
Linear Algebra Summary
Apr 2, 2021

Systems of Linear Equations
Linear equation

a’s are the coefficients also called weights
b is the constant

Linear system

a solution is a list (), also called s, where is usually represented as a vector,
since all the x’s can also be represented as a vector x.

Substituing s for x makes the equation true.
Two linear systems are equivalent if they have the same solution set.
The solution set is the set that contains all valid solution vectors.
The solution set of a system of linear equation has:

no solution
exactly one solution
infinitely many solutions.

A system is consistent if it has 1 or solutions.
A system is inconsistent if has no solution.

Matrix Notation
We can express the system below as a matrix

coefficient matrix: Matrix representation that expresses only the coefficients
augmented matrix: Matrix representation that includes the constants, sometimes
separated by a vertical line
The size of a matrix is expressed as rows x columns (m x n).

a1x1 + a2x2 + ⋯ + anxn = b

a11x1 + a12x2 + ⋯ + a1nxn = b

a21x1 + a22x2 + ⋯ + a2nxn = c

s1, s2, ⋯ , sn s

x =

⎛
⎜ ⎜ ⎜
⎝

x1

x2

⋯
xn

⎞
⎟ ⎟ ⎟
⎠

 s =

⎛
⎜ ⎜ ⎜
⎝

s1

s2

⋯
sn

⎞
⎟ ⎟ ⎟
⎠

∞

a11x1 + a12x2 + ⋯ + a1nxn = b

a21x1 + a22x2 + ⋯ + a2nxn = c

⋯

am1x1 + am2x2 + ⋯ + amnxn = k

=

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

a11 a12 … a1n | b

a21 a22 … a2n | c

⋮ ⋮ ⋱ ⋮ | ⋮

am1 am2 … amn | k

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

(Reduced) Echelon Matrix
Echelon Matrix

Reduced Echelon Matrix

 represents any non-zero number and * represents any number.
 identify the pivot positions, also called leading entries.

Echelon form requirements:

All-zero rows must be placed at the bottom
Leading entries must be displayed as “downstairs”

It is fine if there’s a “gap”/”missing leading entry”
In such occasion we find a non-pivot column

 only has zeros below

Reduced echelon form requirements:

The leading entries are 1’s
The 1’s only have zero’s below and above.
While there are infinity ways to express an echelon matrix (with different scale), there’s only 1
reduced echelon form.
We call U the reduced echelon form of matrix A

Solving a system
Write the augmented matrix of the system.
Bring matrix to the reduced echelon form with row operations.
Provide the parametric description of the solution set, declare that the solution set is empty
or give the vector notation of the unique solution.

Row operations:
1. Replacement: Add a scaled row to another row
2. Interchange: Swap rows
3. Scaling: Scale row by a non-zero constant

Row Reduction Algorithm
Forward phase

1. Start at the first non-zero column
2. Swap rows if needed to keep the pivot entry at the top.

1. Choose a row whose leading entry is already a 1 or scale it into a 1 leading entry.
3. Work your way down with row operations so that there are only 0s under the pivot entry.
4. Move onto the next column and repeat the same process.

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

■ ∗ … ∗ | ∗
0 ■ … ∗ | ∗

⋮ ⋮ ⋱ ⋮ | ⋮

0 0 … ■ | ∗

0 0 0 0 | 0

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

1 0 … 0 | ∗
0 1 … 0 | ∗

⋮ ⋮ ⋱ ⋮ | ⋮

0 0 … 1 | ∗

0 0 0 0 | 0

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

■

■

■

Back-ward phase

1. Start at the bottom right entry
2. Work your way up with row operations and try to remove all zeros above.

Variables
The row reduction algorithm will not always produce a “clean” reduced echelon form where each
row has a pivot.

Basic variables

Variables that correspond to pivots

Free variables

Variables that correspond to non-pivot coeffcients *

Example:

Corresponds to:

Which equals the parametric description (of the solution set) below…

Parametric description of solution sets
…example follow up:

 is free means that you are free to choose any value for (also called paramater) and each
different choice of determines a (different) solution of the system.

Solving a system amounts to finding a parametric description of the solution set (such as the
system of equations above or such as the Parametric Vector Equation) or determining that the
solution set is empty:

If a system contains an equation of the form 0 = b, where be is not zero, then it is
inconsistent, else, consistent.
If the system is consistent and has free variables, then it has solutions.
If the system is consistent and has no free variables, then it has 1 solution.
If a system is inconsistent, the solution set is empty, even if it has free variables.

Spans and vector equations
Vector Equations

A matrix with only 1 column is a column vector or a vector
A vector stands for an “ordered list of numbers”.
The vector whose entries are all zero is called the zero vector, denoted by 0

Vector sum:

■

⎡
⎢
⎣

1 0 −5 | 1
0 1 1 | 4

0 0 0 | 0

⎤
⎥
⎦

x1 − 5x3 = 1

x2 + x3 = 4

 0 = 0

⎧
⎨⎩

x1 = 1 + 5x3

x2 = 4 − x3

x3 is free

x3 x3

x3

∞

Vector scaling:

The set of all vectors with 2 entries (“vector rows”/numbers) is expressed as
This represents all the vectors within a 2D/plane space
Two vectors in are equal iff all entries are equal and in the same order.
The first entry is assigned to the x-coordinate and the second entry to the y-coordinate.

 represents the set of all vectors in a 3D space
1D and 2D vectors are not implicitly allowed as the vectors in must have 3
coordinates (x,y,z)
However 1Ds may appear as (x,0,0) and 2Ds as (x,y,0) (but with the vertical notation)

Linear Combinations
Let the vector b be defined by

** ** is a linear combination of ** , ** … with weights (scalars) , , …
observe that while the columns are ** , ** …, when we combine rows with columns,
the row index is placed before the column index.

The vector equation above has the same solution set as the linear system whose augmented
matrix is:

b can only be generated by a linear combination of a iff the augmented matrix has a
solution
The set of all possible linear combinations of a list of vectors , , … is denoted as Span{

, , … }
That is, all the b’s such that

yields an augmented matrix with solution.

Ax = b
Ax

This represents the multiplication of a matrix A by an ordered list of numbers in x.
This is defined iff the number of entries in x is the same as the number of columns in A.

[u1

u2
] + [v1

v2
] = [u1 + v1

u2 + v2
]

a ⋅ [u1

u2
] = [a ⋅ u1

a ⋅ u2
]

R
2

R
2

R
3

R
3

b = x1

⎡
⎢ ⎢ ⎢ ⎢
⎣

a11

a21

⋮
am1

⎤
⎥ ⎥ ⎥ ⎥
⎦

+ x2

⎡
⎢ ⎢ ⎢ ⎢
⎣

a21

a22

⋮
am2

⎤
⎥ ⎥ ⎥ ⎥
⎦

+ ⋯

b a1 a2 x1 x2

a1 a2

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

a11 a12 ⋯ a1n | b1

a21 a22 ⋯ a2n | b2

a31 a32 ⋯ a3n | b3

⋮ ⋮ ⋯ ⋮ | ⋮

am1 am2 ⋯ amn | bmn

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

a1 a2 an
a1 a2 an

x1

⎡
⎢ ⎢ ⎢ ⎢
⎣

a11

a21

⋮
am1

⎤
⎥ ⎥ ⎥ ⎥
⎦

+ x2

⎡
⎢ ⎢ ⎢ ⎢
⎣

a21

a22

⋮
am2

⎤
⎥ ⎥ ⎥ ⎥
⎦

+ ⋯ = b

Ax = b has the same solution set as the vector equation:

which has the same solution set as the augmented matrix

Iff Ax = b has a solution, then we can say that b is a linear combination of the columns of A
(with x as the column weights).

This make sense since Ax = b is just the augmented matrix of a linear system where
replacing the x coefficients for the solution s give you the linear combination on the left
side of the equation such as it matches the right side vector (b) making the equation
true.

All true XOR All false

Let A be an n x m matrix, these statements are either all true or all false.

Ax = b has a solution for all b’s in
All b’s in are a linear combination of A
Span{ } =
A has a pivot position in every row

Solution sets and linear independence
Linear dependence

A set of two vectors { , } is linearly dependent iff at least one of the vectors is a multiple
of the other.
A set of 2 or more vectors is linearly dependent iff at least one of the vectors is within the
span of another vector(s) other than itself. That is, if a vector can be expressed as a linear
combination of other vectors in the set.
A set of 1 vector is always independent except for the 0 vector.

This is because has nontrivial solutions.
If a set of vectors has more vectors than vector entries, then there will be at least a vector
within the span of another vector(s), making the set linear dependent.

If a matrix has more columns than rows, then there will be free variables, therefore
making the matrix dependent.

If a set contains the zero vector, the set is linearly dependent
If a matrix has an all-zeros column, the matrix columns are linearly dependent.

