Le

CSE1105 OOP project

cture 1. Course structure

COURSE SCHEDULE DETAILED VERSION ON BRIGHTSPACE
3.1 rebar 3.2 reb 15 3.3 Feb 22 3.4 Mar1= 35 Marsﬂ‘é 3.6 Mar15* 3.7 mar22n 3.8 mar 29™ 3.9 Apr 5 3.10 aAprs=
Lecture | Lecture | Online Module :

We

Intro + Git Requirem.Eng ! Inf. Literacy :
: Code of C. +
. Draft Backlog

i Draft
: Design Doc.

Deadline
Project Plan

Lab | Lab i Lab

Lecture
Teamwork

Lecture
H-C Interaction :

Deadline Deadline Deadline : Final
Git assignment Backlog + InfLit Everyone 1 MR : : Deadline

THEORY / RESEARCH / PROTOTYPING ‘ DEVELOPMENT

GRADING

PROCESS (40%)

» Code of Conduct

» Backlog

» Planning and task distribution

» Code contribution and code reviews

» Individual evaluation in final peer reviews

All items have equal weights.
All items require a minimum grade of 5.0

Agreements within your team on how you'll work together

Your “todo-list’, more in lecture on Requirements Engineering

Initial planning, dealing with changes, and evenly distributing the work

Git usage and the review process of the work of your fellow team members

Did you take feedback into account, and did you provide valuable feedback to others?

CSE1105 OOP project

GRADING

PRODUCT (407%)

Quality of the product itself
» Implemented features

Does the final product fulfil the requirements of the client?

» Testing

Is the product well tested?

» Quality (code style, documentation, etc.)

Consistency of the code style, sufficient documentation in- and outside the code.

All items have equal weights.
All items require a minimum grade of 5.0

GRADING

DESIGN DOCUMENT (20%)

» 8% Value-sensitive Design (Responsible CS)

Reflect on values and stakeholders of the system.

» 8% Human-Computer Interaction (HCI)

Design your interface following basic principles of HCI.
» 4% Information Literacy

Searching for and using/citing information the right way.

All items require a minimum grade of 5.0

GRADING

CSE1105 OOP project

MINIMUM PASSING REQS

» W1: Git assignment
» W3: Information Literacy module
» W4: Have a Merge Request (MR) merged

» W4+W6+W8: BuddyCheck (peer reviews)

» 3x, mark the dates in your calendar!
» You may only miss one

» Participate actively in process and product
» Attend meetings and be involved in discussions
» Submitting your own work (a.c. code) every week
» You cannot be responsible solely for docs/design/etc.
» Everyone should be involved in all aspects. (code, docs, design, ...}
» TAs will monitor everyones activity

» More details on Brightspace / StudyGuide.

THIS YEAR...

SOFTWARE TO SUPPORT LECTURERS

» ® A platform to be used during lectures, using which students
can ask questions and can give live feedback to the lecturers.

» X Build

» A backend that exposes an JSON API roe: o notuse websockessfortisy
Framework: Spring MVC

» A client application that consumes this API

Framework: OpenFX

» ™ Information must be stored in a database

{can be hosted locally, or host it yourself {you can opt to use: projects.ewitudelft.nl))

» ¥ Certificates for best solution(s)
B We aim to use the best project in actual lectures

CSE1105 OOP project

Lecture 2. Git Version control

Git Terminology

Working Staging -git directory
* Entities Directory Area (Repository)

* Working Directory

* Staging Area / Index Checkout the project

* Repository

iviti Stage Fi
* Activities age Fixes

* (Un-)track a File
* Add changes m

* Commit

* A “Clean” working directory: no open changes in tracked files

git config —How you appear in commits

* git config --global user.name “Anna Beta”
* git config --global user.email “email@your.domain”

Please note: Powerpoint likes to replace hyphens. If you encounter a
long hyphen like “=” in the slides, Powerpoint decided to take action.
Unfortunately, it does this for both single and double hyphen. If in
doubt, just try both.

CSE1105 OOP project

} -bash CH1
seb@sebtop ~/oopp $ mkdir example

seb@sebtop p $ cd example/

seb@sebtop ~/oopp/example $ git init

Initialized empty Git repository in /Users/seb/oopp/example/.git/

seb@sebtop ~/ example $ 1s

total @

drwxr-xr-x 3 seb staff 96 Feb & 11:50 .
drwxr-xr-x 4 seb staff 128 Feb 8 11:49 ..
drwxr-xr-x 9 seb staff 288 Feb 8§ 11:50 .git
seb@sebtop ~/oopp/example $ git status

On branch master

No commits vet

nothing to commit (create/copy files and use "git add"” to track)
seb@sebtop - mple % touch aoa.txt

seb@sebtop ~/copp/example § git status

On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)
seb@sebtop ~/copp/example $ [}

Hame Date Modified

v example day at 11
aBa, T

CSE1105 OOP project

seb@sebtop ~/ ple $ git add gaa.tx
seb@sebtop ~/o0f
On branch master

ample $ git status

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

Name Date Modified Kind nothing added it but untracked files present (use "git add" to track)
aaa.xt seb@sebtop - Xi e $ git add aaa.txt
bbbba By SUISTAM 4 bye ¥ seb@sebtop opp/ex e $ git status
On branch m

No commits yet
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
seb@sebtop ~/0 le § git status
On branch master
No commits yet
Changes to be committed:

(use "git rm --cached <file>..." to unstage)
g g

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)
[

Untracked files:
(use "git add <file>..." to include in what will be committed)

seb@sebtop ~/o mple $ [l

You don’t add files, you add changes to a file.

seb@sebtop ~/oopp/example $ git add -A
seb@sebtop ~/oopp/example $ git staus
git: 'staus' is not a git command. See 'git --help’'.

The most similar command is

status
seb@sebtop ~/oopp/example $ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

aaa. txt

seb@sebtop ~/ocopp/example $ |

CSE1105 OOP project

Commits to a set of changes (version):

seb@sebtop ~/oopp/example $ git commit -m "first files"
[master (root-commit) 211144f] first files

2 files changed, 4 insertions(+)

create mode 100644 aaa.txt

create mode 100644 bbb.txt

seb@sebtop ~/ocopp/example $ git log

commit 211144faf1b794c3fbfe1994d699a523415892bd (HEAD -> master)
Author: Sebastian'Proksch <development@mail.proks.ch>

Date: Mon Feb 8 11:55:41 2021 +0100

first files

Log -n where n is the nth last change

seb@sebtop ~ ple $ git log

commit 4cd4dfaea7ac24415871bf4e@107ac@37cc281dce (HEAD -> master)
Author: Sebastian Proksch <development@mail.proks.ch>

Date: Mon Feb 8 11:57:53 2021 +0100

5
commit 4da95282bd20694988dfbl17d6b2al124a022a8285
Author: Sebastian Proksch <development@mail.proks.ch>
Date: Mon Feb 8 11:57:43 2021 +0100

4
commit 17fdad1@ad4aB8986eebeZf5eaf637eb2fbabbbabs
Author: Sebastian Proksch <developmentBmail.proks.ch>
Date: Mon Feb 8 11:57:31 2021 +0100

3rd
commit 211144fafl1b794c3fbfel994d699a523415892bd

Author: Sebastian Proksch <development®mail.proks.chs>
Date: Mon Feb 8 11:55:41 2021 +0100

first files

seb@sebtop ~/oopp/example $ git log --pretty=cneline

Ac4ddfaea7ac24415871bf4ed107ac®37cc281ldce (HEAD -> master) 5
4da95282bd20694988dfb17d6b2a124002208285 4

17fdad10a4aB986eebe?fS5eaf637eb2fbabbbabs 3rd
211144faf1b794c3fbfel1994d699a523415892bd first files

--diff shows changes

CSE1105 OOP project

- - -bash
seb@sebtop ~/0 ample $ git rm bbb.txt

rm "bbb.txt'

seb@sebtop ~/ocopp/example $ git status
On branch master

Changes to be committed:

(use "git restore --staged <file>...

to unstage)

seb@sebtop ~/ xample $ git mv aaa.txt 1st.txt
seb@sebtop ~/oopp/example $ git status
On branch master
Changes to be committed:

(use "git restore --staged <file>...

to unstage)

Git recognizes that is a rename of a file and not a new file.

