =,y € 5 and assume 2{ f(x) A 24 fly) (IH).

To prove: 24 f(xi), 21 flaza), 2§ fliziyizi).

flzi) = flx) = 2m + 1 by the [H.

flara) =2+ flzr)=24+2m4+1=2(m +1) + 1 by the [H.

fliziyizri) =2f(x)+ fly) =22m+ 1)+ 2n+1=4dm+ 24+ 2n+1=2(2m+n+1)+ 1 by

the IH.
So by the principle of induction, it holds that all words in 5 have an odd number of a's in
it. QED

(a) (2 points) Describe in your own words the two differences between functions and relations. Answer
in at most 5 lines.

Answer: In relations we can map a single object in the domain to multiple objects in the range.
This is not allowed in a well-defined function.
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