Homogeneous Linear Systems
Systems that have the form Ax = 0

Ax =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

a31 a32 ⋯ a3n

⋮ ⋮ ⋯ ⋮
am1 am2 ⋯ amn

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

= x1

⎡
⎢ ⎢ ⎢ ⎢
⎣

a11

a21

⋮
am1

⎤
⎥ ⎥ ⎥ ⎥
⎦

+ x2

⎡
⎢ ⎢ ⎢ ⎢
⎣

a12

a22

⋮
am2

⎤
⎥ ⎥ ⎥ ⎥
⎦

+ ⋯

x1

⎡
⎢ ⎢ ⎢ ⎢
⎣

a11

a21

⋮
am1

⎤
⎥ ⎥ ⎥ ⎥
⎦

+ x2

⎡
⎢ ⎢ ⎢ ⎢
⎣

a12

a22

⋮
am2

⎤
⎥ ⎥ ⎥ ⎥
⎦

+ ⋯ = b

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

a11 a12 ⋯ a1n | b1

a21 a22 ⋯ a2n | b2

a31 a32 ⋯ a3n | b3

⋮ ⋮ ⋯ ⋮ | ⋮

am1 am2 ⋯ amn | bm

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

R
n

R
n

a1, a2, ⋯ , am R
n

a1 a2

x10 = 0 ∞

Always have at least x = 0 solution (aka trivial solution)
Nontrivial solution is a non-zero vector x that satisfies Ax = 0
Ax = 0 has a nontrivial solution iff the system has at least one free variable

You can then use there an arbitrary non-zero number in the solution which makes
Each of these infinityely many nontrivial solutions of Ax = 0 are called linear
dependence relation among , , …,

Solution sets and dependence

The solution set of an homogenous system (Ax=0) can always be expressed as:
If it has only trivial, the solution set equals Span{0}

Which is the (0,…,0) coordinate
Which also means that the column vectors of A are linear independent

If it has nontrivial, the solution set equals Span{ } (which is not necessarily ,
think of [1,0,0], [0,1,0], [1,1,0] -assume vertical notation-, it spans a plane in ,
not the whole)

Only 1 free variable Span{ } means the solution is a line through the origin. (i.e. the
z-axis in the 3D vectors above)
2 free variables Span{ } can yield a plane (or a line if and are linear
dependent) through the origin. (i.e. the x-y plane)
It also means that there is a parametric Vector Equation where there exists weights
other than 0 for x that make Ax=0 true

Therefore, when they ask you, is { } a dependent or an independent set of
vectors, they’re actually asking…

Dependent: Does Ax=0 have at least a nontrivial solution?
Check if it has at least 1 free variable.

Independent: Does Ax=0 have only the trivial x=0 solution?
Check if there are pivots in every row of the echelon reduced matrix.

Parametric Vector Equation
The parametric description of a (homogenous) solution set can be expressed in a single
equation:

in CSE1205

Nonhomogeneous Linear Systems
When these systems have the system is translated by a vector constant p from the
origin:

The vector ** ** itself is just one particular solution of Ax = b corresponding to

 is the general solution of Ax=0
When there is only 1 parameter vector (v) this equation is also called “the equation of the
line through p parallel to v”
The solution set of Ax = b is:

empty if it has no solution
a translate of the (parametric) solution for Ax=0

The parametric system of equations of the previous example:

Is represented as the parametric vector equation:

x ≠ 0

a1 a2 an

v1 ⋯ vn R
n

v1 v2 v3 R
3

R
3

v1

v1, v2 v1 v2

a1, a2, ⋯ , an

x = x1v1 + x2v2 + x3v3 ⋯

x = sv1 + tv2 + uv3

Ax ≠ 0

x = p + x1v1 + x2v2 + x3v3 ⋯

p

x1 ⋯xn = 0
xv

⎧
⎨⎩

x1 = 1 + 5x3

x2 = 4 − x3

x3 is free (x3 = 0 + x3)

Linear transformations
All matrix transformations are linear functions, but not al linear functions are matrix
transformations (i.e f(x)=3x+5). A matrix linear transformation T must have the same properties
as a Matrix-Vector Product Ax:

For an n x m matrix, the columns are vectors in Ax=b would only be defined when
the entries in x are the same as the number of columns (m), therefore x is in , but the output
b has the same number of entries as A has rows, therefore in

The correspondence from x to Ax is a function or a transformation or a mapping from one set
of vectors in to another in Formally denoted as , where ‘ ’ just happens to
be the arbitrary name that we gave to the function (or transformation, mapping, or even relation,
see CSE1300).

The “dimension” of the inputs is called the domain of ‘ ’, in this case , and the “dimension”
of the output (formally kown as “image” or vagely written as f(x)) is called the co-domain, in this
case However, this does not necessarily mean that all “dimensions” within the co-domain are
“used”, as a possible transformation to a co-domain in could deliberatly have z = 0 for all
outputs. The range of (the function/transformation/mapping), is the set of all outputs, which
happens to be the Span of each of the vector columns of A.

In the example used where z is always 0, we would have a plane as a range, but still inside the
3D dimension (it would still have 3 coordinates, even if the 3rd is the same for all outputs). Since
we know by the definition of this particular function that the co-domain is in the 3D dimension,
we can already deduce that in the case of a function, the column vectors of A have
to be in the same as the co-domain, in this case.

Matrix transformations
In this context, is reserved for This matrix transformation is also denoted as

When the transformation maps an input to an output in the same dimension, it is called a shear
transformation:

When a transformation goes from a higher dimension to a lower one we can say that
projects points in onto

The Matrix of a Linear transformation
Identity matrix

x =
⎡
⎢
⎣

1
4
0

⎤
⎥
⎦

+ x3

⎡
⎢
⎣

5
−1
1

⎤
⎥
⎦

(A(u + v) = Au + Av) ↔ (T (u + v) = Tu + Tv)

(A(cu) = c(Au)) ↔ (T (cu) = c(Tu))

Rn or Rrows

Rm

Rn

Rm Rn f : Rm → Rn f

f Rm

Rn

R3

f

f(x) = Ax

Rn R3

T (x) T (x) = Ax

x ↦ Ax

Let u = [0
2
] and A = [1 3

0 1
]

Then T (u) = [
1 3
0 1

] [
0
2
] = [

6
2
]

x ↦ Ax

Rk Rk−1

⎡
⎢
⎣

x1

x2

x3

⎤
⎥
⎦

↦
⎡
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎦

⎡
⎢
⎣

x1

x2

x3

⎤
⎥
⎦

=
⎡
⎢
⎣

x1

x2

0

⎤
⎥
⎦

The identity matrix with size n x n, also denoted as , is the matrix of a T(x) transformation such
as T(x) = x. The identity matrix returns the input in the same form since each of it’s columns (n)
contains only a 1 in the nth entry:

The columns of are formally referred to as For a 2x2 A matrix we may express the first and
second column vectors as and

In the same way that in a ‘f(x) = ax + b’ linear function we can draw the line from just 2 points,
Since T(x) is also a linear function, that means that knowing the output of 2 inputs is enough
information to deduce the matrix used for the Matrix-vector product. The matrix used for the
Matrix-vector product is called the standard matrix for the linear transformation.

2D Transformations
To easily see what the 2x2 A matrix does to a vector, analyze the difference between the default
values for and , vs their new values defined by A. The default values are:

90° rotation (counter clockwise)
To do so the green arrow would have to point to (0,1) and the red arrow would have to point to
(-1,0). The new values for and would be :

Resulting in:

Α rotation (in rad)
When prompted to calculate the standard matrix for a rotation by α rad, previous coordinates
(1,0) will change in the same fashion as the unit circle:

The changes for will be the same, but with a offset, as was already 90° counterclockwise
from

In

I2 = [
1 0
0 1

]

Let T (x) = I2x

T ([
5
3
]) = [

1 0
0 1

] [
5
3
]

= 5 [
1
0
] 3 [

0
1
] = [

5
0
] + [

0
3
] = [

5
3
] = x

In en

→i →j

→i →j

→j = [
0
1
] and →i = [

1
0
] =↑→

→i →j

→i = [
0
1
] and →j = [

−1
0
]

T (x) = [
0 −1
1 0

] [
x1

x2
]

→i

→i = [
cos(α)
sin(α)

]

→j π1
2

→j

→i

→j = [
cos(α + π)

sin(α + π)
] = [

sin(π − α − π)

cos(π − α − π)
] = [

sin(−α)
cos(−α)

] = [
−sin(α)
cos(α)

]
1
2
1
2

1
2

1
2

1
2

1
2

Reflection through the x-axis
Here and would have to go from to That means that only is changed:

Reflection through the y-axis
Here and would have to go from to That means that only is changed:

Reflection through the line y=x
This is also known as the inverse of a function. We simply have to swipe ROWS, resulting in:

This could also be achieved with:

rotation of 90° counter clockwise followed by a reflection in the y-axis
or, reflextion in the x-axis followed by rotation of 90° counter clockwise

Reflection through the origin
This is simply a 180° rotation, or alternatively scale both and by -1, resulting in:

Reflection through the line y = -x
This combines a reflection through the origin with an inverse.

Horizontal contraction and expansion

If k > 1, then the image is stretched out. If 0 < k < 1, then the image is squeezed. If k < 0 the
image is mirrored on the y-axis.

Vertical contraction and expansion

If k > 1, then the image is stretched out. If 0 < k < 1, then the image is squeezed. If k < 0 the
image is mirrored on the x-axis.

Horizontal shear

→i →j ↑→ ↓→ →j

→jold = [0
1
]⟶ →jnew = [0

−1
]⟶ A = [1 0

0 −1
]

→i →j ↑→ ←↑ →i

→iold = [
1
0
]⟶ →inew = [

−1
0
]⟶ A = [

−1 0
0 1

]

A = [
0 1
1 0

]

→i →j

A = [−1 0
0 −1

]

Inverse = [0 1
1 0

]⟶ Reflectionorigin = [0 −1
−1 0

]

A = [
k 0
0 1

]

A = [
1 0
0 k

]

A = [
1 k

0 1
]

Here is tranformed from to with k slope.

Which means that as we move up, the image is stretched horizontally by k units.

Vertical shear

Here is tranformed from to with k slope.

Which means that as we move right, the image is stretched vertically by k units.

I and j are dependent
If both and are dependent (they can be expressed as a linear combination of the other, in
this case as a scalar of the other), such as in the matrix with all 1’s, we would endup with It
means that both and “collapse” into each other making the image of the transformation get
completly squeezed in the line that goes through both and

Projection onto the x-axis
The transformed image only has x-values (y remains constant 0).

Projection onto the y-axis
The transformed image only has y-values (x remains constant 0).

Surjective (onto) and injective (one-to-one) mappings
A mapping is surjective (A is onto B) iff Range = Codomain.

A has a pivot position in every row
Ax = b has a solution for all b’s in

All b’s in are a linear combination of A
The columns of A span

A mapping is injective (A is one-to-one with B) iff every input gets a unique
output.