Commit Ids (SHA)

* Committer

* Author

* Dates (Author+Commit)
* Commit Message

* Patch (Content)

* Parents Commit Ids

Main Branch

* You are always working on a branch
* This branch is typically called “master” or “main”

CSE1105 OOP project

Trunk-based development

* Everybody works on the main branch
* This is how history works in Dropbox, Google docs, ... !

. «commit»
7\ IR I >
@ U T\ i\
«pu”» «push» "' “‘ ," ",
; y PN !)
Repository —O : O . O I O - () o
: A
. ¥ N >
/
Bob

main

Feature Branches ONg®

feature 1

* Developers develop in isolation and commit to O,
branches (0

* Avoids that partial features break the system
* Merge can trigger event, e.g., a code review

* Core idea for Pull Requests
(will be discussed later)

feature 2

* A branch only points to a commit

bug fixes

* New commits on a branch move the pointer,
it always points to the most recent commit

[-bash

seb@sebtop ~/oopp/example $ git branch
Ed 2

seb@sebtop ~/copp/example $ git branch -c fbl

CSE1105 OOP project

seb@sebtop ~/t)le $ git branch

¢ git branch -m fbl fb_1

seb@sebtop ~/
Switched to branch 'fbl'

seb@sebtop ~/ xample § git merge fbl
Updating 9d49f39..5548ef6

Fast-forward

6th.txt | 3

1 file changed, 3 insertions(+)

create mode 100644 6th.txt

(fast forward merge)

commit c617085284befa8a94825603da7f54673f819685 (HEAD -> mas

k(U2 7
Ul 6

clean up of files
4

first files

Sortedbypathv = v v
xt

Merge branch b2

1 c617085284belaBag4825603da7(546731819685 ¢
wents: 1361686e35, Scebadfa74
Author: Sebastian Proksch <development@mail.proks.ch>
to: February 8, 2021 a1 12:16:45 PM GMT+1
sls: HEAD master

Concurrent changes merge

10

CSE1105 OOP project

Git is a Distributed Version Control System

* Git is distributed, you can add other remote repositories
* Number of remotes is unlimited
* Remotes have a name, default is “origin”

checkout
?
add (Remote)
___ Change Working reset g : (Local) Repository
files m Staging Area commit — Repository
my

Remotes

* git remote add <name> <url> # create new remote, url
* git remove rename <old> <new> # r

* git remote remove <name> # delete ¢

seb@sebtop ~/oopp $ git clone git@github.com:proksch/oopp-test2.git
Cloning into 'oopp-test2'...
remote: Enumerating objects: 3, done.

& remote: Counting objects: 100% (3/3), done.
remote: Total 3 (delta @), reused @ (delta @), pack-reused 0
Receiving objects: 100% (3/3), done.

11

CSE1105 OOP project

m—rEaa eame -
oopp-test? (i)
- ~ oy Sy o 3 e — .
1. Al LTl et &l Rl]] w2y
Commit Pull Push Fatich Branch Merga View Remota Show in Finder Tarminal Setting
All Branchas & Show Remate Branches O Ancastor Order ¢ e to:
(] wonkspace franches § bl i S LTI

Graph Description
File status
Histary

Search

| F BRANCHES
O main

& Tacs

| -
—‘ £ REMOTES
|

* origin

dib| STASHES

[[5} susmoDULES

Gt suBTREES

Softed by path = v 3
foo

Reverse hiund

it bBefbbbobo0E 1180028030032 d9cbe0Bas T EITE0D
rents: Sebastian Proksch <proksch@usens noreply.githu
ALINOT Fabruary B, 2021 &t 12:25:36 PM GMT+1

seb@sebtop ~/
S woiin

seb@sebtop

seb@sebtop

seb@sebtop ~/ te

[main 096949d] added bar

1 file changed, 0 insertions(+), @ deletions(-)
create mode 100644 bar

seb@sebtop ~/ $ git push

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 4 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 272 bytes | 272.00 KiB/s, done.

Total 3 (delta @), reused @ (delta @), pack-reused 9

To github.com:proksch/oopp-test2.git

an

Git push synchronizes local changes to the remote tree.
Git pull is fetching + merging

Git fetch just synchronizes the changes and puts them into the local tree.

12

Git, the Full Picture

checkout

add
__ Change Working reset 2 7 (Local)
files =] Directory rm Stagingrea commit—=> Repository
mv

[] mtosave @or AEH SIS 5

Home Insert Draw Design Layout References Mailings Review \View
= T) - q - - 7 A 5 10 1 2 3 14 15 7 18 1

| Important notice that should go on top!
This part of the document has stayed the
same from version to version. It shouldn't
be shown if it doesn't change. Otherwise, that
would not be helping to compress the size of the

changes.[

Sebastian
Deleted:
1

It is important to spell check this dokument. On

the other hand, a misspelled word isn't

the end of the world. Nothing in the rest of

this paragraph needs to be changed. Things can
= be added after it.

N
Pagelof1 79words L[English (United States) LT B3 Focus =

CSE1105 OOP project

fetch
pull
clone
(Remote)
Repository
push

% Share [J Comments

Proksch

This paragraph contains text that is outdated.?
It will be deleted in the near future.

What happens if your forgot to enable review mode?

Change tracking of in binary files needs to be supported by

specific applications. Use plain text files wherever you can!

13

CSE1105 OOP project

Git to the rescue: Three-way Merge

* |t becomes easier if you know the base version!

Amsterdam
Delft
" Amsterdam
Delft Delft
Eindhoven

git diff — show changes

* git diff # all changes in current WD
* git diff <commit1l> <commit2> # between two commits

* git diff <commit> <path> # between commit and file

14

CSE1105 OOP project

Conflicts

* Example 1: Edit a file in a branch and delete it on master
* Example 2: Edit a line in a branch and delete this line on master

* In both cases, try to merge the branch

Outcome:
* Cannot be decided by Git, the developer needs to fix this

» Afterwards, add the file(s) again and commit

If there is a conflict the merge stops and git prompts you to review it manually.

Recommended Reading

* Read Git Man-Pages

* Git Book
https://git-scm.com/book/en/v2

* GitHub Git Cheat Sheet
https://education.github.com/git-cheat-sheet-education.pdf

15

CSE1105 OOP project

Lecture 3. Human Computer Interaction
History

Usability problems first researched in a Danish computer magazine.
Apple shared a Human Interface Guidelines around the same time.
30 usability problems identified as a result.

37% of those problems are identified by the average participant.
The best participant could only spot 60% of usability problems.

Conclusion: people are bad at spotting (all) usability problems.

Evaluators

;

Nielsen observed that “bad/amateur participants” are still able to spot rare usability problems.
o Therefore decides to measure aggregated usability problems found by group size.

—— fO=0-0-2)

L L T T Ty

®
=]
Q .
% 76% e bt (1) % problems found
£ i P A % found by single evaluator
5 so% +Afofd ; ; sl & s S | Number of evaluators
- Martel | :
E 25% - - o Double
bicscsad I : spe-
%, : : clal- Regular |
ists, specialists |
2 75% + L
0% + + + + 4
0 5 10 15 20 25 30
Number of evaluators in aggregate | evaluators
Figure 4. Proportion of usability problems found by aggregates of size I 10 30. 50% b
|
e The graph shows diminishing returns. Given by the formula: |
e We can now calculate the exact number of e ' #]
evaluators needed to identify the desired |
| 1
percentage of problems. " ; 0 s
e lItalso shows how many of them depending their expertise: pu...2 average proporsion of usability problems found
Novice, Expert and “Double” experts have different lambda pee sk g s gtk
values (22, 45, 60 respectively).
Reporting

Huge variance in agreeing of problem identification (5%-45%) until researches formalized the
reporting process:
o Problem description: a brief description of the problem
o Likely/actual difficulties: the anticipated difficulties that the user will encounter as a
consequence of the problem
o Specific contexts: the specific context in which the problem may occur
o Assumed causes: description of the causes of the problem

16

CSE1105 OOP project

Confusion matrix

Actual problem
Yes No

Reported as True positive False Positive

roblem 2 :
P No False Negative True Negative

o Not clear whether it is specifically a usability problem

User test problem

Yes No
Heuristic Yes True positive False Positive
evaluation . .
No False Negative True Negative
problem

o Heuristic: “any approach to problem solving or self-discovery that employs a practical
method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless
sufficient for reaching an immediate, short-term goal or approximation.”

o “Heuristics can be mental shortcuts that ease the cognitive load of making a decision”

The goal of the study is to minimize false positives and false negatives

TP

P - —
recision —TP+ FN

Standardization of the study doubled the precision.
Take away: Whatever we do to measure something, standardize it!

Nielsen Heuristics

Revised

NN EWDNR

[uny
o

Visibility of system status

Match between system and the real world
User control and freedom

Consistency and standards

Error prevention

Recognition rather than recall

Flexibility and efficiency of use

Aesthetic and minimalist design

Help users recognize, diagnose, and
recover from errors

Help and documentation

An internal survey with their old data addressed from 1-5 to what extent does the identified usability
problem matches a list of old heuristic. After a factor analysis (correlations between ratings) reduced the
problems to the first revised 7, and added 8, 9 because they overlap a lot of problem. Number 10 was
arbitrarily added (not reported why).

17

Source guidelines

Feedback: keep user informed about what foes on
Provide status information

Feedback: show that input has been received
Features changes as user carries out task
Feedback provided for all actions

Feedback timely and accurate

Indicate progress in task performance

Direct manipulation: visible objects, visible results
Identity cues system response’s vs user’s goals
Show icons and other visual indicators
WYSIWYFG: do not hide features

What incorrect inferences are most likely

Source guidelines

Speak the user’s language

Contains familiar terms and natural language
Speak the user’s language

Metaphors from the real world

Familiar user’s conceptual model

Use of user’s background knowledge
Learnable through natural, conceptual model
Follow real-world conventions

Screen representation matches non-
computer

Encourage user to import pre-existing tasks
Identity cues between actions and user’s
goals

Understand the user’s language

18

CSE1105 OOP project

Source guidelines

Undo and redo should be supported
Obvious way to undo actions
Forgiveness: make actions reversible
Ability to undo prior commands
Clearly mark exits

Ability to re-order or cancel tasks
Modeless interaction

User control: allow user to
initiate/control action
Modelessness: allow user to do what
they want

Source guidelines

Consistency: express same thing same way
Consistency

Consistency: same things look the same
Uniform command syntax

Conform to platform interface conventions
Consistent key definitions throughout
Universal commands: a few, generic
commands

Show similar info at same place on each
screen

19

CSE1105 OOP project

User control
and freedom

“System functions may be
chosen by the user by mistake;
they need a clearly marked '
emergency exit ' without
having to go through an
extended dialogue.”

Unfriend Unfollow Unlike

Consistency
and Standards

“Users should not have to
wonder whether different
words, situations or actions
mean the same thing”

~

-l N
N o e
wl oo
S
N o |

®lwlo|o
o |® o N
-locsu

P ——¢—

Calcutaxy keyped Dansh lephone US miephone

Source guidelines

Prevent errors from occurring in the first place

System designed to prevent errors
Understand the user’s language

What planning mistakes are most likely?

What slips are most likely?

Identity cues between actions and user’s goals

\

HEfEE owvi

= o

en, J. (1994, April). Usability inspection methods. In Conference companion on Human

s in computing systems (pp. 413-414).

Source guidelines

See-and-point instead of remember-and-type
Make the repertoire of available actions salient
Seeing and pointing: objects and actions visible

All user needs accessible through the GUI

What features often missed and at what cost?
Provide lists of choices and picking from lists

Minimise the users’ memory load

Direct manipulation: visible objects, visible results

Easy or difficult to perform (execute) tasks?

Evoke goals in the user

Allow access to operations from other apps

Clearly marked exits
Show icons and other visual indicators
Integrate with the rest of the desktop

remembering

ijiiiil

1§l |
Wi

8---

Recognising

20

CSE1105 OOP project

Error
prevention

“Even better than a good error
message is a careful design
which prevents a problem from
occurring in the first place.”

Door open, microwave off

Recognition
rather that than

recall

“Try to make objects, actions
and options visible. The user
should not have to mentally
hold information and transfer
it to another part of the
interface. Instructions for using
the system should be visible or
easily retrievable whenever

appropriate.”

CSE1105 OOP project

Source guidelines

Accelerators should be provided

Shortcuts: Accelerators to speed up dialogue
User tailorability to speed up frequent action
User control: allow user to initiate/control
actions

System should be efficient to use

User interface should be customizable
Ability to re-order or cancel tasks

Keyboard core functions should be supported
Physical interaction with system feels natural

- z || x|] ¢
- ®
n conteol | | aption command

sen, J. (1994, April). Usability inspection methods. In Conference companion on Human

Google

Googee Searcn P Fosling Lucky

Google offered in Nederands Frysk

21

CSE1105 OOP project

Help users
recognize,
diagnose, and
e recover from

| 0xD00007FEFDFI7240 0:x0000000000000004 0000007 FEFDF97240
omooommmn:o . errors

“Helping users to nise,
[Cancel | Try Again Continue | diagfvlosge and mmv;?fgrom
errors. Error messages should
be clearly expressed in plain
language, precisely indicate
the problem, and
constructively suggest a
solution.”

Help and
documentation

“Although the system should

be able to be used without
H ow can we documentation, it may be
7 necessary to provide help of
a some form. This information
should be easy to search,
focused on it the user's
ongoing task (context
sensitive), list the steps to

carried out, and be brief and to
the point.”