The columns of A are linearly independent
T(x) is injective (onte-to-one) iff T(X) = 0 only has the trivial solution (not being
injective doesn’t have to make you surjective and viceversa)

A mapping is bijective if it is both, surjective and injective.
 is at most injective (if columns are independent)
 is at most surjective (if every row has a pivot)

 is is either bijective or neither surjective nor injective

Hint from the Book of Proof (Richard Hammack):

→j ↑ ↗

A = [1 0
k 1

]

→i → ↗

→i →j

↗↗
→i →j

→i →j

A = [1 0
0 0

]

A = [0 0
0 1

]

T : A → B

R
n

R
n

Rn

T : A → B

T : Rn → Rn+1

T : Rn → Rn−1

T : Rn → Rn

Composition of 2 transformations
Where and are the standard matrixes for the the 1st and the 2nd transformations
respectively:

Which results in a matrix multiplication, explained in the chapter below.

Matrix operations
Matrix rules

ORDER MATTERS:
cancellation laws do not apply in matrix algebra
associative law: , becuase the order is the same! (always right to left).
distributive law:

A(B+C) = AB + AC (keep A on the side where it was)
(B+C)A = BA + CA

r(AB) = (rA)B = A(rB) for any scalar r

A TRANSLATION IS NOT A LINEAR TRANSFORMATION. In a transformation, the origin is
always in the same spot. In a translation it is not.

 for k times.

Matrix multiplication
From the example above where the composition of 2 transformation was

in which we can clearly see that first we compute the things inside the brackets, and then the
things outside, matrix multiplications come from this concept, and matrix products are
therefore read from right to left.

Following up the example of 2 transformations. The matrix of the first transformation
contains 2 columns, the updated versions of and

Then, to identify the new and for , we’d have to apply a vector multiplication of and
 with respectively. It’s easier to think about the transformation by focusing on just one

A1 A2

T (x) = A2(A1 [
x

y
])

A2 ⋅ A1 ≠ A1 ⋅ A2

A(BC) = (AB)C

InA = AIn = A

Ak = A ⋅ A…A
A0 = In

A2(A1 [
x

y
])

A1
→i →j

A1 = [→iA1
→jA1

]

→i →j A2
→iA1

→jA1 A2

vector at a time, so we apply 2 sequent transformations for and respectively, and once we’re
done, we join and into a single matrix

Following the properties of the matrix-vector product, the matrix-matrix product (which is
nothing but a transformation of a transformation), must have the number of columns in matrix A
be equal to the number of rows in matrix B in AB, and AB size is

Row-column multiplication

There’s a shortcut formula to get the value of AB’s where i is also A’s i row and j is also B’s j
column: Take A’s i row and transpose it to a vector, then calculate the dot product with B’s j
column:

Zero matrix

Expressed as 0, it’s the equivalent of a n x m (size assumed by context), with all zeros.

Square matrix

number of rows = number of columns
Therefore defined as n x n

Identity matrix

Expressed as It is a n x n diagonal matrix (all of the diagonal matrix are n x n), and as any
diagonal matrix, it is a zero matrix besides for the (main) diaogonal entries, these happen to be
all 1’s and the property that it has is

Lower/upper triangular matrix

All entries above/below the main diagional are zeros.

Matrix sum
Sum the columns, only defined when both matrixes have the exact same dimensions.

Scalar multiplication
Scale every column. The scalar is only defined when it comes to the left of the matrix. The right
side of the matrix should be reserved for matrixes or vectors (which are just 1 column matrixes).

Transposing

→i →j
→iA2

→jA2
A2

→iA2⋅A1 = A2 ⋅ →iA1

→jA2⋅A1 = A2 ⋅ →ij1

A2 ⋅ A1 = [→iA2⋅A1
→jA2⋅A1

]

rowsA × columnsB

aij

In

A ⋅ In = A

You sawp the columns for the rows (just like in excel), it’s not a 90° rotation. There are some
properties:

For any scalar

If A is invertible:

Inverse matrices
Not all matrices have an inverse. The inverse of is and it should hold that:

 and

A matrix that is not invertible is a singular matrix suchas the zero matrix, and an invertible
matrix is called nonsigular matrix.

Example of a nonsingular matrix would be a , suchas a 90° rotation
counterclockwise:

The inverse of A would be to rotate 90° clockwise:

If we apply both transformations, intution says that and should return to their default values,
and hence and

The same would apply to This was possible since has independent columns (and
 are not a linear combination of each other), and therefore there is only 1 solution to T(X) = 0. If

we had multiple solutions for T(x) = 0, that wolud mean that T(X) is no longer a one-to-one
mapping (injective), and when we try to come up with an inverse function, an input would have
multiple possible outputs, which is not allowed in a function.

Furthermore, if we apply the zero matrix transformation, it is impossible to restore the default
values of and (for the identity matrix) when all you have is all zeros… So to analyze if the
matrix is invertible, you can check if the domain and co-domain remain the same, if the matrix is
dependent, and to visualize the transformation and think how to restore and

There’s also a formula to find the inverse of a 2x2 matrix:

 is formally known as the determinant (det A) for a 2 by 2 matrix A, which for a
 is the change in volume (3D), space (2D)… between and

 exists iff the

Some properties for invertible matrices A nd B:

(AT)T = A

(A + B)T = AT + BT

r (rA)T = rAT

(AB)T = BTAT

T −1(x) = A−1x

A A−1

A−1A = I AA−1 = I

T : R2 → R2

A = [
0 −1
1 0

]

A−1 = [0 1
−1 0

]

→i →j

A−1A = I AA−1 = I

A−1A = [
0 1

−1 0
] [

0 −1
1 0

] = [
1 0
0 1

] = I

AA−1 = I A →i
→j

→i →j

→i →j

A = [
a b

c d
] ∧ ad − bc ≠ 0 → A−1 = [

d −b

−c a
]1

ad − bc

ad − bc = 0 → A is not invertible

ad − bc
T : Rm → Rn I A

A−1 detA ≠ 0

(AB)−1 = B−1A−1

(AT)−1 = (A−1)T

if A is an invertible n x n matrix, then for reach b in the equation Ax = b has the unique
solution

Invert A column by column
If A is invertible, let be the nth column of Then for each of the rows of A (and columns of
the inverse) find:

Which in turn can be translated to an augmented Ax=b echelon matrix with the coefficent matrix
of A and with b the nth column of The resulting vector is the nth column of

Invert A as a whole
If A is invertible, row reduce the augmented matrix until it becomes

Invertible matrix theorem
For a square n x n A matrix, these are either all true or all false:

A is an invertible matrix
A is row equivalent to the n x n identity matrix
A has n pivot positions
Ax = 0 has only the trivial solution
The columns of A are independenet
T(x) is one-to-one
Ax = b has at least one solution for each b in
The columns of A span
T(x) is
The transpose of A is also invertible

Invert 2 by 2 fast

This all true or all false apply only to square matrices.

For a n x n matrix biger than 2 x 2, the easiest way to check if it’s invertible is to solve for Ax
= 0 and check if there’s only the trivial solution (if there are infinite solutions then it is not
invertible).

Subspaces of R^n
These sets of vectors provide useful information about the equation Ax=b.

A subspace of is any set H in that has:

zero vector
all linear combinations of its initial vectors are

Column space (Col A)
The column space of a matrix A is the set of all linear combinations of its vector columns,
denoted as Col A
The pivot columns of a matrix A form a basis for the column space of A.

YOU NEED THE ORIGINAL PIVOT COLUMNS OF A, NOT THE COLUMNS OF THE ECHELON
FORM.

The column space of an n x m matrix is a subspace of

Rn

x = A−1b

en I

a−1
n

Aa−1
n = en

I A−1

[A I] [I A−1]

Rn

Rn

T : Rn → Rn

Let A = [
a b

c d
]

A−1 = [
d −b

−c a
]1

ad − bc

R
n

R
n

∈ H
∈ H

Rn

Null space (Nul A)
The null space of a matrix A is the set of all solutions to the equation Ax = 0, denoted as
Null A.
The null space of an n x m matrix is a subspace of (in Ax=B the x vector has m entries)

Zero subspace
Set {0}

Basis subspace
The smallest possible spanning set of linearly independent vectors that span H.

Coodinate systems
The goal of a using the basis for a subspace H (rather than a Span set) is to have a minimal set of
vectors that operate as “i, j… hat”, from which we can define any point laying on H, as a linear
combination of the basis vectors. Usually the basis for H is defined as

The coordinate vector of x (relative to) or the B-coordinate vector of x is defined as:

Often H is a plane in , the B-coordinate vectors are still However, the transformation
 is called “isomorphic” as H is isomorphic to

{ , , }

Dimension
Because H is given with the minimal number of independent vectors, the dimension of a nonzero
subspace H, denoted by dim H, is the number of vectors in any basis for H. The dimension of the
zero subspace {0} is defined to be zero.

Technically the zero subspace has no basis because the zero vector itself forms a linearly
dependent set.

The rank of a matrix is te dimension of the column space of A.

If a matrix A has n columns, then some are free variables (dimNul(A)) and some are legit basis
(pivots, which add to rank(A)), the sum of the numer of pivots and the number of free variables =
n, formally:

For an n x n matrix, iff A is invertible, then:

The columns of A form a basis of
Col A =
dim Col A = n
rank A = n
Nul A = [0]
dim Nul A = 0

Rm

B = {b1, … , bp}

B

[x]B =
⎡
⎢ ⎢
⎣

c1

⋮
cp

⎤
⎥ ⎥
⎦

R3 R3

x ↦ [x]B R2

Let B = b1 b2 b3

If x is a vector in H with [x]B =
⎡
⎢
⎣

c1

c2

c3

⎤
⎥
⎦

then x = c1b1 + c2b2 + c3b3

rank(A) + dim(Nul(A)) = number columns

Rn

Rn

Determinants
Determinants are closely linked to the eigenvalues.
The determinant (det A or |A|) is a number associated only with square matrixes
The square matrix is invertible when the determinant is not zero and single otherwise

Property 1
The determinant of the identity matrix I is 1.

This is because A*I=A (a is scaled by 1)

Property 2
In a Permutation of A (that is an exchange of rows), if the number of exchanges is odd, the
determinant is changed by scalar: -1
In a Permutation of A, if the number of exchanges is even: 1

The determinant of a 2 by 2 matrix is:

Property 3a
If we multiply the first row of a matrix A by a scalar t, the determinant becomes t * det A

Similarly, we can factor out a scalar from a row

Property 3b

If we add a’ to all rows these can be row reduced. The property only applies when 1 row is
incremented.
If a’ and b’ are zero, then we would have det A = det A + 0.

Propery 4
If two rows are equal, the determinant is zero.

We already know that the Rank is less than n, and therefore it is not invertible. So the
determinant is zero.
But this also comes from property 2

If we have 2 equal rows we can switch them, which should make the determinant of
the opposite sign. However, the matrix still looks the same. The only number that is
equal to it’s opposite sign is 0.

Property 5
Determinant doesnt change from row addition of a multiple of another row.

∣
∣
∣
a b

c d

∣
∣
∣

= ad − bc

∣
∣
∣
ta tb

c d

∣
∣
∣

= t
∣
∣
∣
a b

c d

∣
∣
∣

t

∣
∣∣
a + a′ b + b′

c d

∣
∣∣

=
∣
∣∣
a b

c d

∣
∣∣

+
∣
∣∣
a′ b′

c d

∣
∣∣

det2A = 2ndetA

Let A be 2 × 2 → |kA| =
∣
∣
∣
k [a b

c d
] ∣

∣
∣

=
∣
∣
∣
ka kb

kc kd

∣
∣
∣

= k2ad − k2bc = k2(ad − bc) = k2detA

∣
∣
∣
a b

c d

∣
∣
∣

=
∣
∣
∣

a b

c − la d − lb

∣
∣
∣

=
∣
∣
∣
a b

c d

∣
∣
∣

+
∣
∣
∣
a b

−la −lb

∣
∣
∣

=
∣
∣
∣
a b

c d

∣
∣
∣

− l
∣
∣
∣
a b

a b

∣
∣
∣

=
∣
∣
∣
a b

c d

∣
∣
∣

We can use this property to achieve triangular matrices whose determinant is calculated by
multiplying the elements in the main diagional (technically we are using property 3 to factor
out each of the scalars multiplying each of the rows of the identity matrix).

Property 6
Row of zeros det A = 0

Property 7
The determinant of an echelon form matrix is equal to the product of the diagonal (product
of pivots), and the sign depends on the number of row exchanges we made to get into the
desired triangular form (+ if even, - if odd).

Property 8
det A = 0 when A is singular (not invertible)
det A != 0 when A is invertible

Det A formula
Bring matrix to echelon form and multiply the pivots

Example:

The reason we don’t care about the numbers above the pivot positions is because these can
be turned into zeros with row reduction (without swapping rows).

Property 9
det(AB) = det A * det B
det

 (property 3)

Property 10

Therefore all the things that applied to rows also apply to columns

Eigenvalue properties
To reduce calculation overhead for finding the eigenvalues of a 3x3 or larger matrix, you can
use the eigenvalues available from the problem description and combine them in a system
of equations with det A and trace such that you only need to co-factor A rather than det (A-

) = 0, which is harder.

Algorithm for determinant 2 by 2

→

det U =

∣
∣
∣
∣
∣
∣
∣

d1 ∗ … ∗

0 d2 ⋮ ∗

0 0 ⋱ ∗
0 0 … dn

∣
∣
∣
∣
∣
∣
∣

= d1d2 ⋯ dn

∣
∣
∣
∣
∣
∣
∣

1 0 … 0

0 1 ⋮ 0

0 0 ⋱ 0
0 0 … 1

∣
∣
∣
∣
∣
∣
∣

= d1d2 ⋯ dn

[a b

c d
] → [

a b

c − a d − b
] → [

a b

0 d − b
] → detA = a(d − b) = ad − cbc

a
c
a

c
a

c

a

A−1 = 1/detA
det(A2) = (detA)2

det2A = 2ndetA

detAT = detA

λ
detA = λ1 ⋅ λ2 ⋅ λ3 …λn
trace = λ1 + λ2 + λ3 + λn

Algorithm for determinant 3 by 3

Big formula for determinant of n by n

Co-factor algorithm with a 3 by 3

This is one of the many ways you can refractor the 3 by 3 formula.

Graphically, this is the same as picking an arbitrary row (or column, but let’s just stick to rows for
now), and calculating the sum of the “available 2 by 2 determinants” times a given element of
the row. For the middle element the “available determenintant “wraps around””. See graphical
examples below.

the second term is -1 because we had to flip the columns once. Going back to the ‘Big Formula’,
you should have n! terms.

Therefore, co-factor of

∣
∣
∣
a b

c d

∣
∣
∣

=
∣
∣
∣
a 0
c d

∣
∣
∣

+
∣
∣
∣
0 b

c d

∣
∣
∣

=

∣
∣
∣
a 0
c 0

∣
∣
∣

+
∣
∣
∣
a 0
0 d

∣
∣
∣

+
∣
∣
∣
0 b

c 0
∣
∣
∣

+
∣
∣
∣
0 b

0 d

∣
∣
∣

=

0 + ad +
∣
∣∣
0 b

c 0
∣
∣∣

+ 0 =

ad − bc

∣
∣
∣
∣

a b c

d e f

g h i

∣
∣
∣
∣

=
∣
∣
∣
∣

a 0 0
d e f

g h i

∣
∣
∣
∣

+
∣
∣
∣
∣

0 b 0
d e f

g h i

∣
∣
∣
∣

+
∣
∣
∣
∣

0 0 c

d e f

g h i

∣
∣
∣
∣

=

∣
∣
∣
∣

a 0 0
d 0 0
g h i

∣
∣
∣
∣

+
∣
∣
∣
∣

a 0 0
0 e 0
g h i

∣
∣
∣
∣

+
∣
∣
∣
∣

a 0 0
0 0 f

g h i

∣
∣
∣
∣

+
∣
∣
∣
∣

0 b 0
d 0 0
g h i

∣
∣
∣
∣

+
∣
∣
∣
∣

0 b 0
0 e 0
g h i

∣
∣
∣
∣

+
∣
∣
∣
∣

0 b 0
0 0 f

g h i

∣
∣
∣
∣

+ ⋯ =

⋯ = (33 matrices) =

∣
∣
∣
∣

a 0 0
0 e 0
0 0 i

∣
∣
∣
∣

+
∣
∣
∣
∣

a 0 0
0 0 f

0 h 0

∣
∣
∣
∣

+
∣
∣
∣
∣

0 b 0
d 0 0
0 0 i

∣
∣
∣
∣

+
∣
∣
∣
∣

0 b 0
0 0 f

g 0 0

∣
∣
∣
∣

+
∣
∣
∣
∣

0 0 c

d 0 0
0 h 0

∣
∣
∣
∣

+
∣
∣
∣
∣

0 0 c

0 e 0
g 0 0

∣
∣
∣
∣

=

aei − afh − bdi + bfg + cdh − ceg

(3! terms)

detA = ∑
n!terms

±a1αa2βa3γ … anω

(α,β, γ, … ,ω) = permutation of (1, 2, 3, … ,n)

aei − afh − bdi + bfg + cdh − ceg =

a(ei − fh) + b(fg − di) + c(dh − eg)

∣
∣
∣
∣

a b c

d e f

g h i

∣
∣
∣
∣

=

a − −
| e f

| h i

 +

− b −
d | f

g | i

 +

− − c

d e |

g h |
 = a(ei − fh) + b(di − fg) ∗ −1 + c(dh − eg)

aij = Cij =

±det(
n − 1 matrix

without rowi, colj
)

The sign of the determinant is determined by the parity of

Plus if i+j is even, minus if odd.

Like a n x n chessboard with

Cofactor formula
for rows (pick constant):

for columns (pick constant):

Cofactor for a 4 by 4

This can be solved recursively for any n by n matrix. But it would take too much time. It may be
more efficient to row reduce a matrix and go for the product of the main diagonal (do not forget
the sign changes from row swaps).

Co-factor of 3 by 3

Determinant of n by n
The strategy is to apply the Cofactor technique by strategly selecting rows or columns with
the maximum amount of zeros (to reduce the number of calculations).

Because of property 10, you can also aim to create zeros vertically and use the
entries of a column as Co-factors

We can increase the amount of zeros by adding a scaled row to another row, as this
operation does not change the sign or value of the determinant.

Remember that linear dependence is obvious when two columns or two rows are the
same or a column or a row is zero. Which would then make the determinant 0.

Alternatively, we could also use row reduction to achieve an echelon matrix and calculate the
determinant by multiplying all the pivots. Just remember how many row swaps you did (if
odd change the sign, else don’t).

aij

+ − +
− + −
+ − +

a11 = +

i

detA = ai1Ci1 + ai2Ci2 + ⋯ + ainCin

j

detA = a1jC1j + a2jC2j + ⋯ + anjCnj

∣
∣
∣
∣
∣
∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣
∣
∣
∣
∣
∣

→

⎛
⎜ ⎜ ⎜
⎝

+ − + −
− + − +
+ − + −
− + − +

⎞
⎟ ⎟ ⎟
⎠

∣
∣
∣
∣
∣
∣

a11

a22 a23 a24

a32 a33 a34

a42 a43 a44

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

a12

a21 a23 a24

a31 a33 a34

a41 a43 a44

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

a13

a21 a22 a24

a31 a32 a34

a41 a42 a44

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

a14

a21 a22 a23

a31 a32 a33

a41 a42 a43

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣
∣
∣
∣

→
⎛
⎜
⎝

+ − +
− + −
+ − +

⎞
⎟
⎠

∣
∣
∣
∣

a11

a22 a23

a32 a33

∣
∣
∣
∣

+
∣
∣
∣
∣

a12

a21 a23

a31 a33

∣
∣
∣
∣

+
∣
∣
∣
∣

a13

a21 a22

a31 a32

∣
∣
∣
∣

=

a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

→

Even if the not reduced echelon form is not unique, the product of the diagonal is!