Heuristic Evaluation/procedure

‘Having a small set of evaluators
examine the interface and judge its
compliance with recognized
usability principles (the
“heuristics”)’ (Nielsen, 1994, p. 155)

Identify participants

Explain them the heuristics

Ask them to identify problems related to each of the heuristics

Let participants fill the survey individually (to avoid group bias) (user Qualtrics/google form)
a. Also track the self-reported expertise of the user

el

22

CSE1105 OOP project

Procedure
| e

Q
A

Evaluators do their inspection of interface alotie
(independent and unbiased results)

Found problems are written down
Evaluation session Ias s, depending on the complexity of the system

During the interaction evaluator goes through the interface several times and
inspect each dialogue component with heuristic principles

Evaluation of actual system or paper prototype is possible

For complex system domain-specific systems, evaluator might need support
from domain assistant.

1. Nobody is willing to spend 1 hour of their time to do an experiment (and that time generally
regards bigger projects i.e. Spotify, Facebook, etc) for a school project.
2. COVID! -> We will send an online a survey
3. (Optional) We can put 1-4 euro each and offer a bol.com/amazon discount voucher prize for the
participants that identifies the most problem->heuristic relations. That way we can ensure
enough participants and serious responses.
a. To avoid people repeating the survey we will require them to add their email address if
they want to participate in the price.
b. As asanity check also track the IP address to invalidate extra submissions.

Material

[

LIST OF HEURISTICS THE SYSTEM OR FORM TO REPORT
PROTOTYPE PROBLEMS

23

CSE1105 OOP project

Prioritizing

Frequency X .
Severity matrix

1 2 3 4 5

1 |Low severity Medium
severity
2
© 3
©
Q.
£ 4
- Medium High
5 severity severity

HCI Live session

Conduct Heuristic Evaluation (HE) of your application

HE evaluators should be students from other groups

| nt rOd U Ct | O n Report you HE in Design Document

in HCI part of
O O P P rOJ eCt Formative feedback on Design Document Draft by TA

Assessment Design Document

See brightspace for OOP Porjrect HCI Assignment

24

The Heuristics

Visibility of system status

Match between system and the real world
User control and freedom

Consistency and standards

Error prevention

Recognition rather than recall

Flexibility and efficiency of use

Aesthetic and minimalist design

Help users recognize, diagnose, and recover

from errors

Help and documentation

CSE1105 OOP project

Exercise A - Evaluate "Fietsrouteplanner”

Exercise

1. As Evaluator Conduct HE on the Fietsrouteplanner, do
this on your own (14:00-14:20)

1. Go through the Application and check a compliance
with 10 Heuristics

2. Write down each usability problem

2. Compare with project members are establish final list
of usability problems (14:20-14:45) (Breakout room)
Also, appoint a group's spokesperson.

Reporting format
1. Problem description: a brief description of the problem

2. Likely/actual difficulties: the anticipated difficulties that
the t;‘Iser will encounter as a consequence of the
problem

3. Specific contexts: the specific context in which the
problem may occur

4. Assumed causes: description of the cause(s) of the
problem

Problem:
1. Hard to edit a trip (same for adding in between locations)
2. User frustration from having to re-enter previous location(s)
3. Consistency
4. Not implemented

Utrecht automatic zoom

25

CSE1105 OOP project

Start -> Typing: Start typing. Suggestions is out of the box (Aesthetics)
English: Dutch stuff written in Dutch.
Show Dutch discount ad for Utrecht
Postal code address doesn’t work well.
Town (Plaats)
Loading screen unnecessary -> Aeshtetics
English problem: Turns are still in Dutch. -> Aestheics.
Pop up aesthetics.
Aeshtetics. Button. Good.
. User control -> share button. Bad
. User control. -> Input validation zoom map.
. Help: check
. Design/recall: (like google maps) check
. User control -> can’t customize the route.

LWooNOU R WNRE

L
A WN PR O

Exercise B -
Prioritize our Frequency
problems 1 2 3 4 5

In breakout room 1 Low EE‘M"EI'it‘f /rab Medium
Step 1: | &wn severity
2 C e

’ Dok
4 K \Udo

=] g@ﬂt‘f Steg SENHBQJ;

(A) Xeete (4 ,2); CN (2 <) Be (\ 5) fn (u4)

Q(B 2> \)méb (H SU OP x (3, 3) S\-e?('(T)) D’oc,(292)
&MCZJ), VL (S>

1. Suggestions” tab appears even when no suggestion is available. - #5 Error prevention

2. Interface freezes when “processing input” even if the user hasn’t fully finished inputting. - #1
Visibility of system status

3. Novice users can’t figure out what Combined networks, LF, gritting route means. - #2 Match
between system and the real world

4. Path going through Belgium do not cover driving directions. - #2 Match between system and the
real world

5. Slider bars do not move continuously when on touchscreen. - #1 Visibility of system status

Impact

26

CSE1105 OOP project

6. The website only provides options to print or share the route. Offering less flexibility. - #7
Flexibility and efficiency of use

7. User can’t change the route planner once results are displayed. No undo button! - #3 User
control and freedom

8. User must navigate through all the options in order to compare routes. - #6 Recognition rather
than recall

9. Users can’t keep track of what step they are on. - #1 Visibility of system status

10. Weak structure of help and documentation, especially lack of “search” button. - #10 Help and
Documentation

11. When entering addresses to plan a route the feedback is a bit too long, since it interferes with
the design/interface in an annoying way. - #8 Aesthetic and minimalist design

12. When the language setting in English (or any other languages), but the directions are still in
Dutch. - #4 Consistency and standards

Lecture 4. Requirements Engineering
SOFTWARE PROCESSES AND REQUIREMENTS ENGINEERING

» Requirements Engineering Process
» ¢ Elicitation
» N Specification
» 8 Validation
» & Change

» Software Development Process
» Waterfall
» Scrum

iy &

How the customer explained How the project leader How the analyst designed it How the programmer wrote What the beta testers How the business consultant
it understood it it received described it

How the project was What operations instalied How the customer was billed How it was supported What marketing advertised

What the customer really
documented needed

27

CSE1105 OOP project

e ltis vital to list, specify, validate and share the requirements in a clear and structured way
o Even when client are not able to explain what they want

REQUIREMENTS

DESCRIPTIONS OF THE SERVICE(S) THAT A SYSTEM SHOULD

PROVIDE AND CONSTRAINTS ON ITS OPERATION

lan Sommerville in “Software Engineering” (10 edition)

e What a system should do (goal)
e What can it do (features)
e Under which constraints

User vs system requirements

» £ User requirements
Statements in a natural language (+ diagrams)

» ¥ System requirements
More detailed descriptions of the software system’s functions, services and
operational constraints.

e User requirements must be jargon free and easily understood by the client.
o A userrequirement can be branched into multiple system requirements
e System requirements are much more specific and regard the technical implementation

Example:

» L User requirement

» The Mentcare system shall generate monthly management reports showing the cost of drugs
prescribed by each clinic during that month.

» @ System requirements

» On the last working day of each month, a summary of the drugs prescribed, their cost and the
prescribing clinics shall be generated.

» The system shall generate the report for printing after 17:30 on the last working day of the month.

» If drugs are available in different dose units (e.g. 10mg, 20mg, etc.) separate reports shall be
created for each dose unit.

28

CSE1105 OOP project

Functional vs non-functional requirements
» Functional requirements: what services the system should provide.

» Given an input: what should system (not) do?