Eigenvectors and eigenvalues
Going back to the linear transformations, we find that for some standard matrices A of a
transformation, there are vector inputs such that the output after the transformation is a scalar
of themselves (aka, it is within their own span, it’s “parallel”), such vector inputs are called
eigenvectors, and the scalars are called eigenvalues. For instance, matrix A below has 2
eigenvectors (by definition an eigenvector must have 1 eigenvalue). One of the eigenvectors is X
= (1,0), and since T = (3,0) we can see that the eigenvalue is 3, since 3 * X = T.

The other eigenvector is X = (-1,1), which gives T = (-2,2), therefore the eigenvalue being 2.

You can see an example of a non eigenvector below, as X = (1,1) does not produce an output
within it’s on spawn T = (4,2)

3D rotation
In a 3D rotation of an object the eigenvector is the rotation axis, and since we are only
rotating the object the eigenvalue would be 1.

Calculate eigenvectors and eigenvalues
According to the definition of an eigenvector and eigenvalue we have Where A is the
standard transformation matrix, is the eigenvector and is the eigenvalue (scalar).

This is equivalent to

The main take away from this formula is that besides v being the 0 vector (trivial solution), if we
want to find another solution (eigenvector), that would mean that more than one input share the
same output, which means the transformation is no longer injective. Since it is no longer
injective, is no longer bijective, which means is not invertible (is singular) and must
have determinant equal to zero.

Step 1 - The characteristic equation

All we need to do is to tweak the value of such that This equation is known
as the “characteristic equation” or the “eigenvalue equation”.

Step 2 - Null space of A

Now that we know , we can actually compute and solve it with an augmented
matrix. Esentially we are solving for the null space of A.

Example
Using the same matrix A. Let’s calculate the eigenvalue and eigenvector.

Step 1

Step 2.1 (lambda = 2)

Ax = λx

x λ

Ax = (λI)x⟶ Ax − (λI)x = 0

(A − λI)x = 0

(A − λI)

λ det(A − λI) = 0

λ (A − λI)x = 0

det(A − λI) = 0

det([
3 − λ 1

0 2 − λ
]) = 0

(3 − λ)(2 − λ) = 0

λ = 3 ∨ λ = 2

(A − λI)x = 0

Step 2.2 (lambda = 3)

Shortcut equation for 2 by 2

Possible eigen values
We see that from the determinant equation we end up with and sometimes

 In the first scenario, if a and b are different we get 2 eigenvalues, if they’re the same we
get 1 eigenvalue (and we would also say that such eigen value has a multiplicity of 2). In the
second scenario, if a is positive we get 2 eigenvalues, if a is 0 we get no eigenvalue as by
definition 0 cannot be an eigenvalue. If a is negative we get 0 eigenvalues (we actually get an
imaginary number, which means we get a rotation for all inputs).

A single eigenvalue can be used by more than one eigenvector
i.e. has eigenvalue 2 and all vectors in are eigenvectors with eigenvalue 2
If you compute the eigenvectors from the augmented matrix, you’ll see that the
augmented matrix only has free variables

If A matrix has an eigenvalue 0, that means that has a nontrivial
solution, which means A is not invertible (A is singular), and det A = 0.

The eigenvectors with eigenvalue 0 (which is a legit eigenvalue) are the vectors of the
Null space of A (the nontrivial vectors that make Ax=0).

If the eigenvalues refer only to one eigenvector each, then all eigenvectors are linearly
independent

(A − 2I)x = 0

[
3 − 2 1

0 2 − 2
]x = 0

[
1 1
0 0

]x = 0

[
1 1 0
0 0 0

]

v1 = −v2

v2 = free

x = 0 + v2 [
−1
1
] = [

−1
1
]

[
3 − 3 1

0 2 − 3
]x = 0

[0 1
0 −1

]x = 0

[
0 1 0
0 −1 0

]

[
0 1 0
0 0 0

]

v1 = free

v2 = 0

x = 0 + v1 [
1
0
] = [1

0
]

λ2 − traceλ + det(A)

(a − λ)(b − λ)
λ2 = a

A = 2I R2

Ax = 0x⟶ Ax = 0

If two matrices have the same eigenvalues, with the same multiplicities, linked to the same
eigenvectors, then these are “similar”.

“Similar” is not the same as row equivalent
Adding kI to a matrix increases the eigenvalues by k but does not change its
eigenvectors.
Eigenvalues and eigen values are not linear, you can’t conclude anything from adding
A+B
Matrices A and B are similar if there is an invetrible matrix P such that

A n by n matrix will have n eigen values (in practice some of them can be repeated)
The sum of the eigenvalues equals the sum of the main diagonal of A (this sum is also called
the “trace”)
The determinant is the product of the eigenvalues
A nonzero determinant does not guarantee an eigenvector

The rotation matrix has determinant 1 but eigenvalues are the imaginary number i and -i
but no eigenvectors.

n by n matrix does not guarantee n independent vectors
The geometric multiplicity of an eigen value is the dimension of the corresponding
eigenvector.
The eigenvalues of a triangular matrix (regardless of whether it is upper or lower zeros) are
the entries on its main diagonal
For A being a n by n matrix, A is invertible iff there is no eigenvalue 0

Eigenspace
The eigen space is the set of all eigenvectors and the zero vector. In other words, the set of
all solutions to the equation:

This is also known as , which is a subspace of

Diagonalization
A matrix is said to be diagonalizable if it’s square, with all 0’s except in the main diagonal.
A matrix A is diagonalizable only if it has n linearly independent eigenvectors.
A matrix with n distinct eigenvalues has n linearly independent eigenvectors. But you may
also get n linearly independent eigenvectors from just 1 shared eigenvalue (i.e in).
The dimension of the eigenspace (the number of linearly indepenent vectors in the set), is
less than or equal to the multiplicity of the eigenvalue. So, if an eigenvalue appears twice, it
has at most 2 eigenvectors
If zero is an eigenvalue of A then the matrix A is not invertible, but it can still be
diagonazilable.
The sum of the dimensions of the eigenspaces must be equal to n in order for A to be a
diagonaziable matrix.

Similar matrix
A is similar to B if there exists an invertible matrix P such that
Similar matrices have same eigenvalues, multiplicities.
A matrix A is diagonazilable if it can be expressed as a similar matrix that is a diagonal
matrix.

A must have n linearly independent vectors
Which form a basis for
The algebraic multiplicity of the eigenvalue is equal to the geometric multiplicity of its
eigenspace.

Let S be the matrix containing the eigenvectors of A and is the inverse. For that we need n
independent eigen vectors.

A = PBP −1

Eλ

Ax = λx

Ax − λx = 0

(A − λ)x = 0

Eλ = Nul(A − λI) Rn

λ = 1 I

A = PBP −1

Rn

S−1

By the definition of the eigenvector, when you multiply you’re recreating ,
therefore so

We can factor out the lambdas:

Where capital Lambda is the matrix with 0s and the eigenvalues across the main diagonal.

From we also get:

If then

Similarly, we also have So:

The eigenvalues change by the power of k while the egenvectors remain the same.

If all absolute eigenvalues are smaller than 1, then (given that all eigenvalues have
multiplicity of 1)
A is sure to have n independent eigenvectors (and be diagonalizable) if all the eigenvalues
are different.
A diagonal matrix has its eigenvalues sitting infront of you in the main diagonal

Complex eigenvalues and eigenvectors
Here we allow matrices to be in the domain, rather than

Now eigenvalues can also be complex numbers
If n by n matrix A has eigenvalue and eigenvector, then their conjugates also exist

The conjugate of a complex number is the same as the original one, but the imaginary
part changes its sign, and its associated with the conjugate of lambda.

Let A be a real 2 x 2 matrix with eigenvalues where and a and b are real
numbers. Then there exists an invertible real matrix P such that:

The middle matrix with a’s and b’s is called C.

Then the eigenvalues of that matrix are

The matrix P can be constructed as

Where v is an eigenvector associated to the eigenvalue a - bi.

The same way that the conjugate of an eigenvalue is another eigenvalue in the matrix, the
conjugate of an eigenvector is also another eigenvector

Radius/length/modlus:

As1 Ax = λx

As1 = λ1s1 AS = [λ1s1 λ2s2 … λnsn]

AS = [s1 s2 … sn]

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

λ1 0 ⋯ 0
0 λ2 0 0

0 0 ⋱ ⋮
0 0 … λn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

= SΛ

AS = SΛ

S−1AS = Λ

A = SΛS−1

Ax = λx A2x = λAx = λ2x

A2 = SΛS−1SΛS−1 = SΛ2S−1

Ak = SΛkS−1

A∞ = 0

C
n Rn

λ v

a ± bi b ≠ 0

A = P [
a −b

b a
]P −1

λ = a ± bi

P = [Rev Imv]

r = |λ| = √a2 + b2

C = r[
−

] = r [cosϕ − sinϕ

sinϕ cosϕ
]

a
r

b
r

b
r

a
r

The angle is called the argument of (which is generally arctan(b/a), when both
parts are positive, else have a look at the unit circle) and the rotation of the transformation

 and scaled by

Between -pi and pi:

Discrete dynamical systems
Recurrence relation to matrix equation

These recurrent relations where (for all k > 0) are known as discrete dynamical
systems

Discrete because it refers to different states over time
 is known as a state vector and is known as the initial state vectors

Coupled system

Need to diagonalize:

Use

The eigenvectors of S can be scaled such that the columns of S don’t have fractions. Get the
inverse of S quickly with:

A matrix can only be diagonaziable if S (also called P) has n independent columns
(eigenvectors). In other words, A is diagonaziable iff its eigenvector matrix is invertible.
Therefore or, if you know the previous transformation
This transformation overtime (discrete system) has the impact of:
The eigenvalues regard the absolute size:

attracting vectors towards the origin if all eigenvalues are smaller than 1
repelling vectors away from the origin if all eigenvalues are larger than 1

except the constant zero trajectory

ϕ λ = a + bi

x ↦ Cx |λ|

{ ak = 2ak−1
bk = 3bk−1

⇔ [
ak

bk
] = [

2 0
0 3

] [
ak−1

bk−1
]

xk = [ak
bk
] = ([2 0

0 3
])

k

[a0

b0
]

xk = Axk−1

xk x0

{ ak = 6ak−1 − 2bbk−1
bk = 6ak−1 − bk−1

⇔ [
ak

bk
] = [

6 −2
6 −1

] [ak−1

bk−1
]

Ak = SΛkS−1

Λ =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

λ1 0 ⋯ 0
0 λ2 0 0

0 0 ⋱ ⋮
0 0 … λn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

Let S = [
a b

c d
]

S−1 = [
d −b

−c a
]

1
ad − bc

xk = (SΛkS−1)x0 xk = Axk−1

saddle point if some lambdas are bigger than 1 and others smaller than 1
Some tend towards the origin
Some repell away

Fibonaci Example
0, 1, 2, 3, 5, 8, 13,..