» Non-functional requirements: constraints on the services offered by the system.
» For example: timing constraints (performance), process constraints, etc.

» But also, usability constraints (think of HCI)
Uptime, number of requests per minute, are other examples.
» Examples of functional requirements
» The user shall be able to search for appointments in its calendar.

» Every day the system shall generate a list containing the patients that are
expected for an appointment that day.

» Each student shall be uniquely identified by their seven-digit number.
“The system shall provide appropriate viewers for the user to read documents in the
document store”

What does “appropriate” mean?

Requirements should be complete and specific.
» Complete: all services required by the user are specified
» Consistent: requirements do not contain contradictory definitions

For larger, complex systems it’s practically impossible to achieve both.

29

CSE1105 OOP project

NON-FUNCTIONAL REQUIREMENTS

» Three main categories

» Product
System must behave in a particular way (e.g. execution speed, reliability, ...)

» Organisational
Consequence of policies and procedures (e.g. process standards used, ...)

» External
Arise from factors external to the system and its development process
(e.g. interoperability requirements, legal requirements, ...)

NON-FUNCTIONAL REQUIREMENTS

PRODUCT ORGANISATIONAL EXTERNAL
REQUIREMENTS REQUIREMENTS REQUIREMENTS
H usaBLy RequemenTs | ENVIRONMENTAL REQUREMENTS | REGULATORY REQUREMENTS |
H_ eFAcieNcy ReauReMenTs | OPERATIONAL REQUIREMENTS | ETHCAL REQUREMENTS |
PERFORMANCE REQUIREMENTS DEVELOPMENT nmummms] LEGISLATIVE REQUIREMENTS J
SPACE REQUIREMENTS] ACCOUNTING REQUIREMENTS]
'[SECURITY REQUIREMENTS] SAFETY/SECURITY nsuummms]
{ oepeNDABILITY REQUREMENTS

30

CSE1105 OOP project

Listing requirements
1. Feasibility :Assess whether the client needs are realistic,
FEASIBILITY STUDY solvable and/or within budget.
2. Elicitation: Gather all requirements to get initial understanding
of the problem and the “problem domain”.

REQ. ELICITATION 3. Specification:‘Document jche problem illustrated in step 2 in a
way that a) the client can verify that you understood the problem
and b) developers know what to build precisely.

4. Validate: Agree with the client that the documented
REQ. SPECIFICATION requirements compromise the entirety of the project enforceable
deliverables.

In practice these steps are not necessarily a waterfall process.

REQ. VALIDATION

FEASIBILITY STUDY

GRETNVEL T (FEASIBILITY REPORT)

» Optional, before detailed analysis starts
» Short term, relatively cheap, studies REQ. ELICITATION

» Assess whether there's
» aneed and/or market for the software REQ. SPECIFICATION
» technically and/or financially realistic to develop

» experiment/make prototypes

REQ. VALIDATION

» Requirements Engineering Process in practice;
» No sequential process, but iterative
» Activities are commonly interleaved i

This report is not part of the CSE110 assignments.

REQUIREMENTS ELICITATION AND ANALYSIS

CICETTVE T Q—>(FEASIBILITY REPORT)

» Deriving system requirements through
» Observing existing systems
» Discussions with potential users REQ. ELICITATION SYSTEM MOELS
» Task analysis

> ... REQ. SPECIFICATION

» May involve the development of
» System models REQ. VALIDATION
» Prototypes

31

CSE1105 OOP project

Prototypes may be wireframes and sketches (like for the web-socket app for CSE1500.

» Meet with client / end-users to find out;
Application domain

Services that need to be provided » Interview the stakeholders
Performance requirements

Hardware/software contraints (e.g. Windows,...) » Closed interview: fixed list of questlons

v v v v w

» Open interview: no pre-defined agenda
» Practice: mix of both

» Involves interaction with all system

stakeholders: end users, business managers, * Ethnography

e, » Observing current systems/procedures

The focus of CSE1105 project is on end-users (among all the other users/stakeholders, the people using
the product itself). But to get a main picture of the “domain” of the problem it is advised to talk to all
the stakeholders of the project.

REQUIREMENTS ELICITATION AND ANALYSIS

FEASIBILITY STUDY e —(ey > FEASIBILITY REPORT |

REQ. ELICITATION

[CLASSIFICATION &] ——»[SYSTEM MODELS J

(SPECIFICATION J ORGANISATION

NEGOTIATION

REL SPECICATON [N PRIORISATION &]/

REQ. VALIDATION

e Discovery: process of interacting with the stakeholder to identify the requirements. (i.e via
interviews).

e C(lassification & organization: organize all the discovered requirements into different categories
(user, system, functional, non-functional).

e Prioritization & negotiation: based on budget constraints. Identify conflicting requirements and
reach a solution agreed with the stakeholders.

e Specification: Update documentation of the requirements

Must have: Without 1 of them the project is considered a failure.
Implementing all must have results in a minimum viable product.

SHOULD HAVE

The requirement elicitation can be documented via use-cases (also called stories/scenarios). In natural L.

Should have: Additional value. Implement if resources allow it.
Could have: Additional value that has less impact.
Wont have: Discarded. Ignore even if budget is available.

32

CSE1105 OOP project

» Stories / scenarios
» Describe how a situation is currently handled

» A structured scenario includes;

» What the system/users expect at the start
Normal flow of events
Potential errors, and how to deal with them
Potential concurrent activities
System state at the end of scenario

w v Vv v

REQUIREMENTS SPECIFICATION

FEASIBILITY STUDY FEASIBILITY REPORT]

» Translate information from previous phase into
understandable document (for client).

REQ. ELICITATION SYSTEM MODELS]

» Describe what to deliver in a structured way
Decide on a format and use for all requirements

Use “shall” for mandatory req's, “should” for desirable REQ. SPECIFICATION USER+SYSTEM REQS)
Text highlighting (bold/italic/underline) for key elements
Avoid use of jargon, abbreviations, acronyms

Preferably include a rationale (explain why, and by whom)

v v v wv w

REQ. VALIDATION

Use the same format for all requirements
Also include consequences from removing a requirement

Example

» The system shall measure the blood sugar and

deliver insulin, if required, every 10 minutes
(Changes are relatively slow, so more frequent is
unnecessary, [...])

33

CSE1105 OOP project

USER STORIES

» More common in Agile methodologies to describe “requirements”
» Focus on stakeholders and the value that is brought to them
» Not all stakeholders are obvious: you'll learn about this in lecture 5
» Accompanied by
» Acceptance criteria / “Definition of Done”
» Failure cases
» Less suitable for non-functional requirements

AS A <ROLE>, | WANT <DESIRED OUTCOME> SO THAT <REASON>

REQUIREMENTS VALIDATION
» Reach an agreement with the client upon the

nature of the problem. v
REQ. ELICITATION

SYSTEM MODELS
» Check requirements for;

» Validity

» Realism

» Consistency

» Completeness
» Verifiability

REQ. SPECIFICATION USER-+SYSTEM REQS

REQ. VALIDATION REQ. DOCUMENT

» Repair errors that are found in this phase E

e Make sure that requirements are measurable and testable
e After validation the backlog can we used as a contract to justify decisions

FEASIBILITY STUDY FEASIBILITY REPORT]

REQ. ELICITATION SYSTEM MODELS]

REQ. SPECIFICATION USER-+SYSTEM REQS J

v

REQ. VALIDATION REQ. DOCUMENT

34

CSE1105 OOP project

The requirements document is an organized version of the (user + system) requirements, with appendix
of the system model (wireframe) and feasibility report (already done by the course) with a bit of legal
jargon in which there could be clause where all parties agree and make the resulting document legally
binding, which translates into the official backlog.

COMMON PROBLEMS

» Stakeholders don’t know what they really want

» Stakeholders express requirements in their own
terms

» Different stakeholders may have conflicting
requirements

» Organizational and political factors may influence
the system requirements

» New stakeholders may emerge

HOW DOES THIS TRANSLATE TO THE 00P PROJECT?

FEASIBILITY STUDY

« NOT NECESSARY FOR 0OPP

. CLIENT INTERVIEWS IN WEEK 2 (AND 3)

I EXTRACT USER STORIES, CONVERT TO GITLAB ISSUES

SYSTEM MODELS

REQ. ELICITATION

REQ. SPECIFICATION l USER-+SYSTEM REQS l

REQ. VALIDATION REQ. DOCUMENT

' REVIEW USER STORIES, FEEDBACK FROM CLIENT (WEEK 3)

» OOP Project is a small project, so we do not need the entire (formal) process.
» For example, for government projects you'll typically need the full process + all deliverables.

e User story -> requirement -> feature -> gitlab issue -> git branch

35

CSE1105 OOP project

Software development process

WATERFALL MODEL (ROYCE, 1970)

» Minimising risks by working systematically
and thorough

REQUIREMENTS DEFINITION

SYSTEM & SOFTWARE DESIGN
» Consequences

» Hard to elicit all req's from the beginning
- req’s change often
- users don’t know exactly “what they need”

IMPLEMENTATION & UNIT TESTING

_ I INTEGRATION & SYSTEM TESTING
» In practice, implementation starts late
» Client only sees a real ROl in the last phase OPERATION AND MAINTENANCE

» Cost of change is high then

» Useful for projects that require strict planning/have tight budgets
» For example: governmental projects I

Scrum

INCREMENTAL DEVELOPMENT

» Fundamental part of Agile development methods

» Better method when project has changing requirements
» This is the case for most software products

» Three major benefits compared to Waterfall
» Cheaper/easier to implement changed requirements
» Easier to get user feedback (using intermediate versions)
» Early delivery/deployment possible (without all features)

» Agile doesn’t mean: without a plan
» Rather, easy to change the plan

36

CSE1105 OOP project

SCRUM OVERVIEW

Sprint
Retrospective

Daily
Scrum

Sprint
Review
Increment

7 Serum Tea™

Sprint L 1]
Planning

Product Sprint
Backlog Backlog

Scrum Framework © 2020 Scrum.org

SCRUM TERMINOLOGY

» Sprint
» lteration (typically 2-4 weeks)
» Produces a potentially shippable product (an “increment”)

» Product Backlog
» Prioritised list of user stories (~> features / bugs)

» Sprint Backlog
» Selected items from the product backlog for the current sprint

ROLES IN A SCRUM TEAM

After each spring the branches are merged into main.

A person may have multiple scrum roles.
» Scrum master

In this course every student is both developer and project » Educates the team
owner, whereas the TA is the scrum master. » Helps to keep on track

» Removes impediments
Each sprint planning meeting reviews the product backlog

and sets a new sprint backlog (a subset of items) » Project owner

for the week (duration of the sprint). » Maintains the backlog
» Communicates with development team
» Bridge to customer

» Development team
» Develop
» Estimate time for backlog items
» Raise impediments
37 » Reflect and adapt

CSE1105 OOP project

» Estimating time for stories
» Multiple methods possible, one being Planning Poker;
PO presents the user story

Every shows a card that represents their estimate
Unit can be days, ideal days, story points, ...

1 -
2.
3. Lowest + highest bidders explain their choice
4. Repeat until consensus

» Sprint
1. Developmenttime. &
2. Throughout sprint, keep others informed
about status.
Example flows are;
» To Do &3 Doing &3 Done.
» To Do €3 Testing & Review &3 Done.

» Daily Scrum (~15 min)

» Inspect progress, and adapt backlog as necessary

Everyone working on the sprint backlog participates
1. What have you done yesterday?

2. What are you going to do today?

3. Dol have any impediments?

» Sprint Review

» Team presents result of sprint to key SHs
» PO checks for acceptance criteria
» When is something “done”?
Define “done” within your team
» Only deliver done stories
» PO may propose new items for backlog

» PO + team: to ship or not to ship? # .
(with the TA)

» Sprint Retrospective
» Reflect on team’s behaviour
» What went well? What can be improved?
» Actionable points
» Review improvement points from last retrospective

38

CSE1105 OOP project

SCRUM IN OOP PROJECT

Sprint
Retrospective

ON DAY OF LAB (OUTSIDE TA MEETING)

Sprint
Planning

Product Sprint
Backlog Backlog

WEEK 3: FINAL BACKLOG

Review
Increment
END OF SPRINT: NEW INCREMENT ON THE
MASTER BRANCH

SPRINTS OF 1 WEEK Serum Framework © 2020 Scrum.org

7 Scrum Teo™

e The master branch shall only be updated with WORKING versions of the product

Lecture 5. Responsible Computer Science (Design, values)

From values to design requirements:
The Value Hierarchy

Animal
Values SRl

T 1
i
Norms of laying Litter Perches
1 = l = | | | § V
at least 10.cm hemhtover | | floorslope
z 4 450 cm? feeding at least of

Design requirements floor area trou&pef 65% of the maximally

per hen Sreh 14

39

CSE1105 OOP project

Lecture in a nutshell

» Goal 1: gaining knowledge of and insight into VSD:

» Technologies are value-laden and..“VSD is a way that engineers and designers can do
ethics by designing values ‘into’ them

» Values are realized in the interaction between users and technologies, and are
intrinsic or instrumental

» VSD has a tripartite methodology (conceptual, empirical and technical
investigations) and can be supported by value hierarchies, both top-down and
bottom-up

» Goal 2: gaining experience with VSD

» Using the value hierarchy to formulate design requirements for value-driven
innovations

Values used in class

Group numbers Value

1,9,17,25,33,41 Freedom
2,10,18,26,34,42 Friendship
3,11,19,27,35,43 Health
4,12,20,28,36,44 Equality
5,13,21,29,37,45 Safety
6,14,22,30,38,46 Curiousity
7,15,23,31,39,47 Privacy
8,16,24,32,40,48 Transparency

40

CSE1105 OOP project

Lecture 6. Gitlab
GIT FLOW - BRANCHING MODEL

]

I Develop. | | Feature | Feature |

Master
. Latest stable/working
v i version
» Develop
» Integration of newly
developed features
o) Feature X/Y/...

Where the coding happens

@ < |l

@,

(@)

Release: out of scope
Hotfix: out of scope

Before merging there should be a test branch (release)

Lecture 7. Information Literacy

Where to find information
http://informationliteracy.tudelft.nl/Informatievaardigheden1/NED/L202 Tabel Vergelijking Google
Scholar WorldCat Discovery and Scopus.pdf

There is a huge number of different information sources available, but you won’t need all of them right
away. Where do you find what?

What? Where?
\WorldCat

Books, journals and other material that can be retrieved and studied at TU Delft Library | _.
Discovery
Scopus* or

Scientific articles
Google Scholar

Standards (agreements on the basis of consensus concerning the specifications of a

NEN Connect
lproduct, service or business process. Also called norms.)