And how fast it grows?

But this is a single equation, not a system. And it’s a second order (as there are 2 unkowns).

Trick

We artificially make the single equation into a system, then artificially make the 2 unkowns into a
single unkown vector:

So:

And:

So:

Wait… that doesnt correspond to the fibonacci sequence, the second entry should have been
, therefore make sure to adjust A.

Perhaps the artifical equation should have its variable placed to the left-most pivot. Just make
sure to double check matrix A fits the logic that you expect.

Now it make sense. And from here:

We can look for the eigenvalues and eigenvectors of A:

Fk =?

Fk+2 = Fk+1 + Fk

Fk + Fk+1 = Fk+2

0 + Fk+1 = Fk+1

A = [
1 1
0 1

]

uk+1 = [Fk+2

Fk+1
]⟶ uk = [Fk+1

Fk

]

u0 = [
F1

F0
]

u1 = Au0 = [
1 1
0 1

] [
F1

F0
] = [

F1 + F0

F0
]

Fk+1

Fk+1 + Fk = Fk+2

Fk+1 + 0 = Fk+1

A = [1 1
1 0

]

u1 = Au0 = [
1 1
1 0

] [
F1

F0
] = [

F1 + F0

F1
]

uk = Aku0

The eigenvalue controls the growth of the fibonacci sequence, namely the linear combination of
them and the eigenvectors. Since the negative one is absoluteively (in the mathemetical | | sense)
smaller than 1, it will approximate 0 as k goes to infinity.

The eigenvectors can be solved using the techniques seen before.

Prey-predator system
Let vector denote the population of both owls and rats after k months such that

Then let the system below denote the population dynamics overtime:

The first equation indicates that:
with no rats, only half the owls will survive each month
If there are plenty rats, the owl population will increase

The second equation indicates that:
with no owls, the rats would increase by 10% each month
If there are plenty owls, the rat population will decrease

The direction of greatest repulstion is the eigenvector that has eigenvalue greater than 1 (in
absolute terms).
The direction of greatest attraction is the eigenvector that has eigenvalue less than 1 (in
absolute terms).

We can see from this system that there should be a sweetspot overtime in which there will be a
balanced amount of owls and rats keeping both populations stable.

That sweet spot is
A can be made from the system definition:

Matlab returns the eigenvalues 0.58 and 1.02, and the following eigenvector matrix V:

>> A=[.5 .4; -.104 1.1]

A =

 0.5000 0.4000
 -0.1040 1.1000

>> [V,D] = eig(A)

V =

 -0.9806 -0.6097
 -0.1961 -0.7926

|A − λI | =
∣
∣
∣
1 − λ 1

1 −λ

∣
∣
∣

= λ2 − λ − 1 = 0

λ1 = (1 + √5) ≈ 1.618 λ2 = (1 − √5) ≈ −0.618
1
2

1
2

F100 = c1λ
100
1 + c2λ

100
2

F100 ≈ c1()
100

+ 01+√5
2

xk

xk = [Ok

Rk

]

{Ok+1 = 0.5Ok + (0.4)Rk

Rk+1 = −(0.104)Ok + 1.1Rk

limxkk→∞ ≈ x10a lot
= A10a lot

x0

A = [
0.5 0.4

−0.104 1.1
]

D =

 0.5800 0
 0 1.0200

>>

Matlab has rounded the the operations, but in fact -0.9806/-0.1961 = 5/1 and -0.6097/-0.7926 =
10/13.

Therefore, the corresponding eigenvectors for and are

Instead of using directly, since we don’t know yet, we can decompose in
eigenvectors:

Eigenvector decomposition

.

Then we have that

Since we defined , then we have that

The thing is that can’t just be decomposed into arbitrary vectors and scalars. must be
strictly expressed as a linear combination of the eigenvectors scaled by some constants c. To
find those c constants first we must find the eigenvectors and eigenvalues of A (matlab:
[V,D] = eig(A)). If is given in the problem, then we can make another system of

equations to solve for , i.e.

Solving this system gives you the vector c, which can be then used in the formula below:

Also, Since v are eigenvectors of A, we have :

Therefore, if in our owl vs rat example, since is unkown, we can’t solve for c. We can only
express the solution given , and

λ1 = .58 λ1 = 1.02

v1 = [5
1
] v2 = [10

13
]

xk = Akx0 x0 x0

Let x0 =
⎡
⎢
⎣

?
?
?

⎤
⎥
⎦

x0 = c1

⎡
⎢
⎣

?
?
?

⎤
⎥
⎦

+ c2

⎡
⎢
⎣

?
?
?

⎤
⎥
⎦

+ c3

⎡
⎢
⎣

?
?
?

⎤
⎥
⎦

xk = Axk−1

x1 = A
⎛
⎜
⎝
c1

⎡
⎢
⎣

?
?
?

⎤
⎥
⎦

+ c2

⎡
⎢
⎣

?
?
?

⎤
⎥
⎦

+ c3

⎡
⎢
⎣

?
?
?

⎤
⎥
⎦

⎞
⎟
⎠

= c1A
⎡
⎢
⎣

?
?
?

⎤
⎥
⎦

+ c2A
⎡
⎢
⎣

?
?
?

⎤
⎥
⎦

+ c3A
⎡
⎢
⎣

?
?
?

⎤
⎥
⎦

= c1Av1 + c2Av2 + c3Av3

x x0

x0

x0

{ c1v11 + c2v21 = x01
c1v12 + c2v22 = x02

Av = λv

x1 = c1λ1v1 + c2λ2v2 + c3λ3v3

xk = c1λ
k
1v1 + c2λ

k
2v2 + c3λ

k
3v3

x0 = c1λ
0
1v1 + c2λ

0
2v2 + c3λ

0
3v3 = c1v1 + c2v2 + c3v3

x0

λ1 = .58 λ2 = 1.02

v1 = [
5
1
] v2 = [

10
13

]

Then leave c as a constant

From the fact that .58 is smaller than 1, as k grows to infinity, the rate of growth for both owls
and rats will be solely defined by 1.02 and the ratio of owls to rats will be mantained at 10/13.
Although c is not known, as we get closer to infinty that becomess irrelevant, and we’ve
managed to solve one of the things we managed to learn some things about the system
nevertheless.

Complex systems
Take matrix A which as complex eigenvalues:

Where matrix C is strictly composed of the complex eigenvalues of matrix A, such that a is
the real part of the eigenvalues and is the coeffcient multiplying in the complex
eigenvalue.

Rember that P is composed of the real parts on the 1st column, and the negative imaginary
parts on the second column.

Trying to do is hard, because C is not a diagonal matrix

Instead use the property:

Remember that and that
Therefore or, if you know the previous transformation
This transformation overtime is a rotation that creates:

Spiral towards the origin if r < 1
Spiral away from the origin if r > 1
Elliptic (or even circle sometimes) if r = 1.

Orthogonality

xk = c1λ
k
1v1 + c2λ

k
2v2

xk = c1.58k [
5
1
] + c21.02k [

10
13

]

A = PCP −1

±b i

C = [
a −b

b a
]

Ak = P([
a −b

b a
])

k

P −1

Ck = rk [
cos(kϕ) − sin(kϕ)
sin(kϕ) cos(kϕ)

]

ϕ = arctan()b
a r = |λ| = √a2 + b2

xk = (PCkP −1)x0 xk = Cxk−1

Orthogonal means 90 degrees and is described by the symbol , also known as
perpendicular
Not just 2 vectors can be orthogonal when the dot product is 0, but also subspaces
themselves (seen as areas) can be orthogonal

Examples are rowspace vs nullspace and columnspace vs nullspace

Inner product
Also known as dot product between two vectors, it’s equivalent to the matrix-vector product
of one of the vectors transponsed with the other one so that the result is a 1x1 matrix,
interpreted as a scalar:

This transformation expresses the length of the the distance from the origin to the point where
one vector is orthogonally projected on to the other one, times the length of the later one. It
happens that when the vectors are already perpendicular, the projection point is the origin, and
thus we get 0*length of the vector where the projection lies. When the dot product is negative it
means they point in the opposite direction, when positive in the same one.

A dot product is only defined when the vectors have the same number of entries. Let u, v
and we be vectors and c a scalar, a dot product can be expressed with a dot or with the
transponse:

, uu=0 only for u=0
The length (called norm) of v is expressed as the nonnegative scalar defined by:

Geometric interpretation of the dot proudct:

The distance between two vectors is the length of , also expressed as

Normal vectors
Vectors whose length are 1 are called unit vectors

normalizing: scale a nonzero vector by to obtain a unit vector

Orthogonal vectors
Orthogonal vectors are vectors with a 0 innerproduct

Another test is based on pythagoras: u and v are orthogonal iff

The 0 vector is orthogonal with all the vectors, including itself

Orthonormal vectors
Orthonormal vectors are orthogonal and normal (length 1) vectors

Orthogonal complements
A vector z is orthogonal to a subspace W iff it is orthogonal to each vector in the subspace
W set.

⊥

→a ∙ →b = [
a1

a2
] ⋅ [

b1

b2
] = →a

T
→b = [a1 a2] [

b1

b2
] = b1a1 + b2a2

u ∙ v = uTv
uTv = vTu
(u + v)Tw = uTw + vTw

(cu)Tv = c(uTv) = uT (cv)
uTu > 0

∥v∥

∥v∥ = √vTv

a ∙ b = ∥a∥∥b∥ cosα

∥u − v∥
dist(u, v) = √(u − v) ∙ (u − v)

v 1
∥v∥

∥u + v∥2 = ∥u∥2 + ∥v∥2

The set of all orthogonal vectors to W are called the orthogonal complement of W and
is denoted as

If W is a plane, then is a line (all the vectors spanned by 1 basis vector perpendicular on
W)

 and (the complement of the complement cancels out)
under the premise that all the vectors must depart from the origin only
If 2 subspaces have an overlaping vector that is not the origin then they are not
orthogonal as that vector cannot be orthogonal to itself (only 0 is orthogonal to
itself)

For an n x m matrix:
dim Col A + dim = m, where dim stands for number of columns.

Rowspace is orthogonal to nullspace because of the defintion of the nullspace which takes
all the x’s such that Ax=0. This also means that each of the rows of A make a dot product
with x and yield 0:

rowspace = rowspan:

Dot product of each row with vector x (of the null space) yields zero:

However, the subspace of the rows is not just the rows themselves, it’s also all possible linear
combinations of the rows. These are also orthogonal to the nullspace:

Since this statement is true for any matrix, it is also true for . Therefore:

Orthogonal sets
A set of vectors { , , , …, } in is an orthogonal set if each possible pair combination
of distinct vectors from the set is orthogonal, i.e.:

{ , , }

If the orthogonal set does not contain the zero vector, then all the vectors are independent
An orthogonal basis for a subspace W of is a basis for W that is also an orthogonal set

W ⊥

W ⊥

W ⊥ = L W = L⊥

(W ⊥)
⊥

= W

NulA

Ax = 0 ⇔

⎡
⎢ ⎢ ⎢ ⎢
⎣

row1

row2

⋮
rown

⎤
⎥ ⎥ ⎥ ⎥
⎦

⎡
⎢
⎣
x

⎤
⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢
⎣

0
0

⋮
0

⎤
⎥ ⎥ ⎥ ⎥
⎦

c1 ∗ row1 = 0

c2 ∗ row2 = 0

c2 ∗ row2 + c1 ∗ row1 = 0

AT

(Row A)⊥ = NulA

(Row AT)⊥ = NulAT
⟺ (Col A)⊥ = NulAT

a1 a2 a3 an Rn

⎡
⎢
⎣

1
0
0

⎤
⎥
⎦

⎡
⎢
⎣

0
1
0

⎤
⎥
⎦

⎡
⎢
⎣

0
0
1

⎤
⎥
⎦

Rn

Orthogonal basis are nice:
any vector in can be expressed as a linear combination of the columns of A
the weights of the columns for any vector y can be defined by

such that
Therefore you dont need an augmented matrix to solve for the weights

Orthogonal projections
This is relevant when our matrix A has too many rows, and therefore some free variables.

The orthogonal projection onto L (spanned by u) is a vector that lands on the point .
The line between the tip of y and the tip of that connects these two vectors, in the minimum
length possible, is is called “error” (e), as its length is the difference between them (),
and the vector e comes from the arithmetic operation , which is ortogonal to the line L
where projection lies onto.

We can see that is a multiple of u, therefore: = cu
We can also see that

We also see that , therefore:

If I double y, I double (it represents the same side of a twice as large equivalent triangle):

If I double v, remains constant (it’s projected onto the same line from the same spot):

This equation is formally known as the orthogonal projection of vector y onto a line L spanned
by u, who both go through the origin:

Orthonormal sets
It is like an orthogonal set, but in addition the length of the vectors is 1. The clearest examples
are a subset of vectors e (columns of I matrix) for .

An m x n matrix U has orthonormal columns iff

Rn

cj =
y ∙ aj

aj ∙ aj

y = c1a1 + c2a2 + ⋯ + cnan

ŷ (ŷ1, ŷ2)
ŷ

∥y − ŷ∥
y − ŷ

ŷ

ŷ ŷ

ŷ + e = y

e = y − ŷ

L ⊥ e 0 = uTe = uT (y − ŷ) = uT (y − cu) = 0
uTy − cuTu = 0
cuTu = uTy

c = uTy

uTu

ŷ = u
uTy

uTu

ŷ

2ŷ = u = 2 u
uT2y

uTu

uTy

uTu

ŷ

p = 2u = u
2uTy

2uT2y

uTy

uTu

ŷ = projL y = u
y ∙ u

u ∙ u

Rn

U TU = I

U matrix with orthonormal sets of columns (this alone does not qualify for a orthogonal
matrix), are even nicer, as they also have that:

The length of a transformation remains the same:
Dot product between vectors is preserved:

Since the length of the vectors is 1, any vector y can be expressed as

Orthogonal matrix
Orthogonal matrices are actually orthonormal column square matrices
An orthogonal matrix is a square, invertible matrix Q with orthonormal columns, such
that:

Orthogonal matrixes have orthonormal rows too
Transformations with an orthonormal matrix makes the projection onto its column space
easy since Q is squared ():

Doesnt work for non square matrices as
Their determinant is either 1 or -1
To prove that a matrix is orthogonal just prove that inverse is equal to the transponse or that

Orthogonal Projections in higher dimensions
In higher dimensions instead of having a single vector u span a subspace of , namely the
line L, we can have an orthogonal basis set composed of { } that spans a
subspace W.
The orthogonal projection of y onto W is , which is the closest point to y in that lies in W:

 makes the smallest error (difference of y vs a vector in W): , where
v represents any other vector in W distinct from .

 is formally regarded as the best approximation to y by elements of W.
It doesnt matter which orthogonal basis is used for W (in 2D we just scaled u by 2), as
the projection point will lie on the same spot in higher dimensions too. However,
regardless of the basis for W, the subspace must remain the same.

This projection of y onto line L spanned by u can be translated into a matrix, the projection
matrix: , where P stands for the projection matrix

We are left with a transponsed vector, which is equivalent to a 1xn matrix
Remember that , therefore:

Applying the projection a second time will land you on the same spot you already are from
the first projection.

For higher dimensions, we have more vectors in the orthogonal basis. Therefore P looks like:

Therefore:

∥Ux∥ = ∥x∥
(Ux) ∙ (Uy) = x ∙ y

(Ux) ∙ (Uy) = 0⟺ x ∙ y = 0

y = (y ∙ a1)a1 + (y ∙ a1)a2 …

Q−1 = QT

QTQ = I

QQT = QTQ = I

P = Q(QTQ)−1QT = QQT = I

2x3 ⋅ 3x2 = 3x3 vs 3x2 ⋅ 3x2 = 2x2

QTQ = I

R2

u1,u2, … ,un

ŷ

ŷ ∥y − ŷ∥ < ∥y − v∥
ŷ

ŷ

ŷ = Py

P = uT
u

uTu

= A−11
A

P = U(U TU)−1U T

P 2 = P

P = uT1 + uT2 + ⋯ + uTn
u1

uT1 u1

u2

uT2 u2

un

uTnun

ŷ = Py = (u1 + u2 + ⋯ + un)y
uT1

uT1 u1

uT2

uT2 u2

uTn

uTnun

projection=((v1/(transpose(v1)*v1))*transpose(v1)+(etcera))*y

Orthonomal basis projections
If , that is, the columns of P are an orthonormal basis. Then the lengths
of the columns are all 1 and the projection of y onto subspace W is simplified to:

If P is a squared matrix, it happens that all the u columns span the entire space already.
Therefore any vector that you are going to “project” onto the “subspace” of is already in ,
so the vector is not transformed at all and .

This matches the fact that for orthogonal matrices (squared matrices with orthonormal
basis):

Gram-Schmidt process
Orthogonal projections onto a subspace W can only be made with orthogonal basis vectors.
If the given subspace is not defined with orthogonal vectors, then you cant use the known
techniques to project y onto W (z or e are not orthogonal to W).
The gram-schmidt process is to find an equivalent basis vectors that are orthogonal:

Given a basis for a nonzero subspace W of :

Then is an orthogonal basis for W.

This formula formally means:

Span = Span .

Orthogonal to orthonormal
This is an easy transformation. (Often after doing grand-schmidt), just scale the vectors to be
normal vectors (length 1):

Scale a nonzero vector by to obtain a normalized vector.

Least squares
If you can’t solve Ax=b because the system has no solution. You may as well just go for the
next best thing, which is to project b onto the columnspace of A, and then solve for
which does have a solution. To do so A must have orthogonal columns.
Formally we would want to change the name of x for , which stands for the approximated x
that solves for the the projected b, called , such that . However, we are
not manually projecting x anywhere, it’s just to highlight that it’s a least squares solution
associated with the projected b.
This creates the inequality equation below for a matrix A in m x n with a b in , but whose
columns can only Span :

P = [u1 u2 … un]

projWy = UU Ty

Rn

Rn Rn

P = I

QQT = QTQ = I

{x1, … ,xp} Rn

v1 = x1

v2 = x2 − v1
x2 ∙ v1

v1 ∙ v1

v3 = x3 − v1 − v2
x3 ∙ v1

v1 ∙ v1

x3 ∙ v2

v2 ∙ v2

{v1, … , vp}

v1 = x1

v1 = x2 − projX1Span{x1}

vn = xn − projXnSpan{x1,…,xn}

{x1, … ,xp} {v1, … , vp}

v 1
∥v∥

Ax = b̂

x̂

b̂ b̂ = projbColSpaceA

Rm

Rn

“for all x in ”. Which means:

This is true because the error associated with the projected b solution: , whereas
the other choices of x do not make a perpendicular e, which makes be the shortest
length, called the least-squares because this length is calculated by the square root of the
sums of the squared entries. Some processes skip the square root step. This is almost the
same as the “best approximation theorem”.