Patents (a form of intellectual property. It consists of a set of exclusive rights granted by
a sovereign state to an inventor or their assignee for a limited period of time in exchange|Espacenet
for the public disclosure of an invention.)

Websites Google

TU Delft Library

Information sources relevant to your field of study .
website

* Scopus is just one example of a scientific database. In the collection of the TU Delft Library you can find
many other scientific databases as well.

41

http://informationliteracy.tudelft.nl/Informatievaardigheden1/NED/L2O2_Tabel_Vergelijking_Google_Scholar_WorldCat_Discovery_and_Scopus.pdf
http://informationliteracy.tudelft.nl/Informatievaardigheden1/NED/L2O2_Tabel_Vergelijking_Google_Scholar_WorldCat_Discovery_and_Scopus.pdf

CSE1105 OOP project

Search shortcuts
e Use "double quotes for literal string order"
e Use -categoryTolgnore to remove irrelevant results
e https://tulib.tudelft.nl/searching-resources/search-operators/

GO’ gle future -rapper -singer -celebrity -music (O] !

Q Al [& Images [Videos [E News © Maps i More Settings

—_— 3 S
technology g&' vision w city % rapper

wallpaper

Future technology: 22 ideas about to ... The Internet of the Future — What ...
sciencefocus.com dotmagazine.online

-n

How Coronavirus Will Change The Futur... discover we can see the future ... Future concepts - Innovation - Airbus
forbes.com newscientist.com airbus.com

42

https://tulib.tudelft.nl/searching-resources/search-operators/

CSE1105 OOP project

Lecture 8. Spring & Testing

Dependency Injection

Use Guice For Dependency Injection

<dependencies>
<dependency>
<groupId>com.google.inject</groupld> s : s
artifactid>quice</artifactic public class MyConfig implements Module {

<version>4.2.3</version>)
</dependency> public void configure(Binder binder) {

binder.bind(IFileUtils.class)
<dependency> .toInstance(new FileUtils("somefile.txt"));
<groupId>junit</groupId> }
<artifactId>junit</artifactId> }
<version>4.13.2</version>
<scope>test</scope>
</dependency>
</dependencies> Create Config

Add dependency to pom.xml

Injector injector = Guice.createInjector(new MyConfig());
ContentProcessor cp = injector.getInstance(ContentProcessor.class);
cp.run();

Use Injector

Testability: Create DOC Replacement

public class TestFileUtils implements IFileUtils {

public List<String> calls = new LinkedList<>();
public String toReturn = "";
public String lastWriting;

@0verride

public String readContentFromFile() {
calls.add("read");
return toReturn;

b

@0verride

public void writeContentsToFile(String content) {
calls.add("write");
lastWriting = content;

43

CSE1105 OOP project

Test Example: Indirect Input/Output

public class ContentProcessorTest {

private TestFileUtils doc;
private ContentProcessor sut;

@Before
public void setup() {
doc = new TestFileUtils();
sut = new ContentProcessor(doc);

'

@Test

public void textShouldBeLowered() {
doc.toReturn = "aBc";
sut.run();
String actual = doc.lastWriting;
String expected = "abc";
assertEquals(expected, actual);

}

Test Example: Behavior

@Test
public void correctCallOrder() {

sut.run();

List<String> expected = new LinkedList<>();
expected.add("read");
expected.add("write");
assertEquals(expected, doc.calls);

44

Spring Initializer

java - Eclipse IDE

CSE1105 OOP project

v i demo 1
¥ (% srefmainfjava 2

¥ &3 oopp.demo 3

> [J] DemoApplication.java 5
6

7

8

» Al MyController.java

oopp.demo.MyController.java - demo/src/mainfjava

package oopp.demo;

@ dimport org.springframework.stereotype.Controller;
import org.springframework.web.bind,annotation.GetMapping;
import org.springframework.web.bind.annotation.ResponseBody;

» (M srefmainfresources @Controller
» @8 srcftestfjava public class MyController {
4 e 9

» =)\ JRE System Library [JavaSE-11] 108 @GetMapping("/")

» =i\, Maven Dependencies 11 @ResponseBody

=21 12 public String index() {
(= target 13 return "Hello World!";
[¥] HELP.md %g }
= mvnw 16}
) mvnw.cmd 17
1) pom.xm!

® 0 ® B ocahost8080 x
& C (@ localhost:8080

‘ Hello World!

45

LXK 0opp -
- mb F 0 LR HEG IS LU i] Q im &
® & Springinitialzr ® o+ =
13 Package Explorer I3 = 0O [Demoapplication java 3 =0 utline 5% =0
<« C @ swrtspingio v i demo 1 package oopp.deno; EERRN e W §
(% srcimai 2
., L,"w'“:;ff" 3 inport org. Springfranework. boot.SpringApplication; g ocpp.démo
— | 3 initiali SopRoeTe 5 @, Demoappiication
= Q spring initializr & eSpringBootApplication @ ® main(Swingl) : void
¥ (3 src/main/resources 7 public class DenoApplication {
(Sstatic 8 . o
(= templstes 9@ public static void main(stringl] args) {
2 aooli 10 SpringApplication. run{DemoApplication.class, aros);
= ssplication.properties e
project Language Depy " B schesiion 12
o ° O Kotin ¥ i JRE System Library [JavaSt 13)
. » B} Maven Dependencies 14
O Gradie Project O Groowy Sprin| (st
Buid (> target
Spring Boot Spring =1 etpma
5 < embe =) menw
O 250(ENAPSHOT) O 250 (M2) X memmicme
O 244(SNAPSHOT) @ s pomoxml
O 23106MARSHOT) © 233 L
A mo
. both
Project Metadata i
Group 0Opp. static
Antifact demo H2 D1
Provid
Name demo JpBE
foctpr|
as wel
Deseription Dlemo project for Spring Bost (8 Problems 52 @ Jsvsdoc. [beckrarion F8-8
0 errors, 2 warnings, 0 others
Package name 00pp.demo Deseription ~ Resource Path Lacation Type
» (& Warnings (2 items)
Packaging @ O war
Bwa O= @0 Os
v e " 02 e s
i t I I
o0 e oopp - demo/src/main/java/oopp/demo/MyController.java - Eclipse IDE
= H O Qrid @SS wilvh ook Gr Q i
[% Package Explorer 53 & § =0 DemoApplication.java [J] MyController.java 52 hallo.html = B E= outline = [o]

Blrww e §

& oopp.demo
v @ MyController
index() : String

CSE1105 OOP project

Use Thymeleaf As a Simple HTML Template Engine

®0e € oopp - i 1d.html - Eclipse IDE
10 Qi GBS S WD Bl v o Q i®

o €8

|& Package Explorer 33 Sl MyController.ja = hello-world.htm £3 NamedHelloContr > = B E= outline
v i demo 1Hello template! There is no active editor that
¥ (% src/mainfjava provides an outline.
¥ 5 oopp.demo
» [J] DemoApplication java
» [J) MyController.java
» [J) NamedHelloController.java
» [J] NameExpansionService java
¥ (¥ sre/main/resources ® ® @ localhost:8080/hello-template X +
(2 static
¥ (&> templates & C @® localhost:8080/hello-template w ®» = @ :
= application.properties
> [srcftest/java
» i\ JRE System Library [JavaSE-11
» &\, Maven Dependencies
=1
(= target
[# HELP.md

Hello template!