The least squares solution is in
The least squares solutions is nonempty

 is caled the least-squares error.

QR Factorization
Any m x n matrix with linearly independent columns can be factored as A = QR, where Q is
an m x n orthonormal basis (apply grand-schmidt of A for that) and R is the n x n upper
triangular invertible matrix with positive entries on its diagonal that follows from:

The solution for least squares:
It is faster to solve for:

Least squares when A is already orthogonal
The shortcut is not needed when A is already orthogonal. You can calculate the
projection like in Orthogonal Projections in higher dimensions and solve for .

Least squares shortcut for all matrices with A linearly
independent and (A^T)A invertible
These statementes are all logically equivalent:

The columns of A are linearly independent
The matrix is invertible
Ax=b has a unique least squares solution for each b, precisely:

All the solutions for (formally known as the least squares solutions for Ax=b). Are
the exact same solutions as for , known as the “normal equation”. Which is
easier than to have to project b and then solve x for .

Since

…

Solution when (A^T)A is not invertible: Use the normal equation
Then the columns of A are not linearly independent
There are more than one least square solutions

∥b − Ax̂∥ ≤ ∥b − Ax∥

Rn

∥b − projX| ≤ ∥b − Ax∥

∥ex̂| ≤ ∥eany x∥

e
b̂

⊥ ColA

∥e
b̂
∥

Rnumber of columns

∥b − Ax̂∥

A = QR
QTA = QTQR = IR

QTA = R

x̂ = R−1QT b

Rx = QT b

Rx = QT b

b̂ Ax = b̂

ATA

x̂ = (ATA)−1AT b

Ax̂ = b̂
ATAx = AT b

Ax = b̂

e
b̂

⊥ ColA ⇔ (b − b̂) ⊥ ColA ⇔ (b − Ax̂) ⊥ ColA

a1 ∙ (b − Ax̂) = 0
a2 ∙ (b − Ax̂) = 0

an ∙ (b − Ax̂) = 0
AT (b − Ax̂) = 0
AT b − ATAx̂ = 0
AT b = ATAx̂
x̂ = (ATA)−1AT b

You cant do QR Factorization nor the shortcut for linearly independent matrices. Solutions
can be found with the “normal equation”:

Linear models
A linear model is used to “model” (pretend) a relationship between data sets by means of a
formula that predicts the value of one variable as a function of other variable(s). A linear model is
expresed as a system of linear equations defined by the data. In the real world, data collection
might come with some error/noise and/or the variables themselves are not linearly related per
se. However, to simplify and estimate things, it is possible to find a linear equation with the
smallest error (as in distance from linear model to actual data points), for which we use Least
squares. When only y is presumed to have error the residual is no longer the perpendicular
line from the observed value to the predicted value (from b to projected b), but just the
difference in the y-axis, that is, the residual is

Notation differs between Linear algebra and Statistics:

Linear algebra Statistics

Matrix A Design matrix X

input vector x parameter vector (regression coeffiecients)

output vector b observation vector y

Least-Squares Lines
y=ax + b is expressed ass .

Fitting line to a 2D model data

Data for which we have data points and a model (also known
as the regression line of y on x, because errors in data are assumed to be only on y… that is, it
is clear that x is the input, independent variable and y the dependent variable, we can distinguish
between the predicted y-value given by the regression line: . and the actual
observed value of . The difference between the observed value (in LA: y) and the predicted
value (in LA) is called the residual (in LA the error, however the error in LA is exclusively the
perpendicular one, whereas in this particular regression case is just the difference of the y-axis
values. Although the interpetation for error may vary, the approach to approximate for beta and
y is the same).

Measuring how close is the line to the data

Easiest choice is to add the squares of the residuals as it produces an absolute non-negative
length.
The least-squares is the line that minimizes the sum of the squares of the
residuals.

Translating data points into a system

If data points were on a straight line, the parameters would satisfy:

Predicted y-value Observed y-value

ATAx = AT b

yn − (β0 + β1x1)

Ax = b Xβ = y

β

y = β0 + β1x

(x1, y1) … (xn, yn) y = β + β1x

(xj,β0 + β1xj)
yj

ŷ

y = β0 + β1x

β0 + β1

β0 + β1x1 y1

β0 + β1x2 y2

Predicted y-value Observed y-value

Such that , where:

If the data points don’t lie on a line, then there is no solution for such that the entries of
make the matrix vector product output y. However, we can apply least squares to generate a
projection of y onto the column space of X, and find the beta for that equation.

The general linear model
To make a models that use more variables we an use the same equation by just expanding
the columns of X and the entries of accordingly. Statisticans add an additional vector, the
residual vector , such that:

It is still a linear model, this line just travels in higher dimensions.
X and y are determined by the data set. and the residual vector are found via least-
squares.
The least square solution is a solution of the normal equations:

Least-squares fitting for other curves
When the data does not seem to fit into a line we can still make a model
the unkowns do not necessarily need to be a “raw” variable (such as)
The unkowns can be functions (such as)
This is a “fit” to a curve for instance.
Usually the shape of the data distribution reveals a likely model to use to try to minimize the
resiudals of, such as the formula below for parabolas:

Then we can turn it into a system of equations based on each data point:

Such that and:

⋮ ⋮

β0 + β1xn yn

Xβ = y

X =

⎡
⎢ ⎢ ⎢ ⎢
⎣

1 x1

1 x2

⋮ ⋮
1 xn

⎤
⎥ ⎥ ⎥ ⎥
⎦

,β = [β0

β1
] , y =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

y1

y2

⋮
yn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

β β

β

ϵ
y = Xβ + ϵ

β

β

XTXβ̂ = XT ŷ

x1,x2 …
f1(x), f2(x) …

y = β0 + β1x + β2x
2

y1 = β0 + β1x1 + β2x
2
1 + ϵ1

y2 = β0 + β1x2 + β2x
2
2 + ϵ2

⋮

yn = β0 + β1xn + β2x
2
n + ϵn

y = Xβ + ϵ

y =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

y1

y2

⋮
yn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

,X =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

1 x1 x2
1

1 x2 x2
2

⋮ ⋮

1 xn x2
n

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

,β =
⎡
⎢
⎣

β0

β1

β2

⎤
⎥
⎦

, ϵ =
⎡
⎢
⎣

ϵ0

ϵ1

ϵ2

⎤
⎥
⎦

Looking at the graph and (arbitrarily) deciding to model it based on a quadratic formula is
adecuate as long as you are happy with the size of the residual. Sometimes throwing more
columns into X might lead to smaller residuals.

Multiple Regression
These are models that have multiple variables as input, which then make the model a 3D or
more model. The model can be made in the same fashion, just that the unkowns are functions
that take 2 or more inputs, such that:

or also as a simpler fashion such as:

The least squares process to fit the data is called trend surface. An example would be a model
that fits data points for altitude, latitud and longitude.

Symmetric matrices
The matrix is symetric with respect to the main diagonal
Therefore

Such matrix must be square
Main diagonal is arbitrary, the other entries occur in pairs (on opposite sides of the main
diagonal)

All eigenvalues are real
For each eigenvalue: the geometric multiplicity = algebraic multiplicity
Eigenvectors of a symmetric matrix that correspond to different eigenvalues are orthogonal

2 distinct eigenvectors can have the same eigenvalue scalar, yet these 2 eigenvectors are
still different and not necessarily orthogonal, but for this eigenspace there exists an
orthonormal basis. Use Grand-Schmidt.

The inverse of an orthogonal matrix (such as the eigenvector matrix of a symmetric matrix) is
the transpose

Which makes symetric matrices very easy to diagonalize
Usually we express , but now we can normalize S, such that

A is a symmetric matrix iff A is orthogonally diagonalizable
The number of positive eigenvalues is the same as the number of positive pivots

Sepctral theorem
The set of eigenvalues of A is sometimes called the spectrum of A
A has n real eigenvalues if we count the multiplicites
The geometric multiplicity of an eigenvalue is equal to its algebraic multiplicity

That is, if the algebraic multiplicity is 2, then the eigenvalue Spans 2D
The egienspaces are mutually orthogonal (because the eigenvectors are orthogonal)
A is orthogonally diagonalizable

Sepctral decomposition

Each term has rank 1 and a multiple of
The vector is the orthogonal projection of x onto the subspace spanned by .

y = β0f0(u, v) + β1f1(u, v) + …

y = β0 + β1u + β2v…

A = AT

A = SΛS−1

A = QΛQ−1 = QΛQT

A = QDQT = [q1 … qn]

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

λ1 0 ⋯ 0
0 λ2 0 0

0 0 ⋱ ⋮
0 0 … λn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

⎡
⎢ ⎢
⎣

qT1

⋮

qTn

⎤
⎥ ⎥
⎦

A = λ1q1q
T
1 + λ2q2q

T
2 + ⋯ + λnqnq

T
n

un
(ujuTj)x uj

Algorithm for orthogonal diagonalization
1. Compute the eigenvalues of A
2. Construct a basis of the corresponding eigenspace
3. Make the basis orthonormal

1. Use Gram-Schmidt to rothogonalize if necessary
2. USe scaling to normalize basis vectors

4. Construct the matrix S using the basis vectors
5. Construct matrix D using the eigenvalues on the main diagonal