= mvnw
»§ mvnw.cmd
4 pom.xm

Database Access: Spring Configuration

[] [] oopp - server/src/mair ication.properties - Eclipse IDE

g Wit Q@ Q WG SO S RE YT g Q i
[# Package Explorer 32 5% § = B | [£ apolication.properties 5§ = O
» i3 client 1 spring.datasource.driverClassName=org.h2.Driver

b i 2 spring.datasource.username=sa

3 spring.datasource. password=password

-y "
» i reflection 4 spring. jpa.database-platform=org.hibernate.dialect.H2Dialect

¥ & server 5
¥ (% src/main/java 6 spring.datasource.url=jdbc:h2:file: /Users/seb/Downloads/oopp-demo. h2

¥ 3 copp.demo 7
» [J] DemoApplication.java

8 spring.h2.console.enabled=true
» [J] MyCentroller.java 9

10 spring. jpa.hibernate.ddl-auto=update

» [J] NamedHelloCantroller.java 11 spring. jpa.hibernate. show_sql=true
b [J] NameExpansionService java 12
¥ [J] PersonListing java 13

b |J] user.java
» [userRepositary.java
v 4 oopp.demo.data
» [J] Person.java
¥ (% src/mainjresources
(> static
> (= templates
\= application.properties
¥ @ sic/test/java
v 3 copp.demo
» [J] PersonListingTest java
b =\ JRE System Library [JavaSE-1.8]
b =i, Maven Dependencies
b (= src
(= target

[# HELP.md

‘Writable Insert 13:1:361 <R $,

46

CSE1105 OOP project

Database Access: Use Repository

@Controller
@RequestMapping("/named")
public class NamedHelloController {

private NameExpansionService nes;
private UserRepository users;

public NamedHelloController(NameExpansionService nes, UserRepository users) {
this.nes = nes;
this.users = users;

b

@GetMapping("/name/{name}")
@ResponseBody
public String named(@PathVariable("name") String name) {

if (lusers.existsById(name)) {
User u = new User();
u.name = name;
users.save(u);

}

return "Hello " + nes.expand(name) + "!";

Database Access: Use Console For Exploration

® " ® @ H2console x [
<« (&) @ localhost:8080/h2-console/login.do?jsessionid=8441ae0c9abebf... ©v ¥t » = @ :
o | B Auto commit “0 ‘0 | Maxrows: (1000 v| @ O = Auto complete [Off v | Auto select [On v| (2

] jdbc:h2:~/Downloads/oopp-demo.h2 | Run | |Run Selected Auto complete Clear SQL statement:
USER SELECT * FROM USER
| INFORMATION_SCHEMA
+ {§) Users
(i) H2 1.4.200 (2019-10-14)

SELECT * FROM USER;
NAME

Joe

Seb

Seb2

(3 rows, 6 ms)

Edit

47

CSE1105 OOP project

Use An Object Mapper (Jackson, GSON, JSON.simple, ...)

sublic class Person {

public String firstName;
public String lastName;

public Person(String firstName, String lastName) {
this.firstName = firstName;
this. lastName = lastName;

}

// either provide parameter-free constructor for OM...
private Person() {}

// ... or do not use an explicit constructor
public static Person create(String first, String last) {
Person p = new Person();
p.firstName = first;
p.lastName = last;
return p;

}

ObjectMapper OM = new ObjectMapper();

Person a = new Person("Sebastian", "Proksch");
String json = OM.writeValueAsString(a);

System.out.println(json);
Person b = OM.readValue(json, Person.class);

if (a != b && a.equals(b)) {
System.out.println("equals!");

{"firstName":"Sebastian","lastName":"Proksch"}
equals!

public int hashCode() {[]
public boolean equals(Object obj) {]

public String toString() {[J

Spring REST Controller

@RestController
@RequestMapping("/api/people")
public class PersonListing {
private List<Person> people = new LinkedList<>();
public PersonListing() {
people.add(new Person("a", "b"));
people.add(new Person("c", "d"));

@GetMapping("/")
public List<Person> list() {
return people;

@PostMapping("/")
public List<Person> add(@RequestBody Person p) {
if (!people.contains(p)) {
people.add(p)

return people;

Import

Runner

Postman

7 Invie 20 O @ uwrese -

Untitled Request

GET v hitpiliocalhost:B08Wapifpeople/

v hipilcalhost80804api/people! ®

Untitled Request

poST

Body +

1A

2 “Firsthiose": "o,

3 "lasthame":
4

vy

ind and Replace

£ console

48

GT hupofiocalnostEDS0/apidpeopler®

* hupurlocelhost8080/aplipeople/

88 My Workspace

. No Environment -
hupriocahostEeV/apipeo.. @ ()

Postman

8 My Workspace -

2 invite

No Enviranment
hipiflocalhosc8080/api/peo.. &

+ Body ~ @ 2000k 146ms 0B SaveResporse v
Pretty Rew Predew Visualze JSON v ®Q
il

“Firsthla
“Lasthan

“Firsthane’s "o,
“lasthane": “d

“rarstiane’s "o,
“lasthane™s "yyyy"
»

© Bootcamp Buld sowse E] Fl &

CSE1105 OOP project

Add Dependencies For Jersey And Jackson To Client

<dependencies>
<!-— depend on the other project to get access to data structure -—
<dependency>
<groupld>oopp</groupld>
<artifactId>server</artifactld>
<version>0.0.1-SNAPSHOT</version>
</dependency>

<!-— All Jersey dependencies for the REST requests ——>

<dependency>
<groupld>org.glassfish. jersey.core</groupld>
<artifactId>jersey-client</artifactId>
<version>3.0.1</version>

</dependency>

<dependency>
<groupld>org.glassfish.jersey.inject</groupId>
<artifactId>jersey-hk2</artifactId>
<version>3.0.1</version>

</dependency>
<dependency>
<groupId>org.glassfish,jersey.media</groupId>
<artifactId>jersey-media-json-jackson</artifactId> This is a customized Jackson
<version>3.0.1</version> “
</dependency> release for Jersey... for “Stand-
s/dependencies> alone Jackson”, look out for
FasterXML Jackson.
Person p = new Person("jersey", "client");

Entity<Person> requestBody = Entity.entity(p, MediaType.APPLICATION_JSON);

GenericType<List<Person>> responseBodyType = new GenericType<LisTéQerson>>() {

List<Person> people = ClientBuilder.newClient()// —
.target("http://localhost:8@88/api/people/™)// Declare the serialization
.request(MediaType.APPLICATION_JSON) // :

.accept (MediaType.APPLICATION_JSON) // format, like JSON, XML, ...

.post(requestBody, responseBodyType);

System.out. ntln(people);

Define the returned type. Normally you can
Define the entity that should just provide the .class, e.g., List.class, but
appear in request body. for generic types, a helper object is needed.

https://spring.io/guides/gs/testing-web/

49

https://spring.io/guides/gs/testing-web/

CSE1105 OOP project

After this lecture, you should should be able to...

create a testable design for complex systems

test indirect input and output of dependent-on components

use dependency injection to decouple your system components
setup a basic Spring app with REST endpoints

consume REST endpoints on clients through Jersey

use object mappers and stop worrying about serialization formats
understand the underlying mechanism of many frameworks

write proper unit tests for your Spring applications

50

